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Abstract: The paper proposes a new nonparametric prior for two–dimensional vec-

tors of survival functions (S1, S2). The definition is based on the Lévy copula and

it is used to model, in a nonparametric Bayesian framework, two–sample survival

data. Such an application yields a natural extension of the more familiar neutral

to the right process of Doksum (1974) adopted for drawing inferences on single

survival functions. We then obtain a description of the posterior distribution of

(S1, S2), conditionally on possibly right–censored data. As a by–product, we find

that the marginal distribution of a pair of observations from the two samples co-

incides with the Marshall–Olkin or the Weibull distribution according to specific

choices of the marginal Lévy measures.
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dependent stable processes, Lévy copulas, posterior distribution, right–censored

data, survival function.

1. Introduction

A typical approach to nonparametric priors is in the use of completely ran-

dom measures, namely random measures inducing independent random variables

when evaluated on pairwise disjoint measurable sets. The Dirichlet process in-

troduced by Ferguson (1974) is a noteworthy example being generated, in distri-

bution, by the normalization of a gamma random measure. Other well–known

examples appear in the survival analysis literature. In Doksum (1974), a prior

for the survival function is given by

S(t|µ) = P [Y > t |µ] = exp{−µ(0, t]} ∀t ≥ 0, (1.1)

where µ is a completely random measure defined on some probability space

(Ω,F ,P) such that P[limt→∞ µ((0, t]) = ∞] = 1. As shown in Doksum (1974),

(1.1) defines a neutral to the right (NTR) prior, namely a random probability

measure such that the random variables

1 − S(t1|µ), 1 − S(t2|µ)

S(t1|µ)
, . . . , 1 − S(tn|µ)

S(tn−1|µ)
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are mutually independent for any choice of 0 < t1 < · · · < tn < ∞. When

referring to (1.1) for a survival time Y , we henceforth use the notation Y |µ ∼
NTR(µ). According to an alternative approach of Hjort (1990), a beta completely

random measure is used to define a prior for the cumulative hazard function

Λ(t|µ) =

∫ t

0
P[s ≤ Y ≤ s+ ds|Y ≥ s, µ] = µ(0, t]. (1.2)

These two constructions are equivalent. As shown in Hjort (1990), a prior for

the survival function is NTR if and only if its corresponding cumulative hazard

is a completely random measure. Moreover, if Y1, . . . , Yn are the first n elements

of a sequence of exchangeable survival times, one can explicitly evaluate the

posterior distribution of the survival function and of the cumulative hazard as

defined in (1.1) and in (1.2). The former can be found in Ferguson (1974) and

in Ferguson and Phadia (1979), and the latter in Hjort (1990).

Here we introduce priors for vectors of dependent survival (S1, S2) or cu-

mulative hazard (Λ1,Λ2) functions. This is accomplished by resorting to vec-

tors of completely random measures (µ1, µ2), with fixed margins, such that

each gives rise to a univariate NTR prior. The dependence between µ1 and

µ2 is devised in such a way that the vector measure (µ1, µ2) is completely ran-

dom, that is, for any pair of disjoint measurable sets A and B, the vectors

(µ1(A), µ2(A)) and (µ1(B), µ2(B)) are independent. An appropriate tool to

achieve this goal is the Lévy copula, see Tankov (2003), Cont and Tankov (2004),

and Kallsen and Tankov (2006).

A typical application where this model is useful concerns survival, or failure,

times related to statistical units drawn from two separate groups such as, e.g.,

in the analysis of time-to-response outcomes in group-randomized intervention

trials. Suppose, for example, that statistical units are patients suffering from a

certain illness, and that they are split into two groups according to the treatment

received. Let Y
(1)
1 , . . . , Y

(1)
n1 and Y

(2)
1 , . . . , Y

(2)
n2 be the survival times related to

n1 and n2 units drawn from the first and the second group, respectively. Then,

one can assume that

S(u, v)=P

[

Y
(1)
i >u, Y

(2)
j >v

∣

∣

∣

∣

(µ1, µ2)

]

= exp{−µ1(0, u] − µ2(0, v]}, (1.3)

P

[

Y
(i)
1 > t1, . . . , Y

(i)
n > tn

∣

∣

∣

∣

(µ1, µ2)

]

=
n

∏

j=1

exp {−µi(0, tj ]} , i = 1, 2, (1.4)

for any u, v, t1, . . . , tn positive. According to (1.3) and (1.4), we assume ex-

changeability in each group; this seems natural since patients sharing the same
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treatment might be thought of as homogeneous. Given the marginal random sur-

vival functions, the lifetimes, or times-to-event, are assumed independent among

the two groups. This is similar to frailty models where, conditional on the frailty,

the two survival times are independent. The dependence among the data, reason-

able since people from the two groups share the same kind of illness, is induced

indirectly by the dependence between the two marginal survival functions. This

approach has some interesting advantages: (i) it leads to a representation of the

posterior distribution of (S1, S2), or of (Λ1,Λ2), which is an extension of the

univariate case; (ii) the resulting representation of the Laplace functional of the

bivariate process suggests the definition of a new measure of dependence be-

tween survival functions; (iii) for appropriate choices of µ1 and µ2, the marginal

distribution of (Y (1), Y (2)) coincides with some well–known bivariate survival

functions, such as the Marshall–Olkin and the Weibull distributions. Recently,

Ishwaran and Zarepour (2009) gave a definition of vectors of completely random

measures based on series representations, termed bivariate G–measures.

Our results also connect to an active area of research in Bayesian non-

parametric statistics. Indeed, exchangeable models commonly used in Bayesian

inference are not well suited for dealing with regression problems, and new

priors that incorporate covariates information have been recently proposed.

These are referred to as dependent processes, the most prominent example

being the dependent Dirichlet process introduced by MacEachern (1999, 2000,

2001). Later developments on dependent Dirichlet processes can be found in

De Iorio et al. (2004), Griffin and Steel (2006), Rodŕıguez, Dunson and Gelfand

(2008), Dunson, Xue and Carin (2008), and Dunson and Park (2008). The idea

in these papers is to construct a family {P̃z : z ∈ Z} of random probabil-

ity measures indexed by a covariate (or vector of covariates) z taking values in

some set Z. Hence, one defines P̃z as a discrete random probability measure
∑

i πi(z) δXi(z) with both random masses πi and atoms Xi depending on the z

values, with the πi’s determined through a stick–breaking procedure. The non-

parametric prior we propose here can be seen as a dependent process with Z

consisting of two points {z1, z2}, the dependence structure between P̃z1 and P̃z2
being determined by a Lévy copula. The main advantage of our model is the

possibility of deriving closed form expressions for Bayesian estimators that, at

least to our knowledge, cannot be found by resorting to dependent stick–breaking

processes. Another prior that fits into this framework is the bivariate Dirichlet

process of Walker and Muliere (2003).

The structure of the paper is as follows. In Section 2 we recall some ele-

mentary facts concerning completely random measures. In Section 3 we describe

the Lévy copula. Section 4 illustrates the new prior and some of its relevant
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properties. In Section 5, a description of the posterior distribution is provided.

Section 6 connects our work with the analysis of cumulative hazards. Section 7

illustrates an application with a data set of right-censored samples. Section 8

contains some concluding remarks. All proofs are deferred to the Appendix.

2. Some Preliminaries

In this section we briefly recall the notion of completely random measure

(CRM). A completely random measure µ on a complete and separable metric

space X is a measurable function defined on a probability space (Ω,F ,P) and

taking values in the space of all measures on X, such that for any choice of sets

A1, . . . , An in the σ–field X of Borel subsets of X such that Ai ∩ Aj = ∅ for

any i 6= j, the random variables µ(A1), . . . , µ(An) are mutually independent. It

is well–known that µ = µc +
∑q

i=1 Ji δxi , where µc is a CRM such that, for some

measure ν̃ on X ×R
+,

E
[

e−λµc(A)
]

= e−
R

A×R+(1−e−λx) ν̃(ds,dx) ∀A ∈ X ∀λ > 0, (2.1)

x1, . . . , xq are fixed points of discontinuity in X, and the jumps J1, . . . , Jq are

independent and non–negative random variables independent of µc. With no loss

of generality we omit the consideration of the fixed jump points and take µ = µc.

The measure ν̃ in (2.1) is the Lévy measure. See Kingman (1993) for an elegant

and deep account on CRMs. As anticipated in the previous section, when X = R
+

a NTR process is defined as a random probability measure whose distribution

function {F (t) : t ≥ 0} has the same distribution as {1 − e−µ(0,t] : t ≥ 0}.
If we wish to make use of (1.3) and (1.4), it would be desirable that the

probability distribution of (µ1, µ2) be characterized by

E
[

e−λ1 µ1(0,t]−λ2 µ2(0,t]
]

= e
−

R

(0,t]×(R+)2 [1−e−λ1x1−λ2x2] ν̃(ds,dx1,dx2)

for any t ≥ 0 and λ1, λ2 > 0. Hence the vector (µ1, µ2) has independent incre-

ments and the measure ν̃ is the associated Lévy measure. Given its importance

in later discussion, for the sake of simplicity we let

ψt(λ1, λ2) :=

∫

(0,t]×(R+)2

[

1 − e−λ1x1−λ2x2

]

ν̃(ds,dx1,dx2), ∀λ1, λ2 > 0, (2.2)

denote the Laplace exponent of the (vector) random measure (µ1, µ2). Introduce

the function ht1,t2(λ1, λ2) = ψt1∧t2(λ1, λ2) − ψt1∧t2(λ1, 0) − ψt1∧t2(0, λ2), with

a ∧ b := min{a, b} for any a, b ∈ R. Note that using the independence of the

increments one has, for any t1 > 0, t2 > 0,

E
[

e−λ1µ1(0,t1]−λ2µ2(0,t2]
]

= e−ψ1,t1 (λ1)−ψ2,t2 (λ2)−ht1,t2(λ1,λ2), (2.3)
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where

ψi,t(λ) :=

∫

(0,t]×R+

[1 − e−λx] ν̃i(ds,dx) =

∫

R+

[1 − e−λx] ν̃i,t(dx),

ν̃i is the (marginal) Lévy measure of µi, and ν̃i,t(dx) := ν̃i((0, t] × dx), for i ∈
{1, 2}. Note that the marginal Lévy measures ν̃1 and ν̃2 can be deduced from

ν since, for example, ν̃1(ds,dx) = ν̃(ds × dx × R
+). Consequently, one has

ψ1,t(λ) = ψt(λ, 0) and ψ2,t = ψt(0, λ). It is further assumed that

ν̃t(dx1,dx2) := ν̃((0, t] × dx1 × dx2) = γ(t) ν(x1, x2) dx1 dx2 (2.4)

for some increasing and non–negative function γ : R+ → R
+ such that limt→∞

γ(t) = ∞; in this case we say that the vector measure (µ1, µ2) is homogeneous

(Ferguson and Phadia (1979)) and for simplicity we refer to ν in (2.4) as the

corresponding bivariate Lévy density. It is immediate to check that, in this case,

ψt = γ(t)ψ. Whenever ν̃t is not representable as in (2.4), i.e. it cannot be

expressed as a product of a factor depending only on t and another depending

only on (x1, x2), we say that (µ1, µ2) is non–homogeneous. Finally, in the sequel

we write (µ1, µ2) ∼ M2(ν; γ) to denote a homogeneous vector of completely

random measures characterized by (2.3) with Lévy intensity representable as in

(2.4).

3. Lévy Copulae

The notion of a Lévy copula parallels the concept of distribution copulas

and enables one to define a vector of completely random measures (µ1, µ2) on

(R+)2 starting from marginal CRMs µ1 and µ2 with respective Lévy intensities

{ν̃1,t : t ≥ 0} and {ν̃2,t : t ≥ 0}. We explicitly consider the case where the Lévy

measure can be represented as

ν̃i,t(dx) = γ(t) νi(x) dx i = 1, 2 (3.1)

for any t ≥ 0, where t 7→ γ(t) is a non–negative, increasing and differentiable

function on [0,∞) such that limt→∞ γ(t) = ∞ and γ(0) ≡ 0. The function νi :

R
+ → R

+ is called the Lévy density and it is such that
∫ ∞
0 (x∧ 1) νi(x) dx <∞.

Correspondingly one has ψi,t = γ(t)ψi, where ψi(λ) =
∫ ∞
0 [1 − e−λx]νi(x) dx for

i = 1, 2. Moreover, the function

x 7→ Ui(x) =

∫ ∞

x
νi(s) ds

defines the tail–integral corresponding to νi, i ∈ {1, 2}, which is continuous and

monotone decreasing on R
+. If the bivariate Lévy density ν, as displayed in
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(2.4), is such that
∫ ∞
0 ν(x1, x2)dxi = νj(xj), for any i ∈ {1, 2} and j 6= i, then ν

is the Lévy density of the bivariate random measure (µ1, µ2). The problem now

is to establish ν once the marginals ν1 and ν2 have been assigned. To do this,

we use the Lévy copula, introduced by Tankov (2003) for Lévy processes with

positive jumps and later extended in Kallsen and Tankov (2006) to encompass

Lévy processes with jumps of any sign. A full account of Lévy copulas, with

applications to financial modelling, can be found in Cont and Tankov (2004).

Definition 1. A positive Lévy copula is a function C : [0,∞]2 → [0,∞] such

that

(i) C(x1, 0) = C(0, x2) = 0;

(ii) for all x1 < y1 and x2 < y2, C(x1, x2)+C(y1, y2)−C(x1, y2)−C(y1, x2) ≥ 0;

(iii)C(x1,∞) = x1 and C(∞, x2) = x2.

There are some examples of Lévy copulas whose form is reminiscent of copulas

for distributions. As a first case, consider a vector (µ1, µ2) of CRMs with µ1 and

µ2 independent. By virtue of Proposition 5.3 in Cont and Tankov (2004) one has

ν(A) = ν1(A1) + ν2(A2), where A1 = {x1 : (x1, 0) ∈ A} and A2 = {x2 : (0, x2) ∈
A}. The corresponding copula turns out to beC⊥(x1, x2) = x1 1x2=∞+x2 1x1=∞,

the independence copula. The case of complete dependence arises when, for any

positive s and t, one has either µi(0, s] − µi(0, s−] < µi(0, t] − µi(0, t−] for any

i = 1, 2, or µi(0, s] − µi(0, s−] > µi(0, t] − µi(0, t−], for any i = 1, 2. A copula

yielding a completely dependent bivariate process with independent increments is

C‖(x1, x2) = x1∧x2. Apart from these two extreme cases, there are intermediate

cases of dependence that can be attained, for example, by means of the Clayton

copula

Cθ(x1, x2) =
{

x−θ1 + x−θ2

}−1/θ
, θ > 0. (3.2)

As we shall see, the parameter θ regulates the degree of dependence between µ1

and µ2.

When the copula C and the tail integrals are sufficiently smooth the bivariate

Lévy density ν, with fixed marginals ν1 and ν2, can be recovered from

ν(x1, x2) =
∂2

∂u ∂v
C(u, v)

∣

∣

∣

∣

u=U1(x1), v=U2(x2)

ν1(x1) ν2(x2). (3.3)

Combining (3.3) with the Clayton copula Cθ in (3.2), one has the following.
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Proposition 1. Let ν1 and ν2 be two univariate Lévy densities such that,

if ν( · , · ; θ) is obtained from (3.3) with C = Cθ given in (3.2), one has
∫

‖x‖≤1 ‖x‖ ν(x1, x2; θ) dx1 dx2 <∞. Then

ψ(λ1, λ2; θ)

=

∫

(R+)2
[1 − e−λ1x1−λ2x2 ] ν(x1, x2; θ) dx1dx2

= ψ⊥(λ1, λ2) − λ1λ2

∫

(R+)2
e−λ1x1−λ2x2 Cθ(U1(x1), U2(x2)) dx1 dx2 , (3.4)

where ψ⊥(λ1, λ2) = ψ1(λ1)+ψ2(λ2) is the Laplace exponent corresponding to the

independence case.

According to (3.4), the term responsible for the dependence is

κ(θ;λ1, λ2) := λ1λ2

∫

(R+)2
e−λ1x1−λ2x2 Cθ(U1(x1), U2(x2)) dx1 dx2,

and this will be used to introduce a novel measure of association between µ1

and µ2. In Tankov (2003) it is shown that, as θ → 0, one approaches the

situation of independence, ν(x1, x2) = ν1(x1)δ{0}(x2) + ν2(x2)δ{0}(x1), and the

corresponding Laplace exponent reduces to ψ(λ1, λ2) = ψ⊥(λ1, λ2). On the other

hand, as θ → ∞, the limiting two–dimensional Lévy measure is concentrated on

the set {(x1, x2) : U1(x1) = U2(x2)}. In this case the limiting Lévy measure

does not have a density with respect to Lebesgue measure on R
2, but is still of

finite variation. See Section A2 in Appendix for a proof. The structure achieved

through this limiting process is that of complete dependence. When ψ1 = ψ2 =

ψ∗, the Laplace exponent with complete dependence coincides with ψ(λ1, λ2) =

ψ∗(λ1) + ψ∗(λ2) − ψ∗(λ1 + λ2).

Many common measures of association depend monotonically on θ through

the function κ(θ) := κ(θ; 1, 1). This will become apparent in the next section.

Here we confine ourselves to pointing out a few properties of the function κ(θ).

Proposition 2.Let ν1 and ν2 be two Lévy densities such that if ν is obtained

from (3.3) with C = Cθ, one has
∫

‖x‖≤1 ‖x‖ ν(x1, x2) dx1 dx2 <∞. Then

(i) limθ→0 κ(θ) = 0;

(ii) limθ→∞ κ(θ) =
∫

(R+)2 e−x1−x2 min{U1(x1), U2(x2)}dx1dx2;

(iii) θ 7→ κ(θ) is a non decreasing function.
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One can thus note that, setting κ(∞) := limθ→∞ κ(θ),

κ̄(θ) =
κ(θ)

κ(∞)
∈ (0, 1). (3.5)

Values of κ̄(θ) close to 0 suggest a weak dependence between µ1 and µ2. On the

other hand, values of κ̄(θ) close to 1 suggest the presence of a strong dependence

among the jumps of the underlying random measures. If µ1 and µ2 are used

to define NTR priors according to (1.3) and (1.4), the dependence between sur-

vival functions can be measured through κ̄ independent of the point t at which

the survival functions S1 and S2 can be evaluated. This is a straightforward

consequence of the homogeneity of (µ1, µ2).

4. Priors for Dependent Survival Functions

Our model can be described as follows. Suppose there are two distinct groups

of individuals and denote by Y (1) and Y (2) the survival times for individuals in

the first group and the second group, respectively. It is assumed that

Y
(i)
j | (µ1, µ2)

ind.∼ NTR(µi), i = 1, 2, (4.1)

(µ1, µ2) ∼ M2(ν; γ).

Hence, each sequence (Y
(i)
j )j≥1 is exchangeable and governed by a NTR(µi) prior,

i ∈ {1, 2}. Given (µ1, µ2), any two observations Y
(1)
j and Y

(2)
l are independent.

But they are marginally dependent in the sense that dependence, generated via

a Lévy copula, arises when integrating out the vector (µ1, µ2). It is worth not-

ing that, by Proposition 3 of Dey, Erickson and Ramamoorthi (2003), if each

marginal Lévy measure in (3.1) is such that γ(t) > 0 for any t > 0 and νi is

supported by R
+, then the support of t 7→ Si(t) = 1 − exp{−µi(0, t]}, with re-

spect to the topology of weak convergence, coincides with the whole space S of

survival functions on R
+. Hence, the support of the vector (S1, S2), with respect

to the usual product topology, coincides with the space S2 of bivariate vectors

of survival functions.

A consequence of the proposed model is the form of such a marginal dis-

tribution for the vector of survival times (Y (1), Y (2)). Indeed, one obtains an

expression which encompasses some well–known bivariate distributions used in

survival analysis, such as the Marshall–Olkin and the Weibull.

Proposition 3. Suppose Y (1) and Y (2) are survival times modeled as at (4.1).

Then

P

[

Y (1) > s, Y (2) > t
]

= exp{−γ(s) ξ1 − γ(t) ξ2 − γ(s ∨ t)ξ1,2}, (4.2)
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where a ∨ b = max{a, b}, ξ1 = ψ(1, 1) − ψ(0, 1) > 0, ξ2 = ψ(1, 1) − ψ(1, 0) > 0,

and ξ1,2 = ψ(1, 0) + ψ(0, 1) − ψ(1, 1) > 0.

The expression on the right-hand side of (4.2) is a typical representation

for a bivariate survival distribution, in fact γ(s)ξ1 and γ(t) ξ2 are the marginal

cumulative hazard functions, whereas γ(s∨t)ξ1,2 defines the association structure.

If γ(t) ≡ t, then (4.2) reduces to the Marshall–Olkin model, and if γ(t) ≡ tα, one

has a bivariate Weibull distribution. For the Clayton copula, in (4.2) one has

ξ1,2 =

∫

(R+)2
e−x1−x2 Cθ(U1(x1), U2(x2)) dx1dx2 = κ(θ).

The random probability distribution arising from the specification in (4.1) can

also be described in terms of random partitions in the same spirit of the charac-

terization of the univariate NTR priors in Doksum (1974).

Proposition 4. Let F be a bivariate random distribution function on (R+)2 and

µi,t = µi(0, t], for i ∈ {1, 2} and t > 0. Then F (s, t) has the same distribution as

{1 − e−µ1,s}{1 − e−µ2,t} for some bivariate completely random measure (µ1, µ2),

if and only if, for any choice of k ≥ 1 and 0 < t1 < · · · < tk, there exist k

independent random vectors (V1,1, V2,1), . . . , (V1,k, V2,k) such that

(

F (t1, t1), F (t2, t2), . . . , F (tk, tk)
)

d

=
(

V1,1V2,1, [1 − V̄1,1V̄1,2][1 − V̄2,1V̄2,2], . . . , [1 −
k

∏

j=1

V̄1,j ][1 −
k

∏

j=1

V̄2,j]
)

, (4.3)

where V̄i,j = 1 − Vi,j for any i and j.

One can use k̄(θ) as a measure of dependence between µ1 and µ2. The

statistical meaning of the association measure κ̄(θ) becomes apparent if we com-

pare it with the traditional correlation ρ
θ
(t) between the marginal NTR survival

functions S1(t) = P
[

Y (1) > t |µ1

]

and S2(t) = P
[

Y (2) > t |µ2

]

.

Proposition 5. Let κi :=
∫ ∞
0 (1 − e−x)2νi(x) dx for each i ∈ {1, 2}. Then

ρ
θ
(t) =

eγ(t)κ(θ) − 1
√

[eγ(t)κ1 − 1] [eγ(t)κ2 − 1]
(4.4)

for any t > 0 and θ > 0. Moreover if ν1 = ν2 = ν∗, then κ(∞) =
∫ ∞
0 (1 −

e−x)2ν∗(x) dx and ρ
θ
(t) < κ̄(θ) for any t > 0 and θ > 0.
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The merit of resorting to Lévy copulas, with the Clayton family {Cθ : θ > 0},
is that it enables one to specify and compare situations of complete dependence

with the actual structure of dependence between the marginal random survival

functions.

Turning attention to the concordance between survival times Y (1) and Y (2)

from the two samples, one can prove the following.

Proposition 6. If ρ
θ
(Y (1), Y (2)) is the correlation coefficient between survival

times Y (1) and Y (2) one has, for any θ > 0,

ρ
θ
(Y (1), Y (2)) =

∫ ∞
0

∫ ∞
0 e−γ(t)ψ1(1)−γ(s)ψ2(1)

{

eγ(s∧t) κ(θ) − 1
}

ds dt
∏2
i=1

√

2
∫ ∞
0 t e−γ(t)ψi(1) dt−

(∫ ∞
0 e−γ(t)ψi(1) dt

)2
, (4.5)

where ψi(λ) =
∫ ∞
0 [1 − e−λx] νi(x) dx for any i ∈ {1, 2}.

In the special case that γ(t) ≡ t, it is immediate from (4.5) that ρ
θ
(Y (1), Y (2))

= κ(θ)/[ψ1(1)+ψ2(1)−κ(θ)] for any θ > 0. Hence, one can express the correlation

between Y (1) and Y (2) in terms of κ(θ), which contributes to measuring the

dependence between the random measures µ1 and µ2. Moreover, as expected,

θ 7→ ρ
θ
(Y (1), Y (2)) is an increasing function.

We close the present section with an example of a prior for nonparametric

inference that is employed in the illustrative section.

Example 1. (Stable processes). Let µ1 and µ2 be α1–stable and α2–stable

random measures, respectively. Thus µi is characterized by the Lévy density

νi(x) = Ax−1−αi/Γ(1 − αi), where αi is a parameter in (0, 1), i ∈ {1, 2}, and

A > 0 is a constant. The ith tail integral is Ui(x) = Ax−αi/[αiΓ(1 − αi)] for

any x > 0. Using the copula Cθ described in (3.2), one can determine the two–

dimensional Lévy density on R
+ ×R

+:

ν(x1, x2; θ) = A(1 + θ)(α1α2)
θ+1(Γ(1 − α1)Γ(1 − α2))

θ ×

× xα1θ−1
1 xα2θ−1

2
{

αθ1Γ
θ(1 − α1)x

α1θ
1 + αθ2Γ

θ(1 − α2)x
α2θ
2

}1/θ+2
. (4.6)

If α1 = α2 = α, (4.6) reduces to

ν(x1, x2; θ) =
A(1 + θ)α

Γ(1 − α)
× (x1x2)

αθ−1

{

xαθ1 + xαθ2

}1/θ+2
. (4.7)

The correspondence between the triplet (ν1, ν2, Cθ) and ν is one–to–one, and it

is easy to see that the two–dimensional Lévy density on (R+)2 given in (4.6) is of
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finite variation. Indeed, using polar coordinates, the integral
∫

‖x‖≤1 ‖x‖ν(x1, x2)

dx1dx2 is proportional to

∫ ∞

0
dρ

∫ π/2

0
du

ρα1θ+α2θ cos(u)α1θ−1 sin(u)α2θ−1

[

αθ1Γ
θ(1 − α1)(ρ cos(u))α1θ + αθ2Γ

θ(1 − α2)(ρ sin(u))α2θ
]1/θ+2

which is finite for any θ > 0. As for the Laplace exponent corresponding to ν in

(4.6), one finds that ψ(λ1, λ2; θ)/A is

λα1
1

α1
+
λα2

2

α2
− λ1λ2

∫

(R+)2

e−λ1x1−λ2x2

(

αθ1Γ
θ(1 − α1)x

α1θ
1 + αθ2Γ

θ(1 − α2)θx
α2θ
2

)1/θ
dx1 dx2 .

Hence, in this case

κ(θ) = A

∫

(R+)2
e−x1−x2

(

αθ1Γ
θ(1 − α1)x

α1θ
1 + αθ2Γ

θ(1 − α2)
θxα2θ

2

)−1/θ
dx1 dx2 ,

an expression that can only be evaluated numerically or via simulation. As for

the Laplace exponent ψ(λ1, λ2; θ), letting θ → ∞ one finds that ψ(λ1, λ2;∞)/A

is

λα1
1

α1
+
λα2

2

α2
− λ2

α2Γ(1 − α2)

∫

R+

e−λ1(α2Γ(1−α2)/α1Γ(1−α1))1/α1xα2/α1−λ2x x−α2 dx

− λ1

α1Γ(1 − α1)

∫

R+

e−λ2(α1Γ(1−α1)/α2Γ(1−α2))1/α2xα1/α2−λ1x x−α1 dx.

If further α1 = α2 = α, then ψ(λ1, λ2;∞) = A{λα1 + λα2 − (λ1 + λ2)
α}/α. In

Figure 1 we depict the behavior of the correlation coefficient t 7→ ρθ(t) for different

values of θ > 0 and for α1 = α2 = 0.5. One notices an ordering of the curves

describing the correlations between the marginal survival functions: the curve at

the top corresponds to the largest value of θ being considered, and the lowest is

associated to the smallest value for θ.

Some simplification of κ(θ) and ψ(λ1, λ2; θ) (with θ <∞) arises when α1 =

α2 = α and θ = 1/α. For λ1 6= λ2,

κ(1/α;λ1, λ2)

A
=

λ1λ2

αΓ(1 − α)Γ(α)

∫ ∞

0

uα−1

(λ1 + u)(λ2 + u)
du

=
λ1λ2

αΓ(1 − α)Γ(α)
πcosec(απ)

λα−1
1 − λα−1

2

λ2 − λ1
=
λ1λ2 [λα−1

1 − λα−1
2 ]

α[λ2 − λ1]
,

since πcosec(απ) = Γ(1 − α)Γ(α). On the other hand, if λ1 = λ2 = λ > 0,

then κ(1/α;λ, λ) = Aα−1(1 − α)λα and ψ(λ, λ; 1/α) = Aα−1(1 + α)λα. When
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Figure 1. Correlation coefficient ρθ(t) corresponding to α = 0.5 and θ = 10
(first line from the top), θ = 1 (second line), θ = 0.5 (third line), θ = 0.3
(fourth line).

α1 = α2 = α and θ = 1/α one can also deduce from Proposition 5 the (prior)

correlation between S1(t) and S2(t) that takes the form

ρ
1/α

(t;A) =
e(A(1−α)/α)t − 1

e(A(2−2α)/α)t − 1
(4.8)

for any t > 0. Note that, given A > 0 and t > 0, the function α 7→ ρ
1/α

(t;A) is

decreasing with

lim
α→0

ρ
1/α

(t;A) = 1 lim
α→1

ρ
1/α

(t;A) =
1

2 log 2
.

Hence, this prior specification leads to a linear correlation between S1(t) and

S2(t). Furthermore, one finds out that A 7→ ρ
1/α

(t;A) is decreasing for any t and

α, with

lim
A→0

ρ
1/α

(t;A) =
1 − α

2 − 2α
= κ̄(

1

α
) .

Hence, a prior opinion reflecting strong correlation between S1(t) and S2(t) sug-

gest a low value of A.

5. Posterior Analysis

We now tackle the determination of the posterior distribution of (µ1, µ2)

given possibly right–censored data; this will also allow us to determine Bayesian

estimates of the survival functions S1 and S2 and to evaluate the dependence

structure in light of the observations.

The data consist of survival times from the two groups of individuals,

{Y (1)
j }n1

j=1 and {Y (2)
j }n2

j=1. We let {c(1)j }n1
j=1 and {c(2)j }n2

j=1 be the sets of censoring
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times corresponding to the first and second group of survival times, respectively.

If T
(i)
j = min{Y (i)

j , c
(i)
j } and ∆

(i)
j = 1

(0,c
(i)
j ]

(Y
(i)
j ) for i ∈ {1, 2}, the data are

D = ∪2
i=1{(T

(i)
j ,∆

(i)
j )}ni

j=1. Clearly,
∑2

i=1

∑ni
j=1 ∆

(i)
j = ne is the number of exact

observations being recorded, whereas nc = n1+n2−ne is the number of censored

observations regardless of the originating group. Among the observations there

might be ties so that we introduce {(T (1)∗
j ,∆

(1)∗
j )}k1j=1 and {(T (2)∗

j ,∆
(2)∗
j )}k2j=1

as the sets of distinct values of the observations relative to each group’s survival

data. Since some of the distinct and unique data might be shared by both groups,

the total number of distinct observations k in the full sample might be less than

k1 + k2.

For our purposes it is useful to consider the order statistic (T(1), . . . , T(k)) of

the k1 + k2 observations ∪2
i=1{T

(i)∗
1 , . . . , T

(i)∗
ki

} regardless of the group of survival

times they come from. Consider then the functions

A 7→ κi(A) =

ni
∑

r=1

∆(i)
r 1A(T (i)

r ) A 7→ κci (A) =

ni
∑

r=1

(1 − ∆(i)
r )1A(T (i)

r )

for i ∈ {1, 2}. Their meaning is apparent: κi(A) and κci (A) are the numbers of

exact and censored (respectively) observations from group i belonging to set A.

With these we define N̄i(s) := κi((s,∞)), Ñ c
i (s) := κci ((s,∞)) and, for any j ∈

{1, . . . , k} and i ∈ {1, 2}, nj,i = κi({T(j)}) and ncj,i = κci ({T(j)}). These two last

quantities denote the number of exact and censored (respectively) observations

from group i coinciding with T(j). For example, if max{nj,1, nj,2} = 0, then it

must be that min{ncj,1, ncj,2} ≥ 1 and T(j) is a censored observation for group 1

or group 2 or for both groups. We also need the cumulative frequencies n̄j,i =
∑k

r=j nr,i and ñcj,i =
∑k

r=j n
c
r,i for any j ∈ {1, . . . , k}. Complete these definitions

by setting n̄k+1,i ≡ 0.

We can describe the posterior distribution of (µ1, µ2) given the data D.

Going forward, if t 7→ νt(x1, x2) is differentiable at t = t0, we set ν ′t0(x1, x2) =

∂νt(x1, x2)∂t
∣

∣

t=t0
.

Proposition 7. Let (µ1, µ2) be a two–dimensional completely random measure

whose Lévy intensity is such that t 7→ νt(x1, x2) is differentiable on R
+, and

suppose that µ1 and µ2 are dependent. Then the posterior distribution of (µ1, µ2),

given data D, is the distribution of the random measure

(µ∗1, µ
∗
2) +

∑

{r: max{∆(1)
r ,∆

(2)
r }=1}

(Jr,1δT(r)
, Jr,2δT(r)

), (5.1)

where
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(i) (µ∗1, µ
∗
2) is a bivariate completely random measure with the Lévy intensity

ν∗t (x1, x2) =

{

∫

(0,t]
e−(Ñc

1 (s)+N̄1(s))x1−(Ñc
2 (s)+N̄2(s))x2 νs(x1, x2) ds

}

,

(ii) the vectors of jumps (Jr,1, Jr,2), for r ∈ {i : max{∆(1)
i ,∆

(2)
i } = 1}, are mutu-

ally independent and the r(j)th jump corresponding to the exact observation

yer(j) = T(j) has density

fr(j),j(x1, x2) ∝ ν ′ye
r(j)

(x1, x2)
2

∏

i=1

e−(ñc
j,i+n̄j+1,i)xi

(

1 − e−xi
)nj,i , (5.2)

(iii) the random measure (µ∗1, µ
∗
2) is independent of the jumps {(Jr,1, Jr,2) : r =

1, . . . , ke}, where ke is the number of exact (distinct) observations in the

sample.

Proposition 7 points out a conjugacy property: the bivariate survival func-

tion is again of the type (4.1), and it is induced by a vector of CRMs arising as the

sum of (i) a vector of CRMs with an updated Lévy intensity and without fixed

jumps, and (ii) a set of jumps corresponding to the exact observations. Thus we

are able to preserve the conjugacy property known to hold for univariate NTR

priors. See Doksum (1974). Note that when νt is generated via a copula with

marginals as in (3.1), in Proposition 7 one just needs t 7→ γ(t) to be differentiable

and ν ′t0(x1, x2) = γ′(t0) ν(x1, x2).

The assumption of dependence between µ1 and µ2 can be removed. In this

case, however, a slightly different representation of the posterior distribution of

(µ1, µ2) holds. Indeed, one has that, conditional on the observed data, µ1 and

µ2 are still independent with

P[µ1 ∈ A1, µ2 ∈ A2|D] = P[µ1 ∈ A1 |D1] P[µ2 ∈ A2 |D2],

where D1 := {(T (1)
i ,∆

(1)
i )}n1

i=1 and D2 = {(T (2)
i ,∆

(2)
i )}n2

i=1, and one can easily

verify that the representation of each marginal posterior coincides with the one

provided in Doksum (1974). See also Ferguson (1974) and Ferguson and Phadia

(1979).

6. Cumulative Hazards

Our approach to dependent survival functions in Sections 4 and 5 can be

easily adapted to deal with vectors of cumulative hazards. A Bayesian nonpara-

metric prior for a single cumulative hazard Λ was first proposed by Hjort (1990),

namely the celebrated beta process with independent increments. Moreover,
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as shown in Hjort (1990), a prior for the cumulative hazard coincides with an

independent increments process if and only if the corresponding cumulative dis-

tribution function is neutral to the right. This correspondence holds true when

one considers vectors of survival or cumulative hazard functions. Following Basu

(1971), let

λ(s, t) := lim
∆s→0 ∆t→0

P

[

s≤Y (1)≤s+∆s, t≤Y (2)≤ t+∆t
∣

∣

∣
Y (1)≥s, Y (2)≥ t

]

be the hazard rate function of the vector (Y (1), Y (2)) and take

Λ(s, t) :=

∫ s

0

∫ t

0
λ(u, v) dudv

to be the cumulative hazard. By mimicking the construction at (1.3), one can

assess a prior for Λ as

Λ(s, t |µ1,H , µ2,H) = µ1,H(0, s] µ2,H(0, t],

where (µ1,H , µ2,H) is a vector of CRMs whose dependence is specified through

a copula that gives a Lévy measure ν̃H . We suppose that ν̃H((0, t],dx1,dx2) =

γ(t) νH(x1, x2) dx1 dx2, where γ is a non decreasing and continuous function on

R
+. The corresponding bivariate survival function is

S(s, t |µ1,H , µ2,H) =
∏

u∈(0,s]

{1 − µ1,H(du)}
∏

v∈(0,t]

{1 − µ2,H(dv)} , (6.1)

where
∏

u∈(a,b](1 − µ(du)) is the usual notation for the integral product, see

Gill and Johansen (1990). In order to establish the relationship between (1.3)

and (6.1), suppose s < t and take {um,j}km
j=1 to be an arbitrary sequence of

ordered points 0 = um,1 < · · · < um,km = t such that limm→∞ max1≤j≤km−1

(um,j+1 − um,j) = 0. In this notation, (6.1) is

S(s, t) = lim
m→∞

∏

{j: um,j∈(0,s]}
{1 − µ1,H(Im,j)} {1 − µ2,H(Im,j)}

× lim
m→∞

∏

{j: um,j∈(s,t]}
{1 − µ2,H(Im,j)} ,

and for simplicity we have dropped the dependence of S on (µ1,H , µ2,H), and

Im,j = (um,j−1, um,j ]. Given the independence of the increments of (µ1,H , µ2,H),

the evaluation of E [Sn(s, t)] can be accomplished if one determines moments

of the type E [{1 − µ1,H(Im,j)}n{1 − µ2,H(Im,j)}n]. The latter can be deduced

from the Lévy–Khintchine representation of the Laplace transform of (µ1,H , µ2,H)

which yields
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E [{1 − µ1,H(Im,j)}n{1 − µ2,H(Im,j)}n]

= ∆γ(Im,j)

∫

(0,1)2
[1 − (1 − x1)

n(1 − x2)
n] νH(dx1,dx2) + o(∆γ(Im,j))

as m→ ∞, where ∆γ(Im,j) = γ(um,j) − γ(um,j−1). Hence

E [Sn(s, t)] = exp

{

−γ(s)
∫

(0,1)2
[1 − (1 − x1)

n(1 − x2)
n] νH(dx1,dx2)

}

× exp

{

−(γ(t) − γ(s))

∫

(0,1)
[1 − (1 − x2)

n] ν2,H(dx2)

}

.

This is the nth moment of S(s, t) defined according to (1.3) if and only if

νH({(x1, x2) ∈ (0, 1)2 : (− log(1 − x1),− log(1 − x2)) ∈ A}) = ν(A) for any mea-

surable subset A of (0,∞)2, where ν is the Lévy intensity of the vector (µ1, µ2).

Given this correspondence between priors for bivariate cdf’s and priors for cu-

mulative hazards, one expects that the copula yielding ν from the marginals ν1

and ν2 is the copula that gives rise to νH when starting from marginals ν1,H and

ν2,H . One can show this is, indeed, the case.

Remark 1. An alternative model for the marginal cumulative hazards consists in

the use of kernel mixtures of completely random measures. Thus if ki : R+×X →
R

+, i = 1, 2, are the kernel functions, one can set marginal cumulative hazards

Λi(t) as

Λi(t) =

∫ t

0

∫

R+

ki(x, s)µi(ds) dx,

where µi is a CRM with intensity measure of the form in (3.1). This yields

the random survival function S(t1, t2) = exp{−Λ1(t1) − Λ2(t2)}, where it is

apparent that the bivariate process {(Λ1(t),Λ2(t)) : t ≥ 0} does not have in-

dependent increments. For the univariate case, this approach was taken by

Dykstra and Laud (1981) with k(x, s) = 1[s,∞)(x), which yields monotone in-

creasing hazard rates. A general kernel was considered by Lo and Weng (1989).

In our setting, (
∫

k(x, s) µ1(ds),
∫

k(x, s) µ2(ds)) defines a prior for a vector of

hazard rates which allows one to draw inferences on the corresponding vector of

survival functions. Note that if one uses the kernel in Dykstra and Laud (1981),

one has Λi(t) =
∫ t
0 (t− s) µi(ds), and

E [S(t1, t2)] = exp

{

−
∫ t1

0
ψ1(t1 − s) γ′(s) ds−

∫ t2

0
ψ2(t2 − s) γ′(s) ds

}

× exp

{

−
∫ t1

0
ζ(t1 − s, t2 − s) γ′(s) ds

}

,
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where ζ(u, v) =
∫ ∞
0

∫ ∞
0 (1 − e−ux1) (1 − e−vx2) ν(x1, x2) dx1dx2 for any u, v > 0.

This model selects an absolutely continuous distribution for each component of

the vector of survival functions, thus leading to smoother posterior estimates of

the marginal survival functions. One can also deduce the posterior distribution

of (µ1, µ2) given right–censored data, thus extending a result obtained in James

(2005). It is however expected that, as in the univariate case, one should resort

to simulation to obtain numerical evaluations of Bayesian estimates of quantities

of interest. We leave this as an issue to be dealt with in future work.

7. Estimate of the Survival Functions

We now have Bayesian estimates of the survival functions S1 and S2 and

the correlation between them. The starting point is the Bayesian estimate of

the survival function S(t1, t2) defined in (1.3), taken to be the posterior mean of

P[Y (1) > t1, Y
(2) > t2 | (µ1, µ2)]. This enables us to estimate S1 and S2 and to

evaluate the posterior correlation.

Corollary 1. Let It = {j : ∆
(1)
j ∧∆

(2)
j = 1}∩ {j : T(j) ≤ t} be the set of indices

corresponding to the exact observations recorded up to time t, and let T(k+1) = ∞.

For any t > 0, the posterior mean Ŝ(t, t) of P[Y (1) > t, Y (2) > t | (µ1, µ2)], given

data D, is

exp







−
k+1
∑

j=1

[

γ(t ∧ T(j)) − γ(T(j−1))
]

1[T(j−1),∞)(t) ψ
∗
j (1, 1)







×
∏

j∈It

∫

(R+)2
e−x1−x2 fr(j),j(x1, x2) dx1 dx2, (7.1)

where ψ∗
j (λ1, λ2) =

∫

(R+)2

[

1 − e−λ1x1−λ2x2
]

e−
P2

i=1(ñ
c
j,i+n̄j,i)xi ν(x1, x2)dx1dx2,

and the fr(j),j are the density functions of the jumps as described in (5.2).

Setting I1,t = {j : ∆
(1)
j = 1} ∩ {j : T(j) ≤ t}, one has from the expression Ŝ(t, t)

at (7.1) that

Ŝ(t, 0) = exp







−
k+1
∑

j=1

[

γ(t ∧ T(j)) − γ(T(j−1))
]

1[T(j−1),∞)(t) ψ
∗
j (1, 0)







×
∏

j∈I1,t

∫

(R+)2 e−
P2

i=1(1+ñ
c
j,i+n̄j+1,i)xi(1−e−x1)nj,1(1 − e−x2)nj,2ν(x1, x2) dx1 dx2

∫

(R+)2 e−
P2

i=1[ñ
c
j,i+n̄j+1,i]xi (1 − e−x1)nj,1(1 − e−x2)nj,2 ν(x1, x2) dx1 dx2

.
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With appropriate modifications, one has an expression for Ŝ(0, t) as well. Then,

using the independence of the increments of the random measure in (5.1) and

supposing that s > t, one has Ŝ(s, t) = Ŝ(t, t) Ŝ(s, 0)/Ŝ(t, 0). A similar expression

can be found for the case where s < t.

The posterior second moment of the marginal survival S1 can be estimated

as

Ŝ12(t) = exp







−
k+1
∑

j=1

[

γ(t ∧ T(j)) − γ(T(j−1))
]

1[T(j−1),∞)(t) ψ
∗
j (2, 0)







×
∏

j∈I1,t

∫

(R+)2 e−
P2

i=1(2+ñ
c
j,i+n̄j+1,i)xi(1−e−x1)nj,1(1−e−x2)nj,2ν(x1, x2)dx1dx2

∫

(R+)2 e−
P2

i=1[ñc
j,i+n̄j+1,i]xi(1−e−x1)nj,1(1−e−x2)nj,2ν(x1, x2)dx1dx2

.

It then follows that an estimate of the correlation between S1, S2 is

ρ̂(S1(t), S2(t)) =
Ŝ(t, t) − Ŝ(t, 0)Ŝ(0, t)

√

(Ŝ12(t) − Ŝ2(t, 0))(Ŝ21(t) − Ŝ2(0, t))
. (7.2)

From a computational point of view, one can usefully resort to the identity

ψ∗
j (λ1, λ2) = ψ(λ1 + ñcj,1 + n̄j,1, λ2 + ñcj,2 + n̄j,2) − ψ(ñcj,1 + n̄j,1, ñ

c
j,2 + n̄j,2),

and to
∫

(R+)2
e−q1x1−q2x2(1 − e−x1)nj,1(1 − e−x2)nj,2 ν(x1, x2) dx1 dx2

= 1{0}c(nj,1)

nj,1
∑

k=1

(

nj,1
k

)

(−1)k+1 [ψ(k + q1, q2) − ψ(q1, q2)]

+1{0}c(nj,2)

nj,2
∑

k=1

(

nj,2
k

)

(−1)k+1 [ψ(q1, k + q2) − ψ(q1, q2)]

−1{0}c(nj,1)1{0}c(nj,2)

nj,1
∑

k1=1

nj,2
∑

k2=1

(

nj,1
k1

)(

nj,2
k2

)

(−1)k1+k2

× [ψ(k1 + q1, k2 + q2) − ψ(q1, q2)] .

Then the only difficulty in evaluating posterior estimates, given the (possibly

right–censored) data, lies in the evaluation of the bivariate Laplace exponent

ψ(λ1, λ2) for a set of non–negative integer values of (λ1, λ2). In particular, if the

two–dimensional completely random measure (µ1, µ2) is constructed by means of

a Clayton copula Cθ, Proposition 1 suggests that ψ(λ1, λ2) can be easily evalu-

ated either numerically, or through simulation. It is unlikely that one can obtain
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a closed analytic form for κ(θ;λ1, λ2), but again one can evaluate it by numer-

ical integration or via simulation. As for the latter, one just needs to generate

a sample {(x(i)
1 , x

(i)
2 )}Mi=1 from the distribution of a vector of independent and

exponentially distributed random variables with rate parameters λ1 and λ2, re-

spectively. Then

κ̂M (θ;λ1, λ2) =
1

M

M
∑

i=1

Cθ(U1(x
(i)
1 ), U2(x

(i)
2 )) (7.3)

is an approximate evaluation of κ(θ;λ1, λ2) that can be used to compute ψ(λ1, λ2;

θ).

With the α1 and α2 marginal stable processes with a Clayton copula Cθ, as

in Example 1, one has

Cθ(U1(x1), U2(x2)) = A
{

[α1Γ(1 − α1)x
α1
1 ]θ + [α2Γ(1 − α2)x

α2
2 ]θ

}−1/θ
,

so that an approximate evaluation of ψ(λ1, λ2; θ) is

A

α1
λα1

1 +
A

α2
λα2

2 − A

M

M
∑

i=1

{

[

α1Γ(1−α1)(x
(i)
1 )α1

]θ
+

[

α2Γ(1−α2)(x
(i)
2 )α2

]θ
}−1/θ

.

When α1 = α2 = α = 1/θ, as highlighted in Example 1, one has the closed form

ψ(λ1, λ2;
1

α
) =

A

α

{

λα+1
2 − λα+1

1

λ2 − λ1
1λ1 6=λ2 + (1 + α)λα 1λ1=λ2=λ

}

. (7.4)

We deal next with an illustrative example where we point out a possible MCMC

sampling scheme.

Example 2. (Skin grafts data). The dataset has been studied in the

literature by Woolson and Lachenbruch (1980), Lin and Ying (1993), and

Bulla, Muliere, and Walker (2007). They are survival times of closely matched

and poorly matched skin grafts, with both grafts applied to the same burn pa-

tient. The strength of matching between donor and recipient was evaluated in

accordance with the HL-A transplantation antigen system. The data can be split

into two groups Y (1) and Y (2) corresponding to the days of survival of closely

matched and poorly matched skin grafts on burn patients. One finds Y (1) =

{37, 19, 57+, 93, 16, 22, 20, 18, 63, 29, 60+} and Y (2) ={29, 13, 15, 26, 11, 17, 26, 21,

43, 15, 40}, where times denoted by t+ are right–censored. We consider the model

with

ν1(x) = ν2(x) =
A

Γ(1 − α)
x−α−1
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and the Clayton copula C1/α, hence the bivariate Lévy intensity is

ν(x1, x2) =
A(1 + α)

Γ(1 − α)
(x1 + x2)

−α−2 .

According to Proposition 3, the prior guess at the shape of the survival function,

conditional on a specific value of α, is

E
[

P

[

Y (1) > s, Y (2) > t | (µ1, µ2)
]]

= e−A[s+t+[(1−α)/α] (t∨s)]

for any s, t ≥ 0. If a prior for α is specified, one can adopt a Metropolis–Hastings

algorithm to evaluate the posterior estimate

Ŝ(t1, t2) =

∫

(0,1)
E

[

e−µ1(0,t1]−µ2(0,t2]
∣

∣ D, α
]

π(dα |D),

π( · |D) denoting the posterior distribution of α given the data D. Hence, one

generates a sample {α(1), . . . , α(M)} from the posterior distribution π( · |D) of α,

given the data D, and evaluates Ŝ(t1, t2) ≈ (1/M)
∑M

i=1 E [e−µ1(0,t1]−µ2(0,t2]
∣

∣D,

α(i)]. In this case the implementation of the Metropolis–Hastings algorithm is

straightforward. Indeed the likelihood turns out to be equal to

exp







−
N

∑

j=1

[

γ(T(j)) − γ(T(j−1))
]

ψ(ñcj,1 + n̄j,1, ñ
c
j,2 + n̄j,2)







×
∏

j∈I
γ′(T(j))

∫

(R+)2
e−

P2
i=1(ñ

c
j,i+n̄j+1,i)xi(1−e−x1)nj,1(1−e−x2)nj,2ν(x1, x2)dx1dx2,

and it can be computed exactly since the Laplace exponent ψ has a very simple

form, see (7.4). In order to implement the simulation scheme we fixed a prior

beta(0.5, 5), which is highly concentrated around zero and reflects a strong prior

opinion of a high degree of correlation between the marginal survival functions S1

and S2. We chose a uniform distribution on (0, 1) as the proposal of the algorithm

and set A = 0.01. Of course, one could also set a prior for A and incorporate it

into the sampling scheme, but we did not address that issue here. We performed

10,000 iterations, the first 2,000 of which were dropped as burn–in moves. The

first interesting thing about the results we obtained is that, despite the particular

structure of the prior of α, the posterior estimate of α̂ = (1/M)
∑M

i=1 α
(i) is

α̂ ≈ 0.7306. The plots of sections of the estimates of the survival functions

t1 7→ Ŝ(t1, t2) for t2 ∈ {0, 11, 40, 93} are depicted on the left side of Figure 2,

whereas the plots of the function t2 7→ Ŝ(t1, t2) for t1 ∈ {0, 13, 26, 43, 93} are

given on the right side of Figure 2. We also examined the correlation structure
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Figure 2. The estimated marginal survival functions of Y (1) and Y (2) arising
from the application of a MCMC algorithm for the skin grafts data. On
the left side the plots of t1 7→ Ŝ(t1, t2) for t2 = 0 (solid line) and t2 ∈
{11, 40, 93} (dashed lines in decreasing order). On the right side the plots
of t2 7→ Ŝ(t1, t2) for t1 = 0 (solid line) and t1 ∈ {13, 26, 43, 93} (dashed lines
in decreasing order).

Figure 3. Plots of the correlation between S1(t) and S2(t) for values of t
coinciding with the observed data, both exact and censored. Dashed lines
for prior correlations and continuous line for posterior correlations.

as modified by the data. In particular, (a) there is a sensible reduction of the

magnitude of the correlation at any value of t, from values in [0.77, 0.95] to values

ranging between 0.37 and 0.64; (b) the correlation function is not monotone. See

Figure 3, where plots of the correlations between survival functions S1 and S2

are depicted for values of t up to 93. The prior correlation was evaluated, for

any t, by drawing a sample of α’s from the beta(0.5, 5) distribution and then

averaging the expression in (4.8). As for the posterior correlations, we used

the output of the MCMC algorithm to evaluate mixed and marginal posterior

moments of S1 and S2 according to (7.2). As expected, the prior correlation is
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a decreasing function of t with values close to 1, the prior for α is concentrated

around 0 which signals complete dependence in the Clayton copula with θ = 1/α.

Given the data, one notes that there is no monotonicity, and the points where

the correlation is decreasing identify time intervals where Y (1) and Y (2) differ.

For example, in [11, 16) one observes only failures for Y (2); the correlation then

reaches a local minimum at t = 26, where two exact observations for Y (2) were

recorded. Other local minima are at t = 57 and t = 60, censored data for Y (1).

8. Concluding Remarks

Our results allow for Bayesian inference on vectors of survival, or cumulative

hazard, functions. Nonetheless, the idea of using Lévy copulas for building vec-

tors of completely random measures might also be the starting point for defining

nonparametric priors for vectors of paired survival data (Y (1), Y (2)). While there

is a wealth of papers on Bayesian nonparametric estimation of univariate sur-

vival functions, we are not aware of many contributions to inference for bivariate

survival functions. An example is given by Bulla, Muliere, and Walker (2007),

where a generalized Pólya urn scheme is used to obtain a bivariate reinforced pro-

cess that, in turn, can be applied to obtain an estimator of a bivariate survival

function. In Nieto-Barajas and Walker (2007), the authors assume conditional

independence between lifetimes and nonparametrically model each marginal den-

sity; the bivariate density is then obtained as a mixture. In Ghosh et al. (2006)

a nonparametric prior based on beta processes is adopted and the updating rule

is described, the authors show it does not lead to inconsistencies analogous to

those of some frequentist nonparametric estimators.

An important issue we did not consider concerns the properties of consis-

tency of the prior we have proposed. For this, one supposes the data are in-

dependently generated by survival function S1,0 and S2,0 and checks whether

the posterior distribution of (S1, S2) concentrates on a suitable neighbourhood

of (S1,0, S2,0) as the sample size increases. It is expected that one can extend

results similar to those achieved in Kim and Lee (2001) for NTR priors, or re-

sults in Draghici and Ramamoorthi (2003) and De Blasi, Peccati, and Prünster

(2009) for the mixture models mentioned in Remark 1. This will be pursued in

future work.
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Appendix

A1. Proof of Proposition 1. Set

C(2)(U1(x1), U2(x2)) :=
∂2

∂u ∂v
C(u, v)

∣

∣

∣

u=U1(x1),v=U2(x2)
.

Since the Lévy intensity ν(x1, x2) in (3.3) is of finite variation, the Laplace ex-

ponent is

ψ(λ1, λ2) =

∫

(R+)2

[

1 − e−λ1x1−λ2x2

]

C(2)(U1(x1), U2(x2))ν1(x1) ν2(x2)dx1dx2

= (θ + 1)

∫

(R+)2

[

1 − e−λ1x1−λ2x2

] U θ1 (x1)U
θ
2 (x2)ν1(x1)ν2(x2)

{

U θ1 (x1) + U θ2 (x2)
}1/θ+2

dx1dx2.

Integrating by parts, one obtains (3.4).

A2. Proof of Proposition 2. As θ → 0, the Lévy density tends to the

independence case, and in (3.4) one has ψ(λ1, λ2) = ψ⊥(λ1, λ2) for any λ1 > 0 and

λ2 > 0. This implies (i). Moreover, Cθ(U1(x1), U2(x2)) ≤ min{U1(x1), U2(x2)}
for any θ > 0. The Lévy measure ν(dx1,dx2;∞) corresponding to the perfect

dependence case does not admit a density on (R+)2 but it still of finite variation.

Indeed, if U−1
i denotes the inverse of the ith tail integral (i = 1, 2), one has

∫

‖x‖≤1
‖x‖ ν(dx1,dx2;∞) =

∫

{‖x‖≤1}∩{U1(x1)=U2(x2)}
(x2

1 + x2
2)

1/2 ν(dx1,dx2;∞)

=

∫

n

x2+(U−1
2 (U1(x)))

2≤1
o

∩{U1(x)≤U2(x)}

(

x2 +
(

U−1
2 (U1(x))

)2
)1/2

ν1(x) dx

+

∫

n

x2+(U−1
2 (U1(x)))

2≤1
o

∩{U1(x)>U2(x)}

(

x2+
(

U−1
2 (U1(x))

)2
)1/2

ν1(x)dx

≤
√

2

∫

{x≤U−1
1 (U2(1/

√
2))}

x ν1(x) dx+
√

2

∫

{x≤1/
√

2}
U−1

2 (U1(x)) ν1(x) dx

=
√

2

∫

{x≤U−1
1 (U2(1/

√
2))}

x ν1(x) dx+
√

2

∫

{x≤U−1
2 (U2(1/

√
2))}

x ν2(x) dx <∞,

finite since both ν1 and ν2 are of finite variation. Consequently, the Laplace func-

tional transform of the two–dimensional independent increments process corre-

sponding to the complete dependence case admits a Lévy–Khintchine representa-

tion. This implies that min{U1(x1), U2(x2)} is integrable on (R+)2 with respect

to e−x1−x2 . A simple application of the Dominated Convergence Theorem now

yields (ii). Finally, (iii) holds since θ 7→ Cθ(x, y) is an increasing function for any

x, y > 0.
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A3. Proof of Proposition 3. By virtue of the adopted model P(Y (1) >

s, Y (2) > t) = E
[

e−µ1(0,s]−µ2(0,t]
]

. If s ≤ t, as noted at (2.3), the independence

of the increments of (µ1, µ2) implies

P[Y (1) > s, Y (2) > t] = E
[

e−µ1(0,s]−µ2(0,s]
]

E
[

e−µ2(s,t]
]

= exp{−γ(s)ψ(1, 1) − (γ(t) − γ(s))ψ2(1)} .

A similar representation holds for s > t, and the conclusion stated in (4.2) follows.

The positivity of the coefficients ξ1, ξ2, and ξ1,2 follows from the definition of the

Laplace exponent ψ.

A4. Proof of Proposition 4. If (F1(s), F2(t))
d
= (1 − e−µ1,s , 1 − e−µ2,t), then

it is easy to show that F = F1F2 satisfies (4.3), with Vi,j = 1 − e−(µi,tj
−µi,tj−1

),

for i ∈ {1, 2}, j = 1, . . . , k, and t0 = 0. Conversely, let µi,t = − log(1−Fi(t)), for

i ∈ {1, 2} and suppose that for any choice of k ≥ 1 and 0 < t1 < · · · < tk there

exist k independent random vectors (V1,1, V2,1), . . . , (V1,k, V2,k) such that (4.3)

holds. It follows by Theorem 3.1 in Doksum (1974) that both marginal processes

µ1,s and µ2,t start from (0, 0) and are stochastically continuous, almost surely

non-decreasing and transient. Furthermore, (µ1,tj − µ1,tj−1 , µ2,tj − µ2,tj−1) =

(− log(1−V1,j),− log(1−V2,j)), for j = 1, . . . , k. Hence, the process (µ1,t, µ2,t)t≥0

has independent increments. We conclude that (µ1, µ2) is a completely random

measure.

A5. Proof of Proposition 5. First of all, it can be easily seen that

Cov (F1(t), F2(t)) = Cov (S1(t), S2(t)) = e−γ(t)ψ⊥(1,1)
{

e−γ(t)[ψ(1,1)−ψ⊥(1,1)] − 1
}

and Var (Fi(t)) = e−2γ(t)ψi(1)
{

e−γ(t)[ψi(2)−2ψi(1)] − 1
}

, so that (4.4) follows by

noting that ψ(1, 1) − ψ⊥(1, 1) = −κ(θ) and ψi(2) − 2ψi(1) = −κi. Moreover, if

ν1 = ν2 = ν∗, then one has

κ(∞) =

∫

(R+)2
e−x1−x2 min{U1(x1), U2(x2)} dx1dx2

=

∫

(R+)2
e−x1−x2U∗(x1 ∧ x2)}dx1dx2 = 2

∫ ∞

0
e−x2

∫ x2

0
e−x1U2(x2) dx1 dx2

= 2

∫ ∞

0
(1 − e−x)e−x U∗(x)dx =

∫ ∞

0
(1 − e−x)2ν∗(dx) = κ1 = κ2,

where U∗(x) =
∫ ∞
x ν∗(s) ds for any x > 0. From this representation of κ(∞) and

(4.4), one has ρ
θ
(t) = [eγ(t)κ(θ) − 1]/[eγ(t)κ(∞) − 1]. Recalling the properties of

the function γ, one has that limt→0 ρθ
(t) = κ̄(θ). On the other hand, t 7→ ρ

θ
(t) is

a decreasing function since κ(θ) < κ(∞), for any θ > 0, with limt→∞ ρ
θ
(t) = 0.

Hence ρ
θ
(t) < κ̄(θ).
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A6. Proof of Proposition 6. Proposition 3 gives P(Yi > t) = exp{−γ(t)ψi(1)}.
From this one deduces that E [Yi] =

∫ ∞
0 P (Yi > t) dt =

∫ ∞
0 e−γ(t)ψi(1) dt and

Var [Yi] = 2

∫ ∞

0
tP (Yi > t) dt− (E [Yi])

2

= 2

∫ ∞

0
t e−γ(t)ψi(1) dt−

(
∫ ∞

0
e−γ(t)ψi(1) dt

)2

.

Finally,

E [Y1Y2] =

∫ ∞

0

∫ ∞

0
P(Y1 > s, Y2 > t) ds dt

=

∫ ∞

0

∫ ∞

0
e−γ(s) ξ1−γ(t) ξ2−γ(s∨t)ξ1,2 ds dt

=

∫ ∞

0

∫ ∞

0
e−γ(t)ψ1(1)−γ(s)ψ2(1)+γ(s∧t) κ(θ) ds dt .

The expression in (4.5) now follows easily.

A7. Proof of Proposition 7. We adopt a technique similar to the one exploited
in Lijoi, Prünster, and Walker (2008). We need a preliminary lemma.

Lemma A.1. Let (µ1, µ2) be a bivariate completely random measure, and suppose
that µ1 and µ2 are not independent. Let the Lévy intensity νt(x1, x2) of (µ1, µ2)

be differentiable with respect to t on R
+. If s1 and s2 are two integers such that

max{s1, s2} ≥ 1, and r1, r2 are two non–negative numbers with min{r1, r2} ≥ 1,

then

E
[

e−r1µ1(Aε)−r2µ2(Aε)
(

1 − e−µ1(Aε)
)s1 (

1 − e−µ2(Aε)
)s2]

= ε

∫

(R+)2
e−r1 x1−r2 x2(1 − e−x1)s1(1 − e−x2)s2ν ′t0(x1, x2) dx1dx2 + o(ε)

as ε ↓ 0, where Aε = {t > 0 : t0 − ε < t ≤ t0}.
Proof. Note that the left side above can be written as
s1

∑

j1=0

s2
∑

j2=0

(

s1
j1

)(

s2
j2

)

(−1)j1+j2 e−ψt0 (r1+j1,r2+j2)+ψt0−ε(r1+j1,r2+j2)

= e−ψt0(r1,r2)+ψt0−ε(r1,r2) + e−ψt0 (r1,r2)+ψt0−ε(r1,r2)

×







s1
∑

j1=1

s2
∑

j2=1

(

s1
j1

)(

s2
j2

)

(−1)j1+j2 exp
{

−∆t0
t0−ε [ψt(r1+j1, r2+j2)−ψt(r1, r2)]

}

+

s1
∑

j1=1

(

s1
j1

)

(−1)j1 exp
{

−∆t0
t0−ε [ψt(r1 + j1, r2) − ψt(r1, r2)]

}
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+

s2
∑

j2=1

(

s2
j2

)

(−1)j2 exp
{

−∆t0
t0−ε [ψt(r1, r2 + j2) − ψt(r1, r2)]

}







,

where ψt(λ1, λ2) is given in Equation (2.2) and ∆t0
t0−εψt = ψt0 −ψto−ε. Note now

that

∆t0
t0−ε [ψt(r1 + j1, r2 + j2) − ψt(r1, r2)]

=

∫

e−r1x1−r2x2(1 − e−j1x1−j2x2) (νt0+ε(x1, x2) − νt0(x1, x2)) dx1dx2,

and that as ε ↓ 0,

exp
{

−∆t0
t0−ε [ψt(r1 + j1, r2 + j2) − ψt(r1, r2)]

}

= 1 − ε

[
∫

e−r1x1−r2x2(1 − e−j1x1−j2x2) ν ′t0(x1, x2) dx1dx2

]

+ o(ε) .

Furthermore we have
∑s

i=1

(

s
i

)

(−1)i(1 − e−ix) = −(1 − e−x)s and

s1
∑

j1=1

s2
∑

j2=1

(

s1
j1

)(

s2
j2

)

(−1)j1+j2 (1 − e−j1x1−j2x2)

= (1 − e−x1)s1 + (1 − e−x2)s2 − (1 − e−x1)s1(1 − e−x2)s2 . (A.1)

This yields, as ε ↓ 0, the desired result.

Note that the case of independence between µ1 and µ2 can be included in

the statement of Lemma A.1. The result would be slightly modified, and one has

E
[

e−r1µ1(Aε)−r2µ2(Aε)
(

1 − e−µ1(Aε)
)s1 (

1 − e−µ2(Aε)
)s2]

= ε2
(

∫

R+

e−r1x1(1 − e−x1)s1ν ′t0(x1) dx1

)(
∫

R+

e−r2x2(1 − e−x2)s2ν ′t0(x2) dx2

)

+o(ε2)

as ε ↓ 0, where Aε = {t > 0 : t0 − ε < t ≤ t0}.
Define the set

Γn,ε :=

2
⋂

i=1

k
⋂

j=1

{

(t
(i)
1 ,∆

(i)
1 , . . . , t(i)ni

,∆(i)
ni

) : κi(Aj,ε) = nj,i, κ
c
i ({T(j)}) = ncj,i

}

,

where Aj,ε = (T(j) − ε, T(j)]. The value of ε is chosen in such a way that the sets

Aj,ε are pairwise disjoint. It follows from the partial exchangeability of samples
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Y (1), Y (2) that, in order to establish a description of the posterior distribution of

(µ1, µ2), given data D, we have to evaluate

E
[

e−λ1 µ1(0,t]−λ2 µ2(0,t]
∣

∣ D

]

= lim
ε↓0

E
[

e−λ1µ1(0,t]−λ2 µ2(0,t]
1Γn,ε(D)

]

P [D ∈ Γn,ε]
. (A.2)

Proof of Proposition 7. The proof consists in the determination of the poste-
rior Laplace transform of (µ1(0, t], µ2(0, t]). As for the numerator in (A.2), one

has that it coincides with the expected value of

e−λ1µ1(0,t]−λ2 µ2(0,t]
k

∏

j=1

e−n
c
j,1µ1(0,T(j)]−nc

j,2µ2(0,T(j)]
2

∏

i=1

(

e−µi(0,T(j)−ε]−e−µi(0,T(j)]
)nj,i

= e−λ1 µ1(0,t]−λ2 µ2(0,t]
k

∏

j=1

e−n
c
j,1µ1(0,T(j)]−nc

j,2µ2(0,T(j)]

×
2

∏

i=1

e−nj,iµi(0,T(j)−ε]
(

1 − e−µi(Aj,ε)
)nj,i

.

If we suppose that t ∈ [T(l), T(l+1)), then µi(0, t] =
∑l

j=1{µi(Aj,ε) + µi(Cj)} +
µi(T(l), t], where Cj = (T(j−1), T(j) − ε] for any j ∈ {1, . . . , k}, provided that

T(0) ≡ 0. Moreover,

µi(0, T(j)] =

j
∑

r=1

µi(Ar,ε) +

j
∑

r=1

µi(Cr),

µi(0, T(1) − ε] = µi(C1), and µi(0, T(j) − ε] =
∑j−1

r=1 µi(Ar,ε) +
∑j

r=1 µi(Cr), for
j ≥ 2. These also imply that

k
∑

j=1

ncj,iµi(0, T(j)] =

k
∑

j=1

ñcj,iµi(Aj,ε) +

k
∑

j=1

ñcj,iµi(Cj),

k
∑

j=1

nj,iµi(0, T(j) − ε] =
k−1
∑

j=1

n̄j+1,iµi(Aj,ε) +
k

∑

j=1

n̄j,i µi(Cj) .

If we define C ′
ε = R

+ \ (∪kj=1Aj,ε), it is easily seen that

E
[

e−λ1µ1(0,t]−λ2 µ2(0,t]
1Γn,ε({(T

(i)
j ,∆

(i)
j )}j=1,...,ni;i=1,2

]

= E [I1,ε] E [I2,ε],

where

I1,ε =

k
∏

j=1

2
∏

i=1

e−[λi 1(0,t](T(j))+ñ
c
j,i+n̄j+1,i]µi(Aj,ε)

(

1 − e−µi(Aj,ε)
)nj,i

, n̄k+1,i = 0,
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I2,ε =
2

∏

i=1

e
−

R

C′
ε
[λi 1(0,t](s)+Ñ

c
i (s)+N̄i(s)]µi(ds) .

The independence of the increments yields

E [I1,ε] =

k
∏

j=1

E

[

2
∏

i=1

e−[λi 1(0,t](T(j))+ñ
c
j,i+n̄j+1,i]µi(Aj,ε)

(

1 − e−µi(Aj,ε)
)nj,i

]

.

In order to simplify the notation, let ζ(x,nj) :=
∏2
i=1(1 − e−xi)nj,i , where x =

(x1, x2) ∈ (R+)2 and nj = (nj,1, nj,2) is vector of non–negative integers. If

I = {j : T(j) is an exact observation}, for any j ∈ I one has max{nj,1, nj,2} ≥ 1

and Lemma A.1 applies, i.e., as ε ↓ 0

E

[

2
∏

i=1

e−[λi 1(0,t](T(j))+ñ
c
j,i+n̄j+1,i]µi(Aj,ε)

(

1 − e−µi(Aj,ε)
)nj,i

]

= ε

∫

(R+)2
e−

P2
i=1(λi1(0,t](T(j))+ñ

c
j,i+n̄j+1,i)xi ζ(x,nj) ν

′
T(j)

(x1, x2) dx1dx2 + o(ε).

If j 6∈ I, then nj,i = 0 and the continuity of νt(x, y) implies

lim
ε↓0

E

[

2
∏

i=1

e−[λi 1(0,t](T(j))+ñ
c
j,i+n̄j+1,i]µi(Aj,ε)

(

1 − e−µi(Aj,ε)
)nj,i

]

= lim
ε↓0

E

[

2
∏

i=1

e−[λi 1(0,t](T(j))+ñ
c
j,i+n̄j+1,i]µi(Aj,ε)

]

= 1 .

Reasoning along the same lines, it is immediate that

E [I2,ε] = e
−

R

C′
ε
ψs(λ11(0,t]+Ñ

c
1+N̄1 , λ21(0,t]+Ñ

c
2+N̄2) ds

→ e−
R

R+ ψs(λ11(0,t]+Ñ
c
1+N̄1 , λ21(0,t]+Ñ

c
2+N̄2) ds.

As concerns the denominator in (A.2), one finds

e
−

R

C′
ε
ψs(Ñc

1+N̄1 , Ñc
2+N̄2 ) ds

× εke
∏

j∈I

{

∫

(R+)2
e−

P2
i=1(ñ

c
j,i+n̄j+1,i)xi ζ(x,nj) ν

′
T(j)

(x1, x2)dx1dx2 + o(1)

}

,

where ke denotes the total number of exact (distinct) observations in the sample.

Hence, if one considers the ratio of the two terms just determined and lets ε tend

to 0, one obtains that the posterior Laplace transform in (A.2) is
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e−
R

∞

0 [ψs(λ11(0,t]+Ñ
c
1+N̄1, λ21(0,t]+Ñ

c
2+N̄2)−ψs(Ñc

1+N̄1, Ñc
2+N̄2)] ds

×
∏

j∈I

∫

(R+)2 e−
P2

i=1(λi1(0,t](T(j))+ñ
c
j,i+n̄j+1,i)xiζ(x,nj)ν

′
T(j)

(x1, x2)dx1dx2

∫

(R+)2 e−
P2

i=1(ñ
c
j,i+n̄j+1,i)xi ζ(x,nj) ν ′T(j)

(x1, x2)dx1dx2

,

and this proves the statement.
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