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Abstract: In classical smoothing splines, the smoothness is controlled by a single

smoothing parameter that penalizes the roughness uniformly across the whole do-

main. Adaptive smoothing splines extend this framework to allow the smoothing

parameter to change in the domain, adapting to the change of roughness. In this

article we propose a data driven method to nonparametrically model the penalty

function. We propose to approximate the penalty function by a step function whose

segmentation is data driven, and to estimate it by maximizing the generalized like-

lihood. A complexity penalty is added to the generalized likelihood in selecting the

best step function from a collection of candidates. A state space representation for

the adaptive smoothing splines is derived to ease the computational demand. To

allow for fast search among the candidate models, we impose a binary tree structure

on the penalty function and propose an efficient search algorithm. We show the

consistency of the final estimate. We demonstrate the effectiveness of the method

through simulations and a data example.

Key words and phrases: Binary tree, complexity penalty, generalized maximum

likelihood, model selection, state space method.

1. Introduction

The central spirit of nonparametric smoothing is to let the data determine
the amount of smoothing. In classical smoothing splines, the amount of smooth-
ing is controlled by a single smoothing parameter, and considerable research has
focused on how to choose the smoothing parameter using data driven criteria.
When the homogeneity of the smoothness cannot be reasonably assumed across
the whole domain, a natural extension is to allow the smoothing parameter to
vary over the domain as a penalty function of the independent variable, adapting
to the change of roughness (Robinson (1985), Wahba (1995), Pintore, Speckman,
and Holmes (2006)). Similar to the classical smoothing splines, a key open prob-
lem in the adaptive smoothing is how to select the smoothing parameter, now
a penalty function of the independent variable, by a data driven method. The
goal of this paper is to develop a nonparametric method to model the penalty
function that can adapt to the data structure automatically through an efficient
algorithm.
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Adaptive smoothing has long been an interesting topic in the statistical
community. The basic solution is to allow the smoothing parameter, the band-
width, or the placement of knots, to vary across the domain, adapting to the
change of roughness (Müller and Stadtmüller (1987), Friedman and Silverman
(1989), Brockmann, Gasser, and Herrmann (1993), Donoho and Johnstone (1994,
1995), Fan and Gijbels (1995), Luo and Wahba (1997), diMatteo, Genovese, and
Kass (2001), Zhou and Shen (2001), Wood, Jiang, and Tanner (2002), Miyata
and Shen (2003)). In penalized regression splines, Ruppert and Carroll (2000)
modeled the penalty function by a linear interpolation on the logarithmic scale,
Baladandayuthapani, Mallick, and Carroll (2005) modeled the penalty function
from a full Bayesian approach and used Markov chain Monte Carlo for compu-
tation, and Krivobokova, Crainiceanu, and Kauermann (2008) developed a fast
and simple algorithm for the Bayesian P-spline based on the Laplace approxi-
mation of the marginal likelihood. In smoothing splines, the adaptiveness can
be achieved by modeling the smoothing parameter as a penalty function of the
independent variable. This approach formulates the adaptive smoothing as a
minimization problem with a new penalty function. As a result, the estimate
has the same form as the smoothing spline and many existing methods devel-
oped for classical smoothing splines can be easily adapted. Robinson (1985) first
mentioned this idea in the discussion of Silverman (1985). Wahba (1995) derived
the reproducing kernels for a generic penalty function and suggested modeling it
by B-splines. Pintore, Speckman, and Holmes (2006) studied the solution of the
penalized least squares estimate in which the smoothing parameter is a varying
function across the domain under the reproducing kernel Hilbert space (RKHS)
approach.

The fundamental idea of nonparametric smoothing is to let the data choose
the amount of smoothing, which consequently decides the model complexity
needed for the data (Gu (1998)). Most of the research in this area focus on the
development of data driven criteria such as cross validation (CV), generalized
cross validation (GCV) (Craven and Wahba (1979)), and generalized maximum
likelihood (GML) (Wecker and Ansley (1983), Wahba (1985)). The extension to
adaptive smoothing splines poses new challenges in letting the data choose the
optimal smoothing, as the smoothing parameter is now a varying function in the
domain. The structure of the penalty function itself also controls the complexity
of the final model, and needs to be determined from the data. The whole penalty
function can then be estimated using some data driven criteria such as CV, GCV,
or GML. The key challenge is how to impose a flexible yet parsimonious structure
for the penalty function.

We propose to model the penalty function by a step function where the seg-
mentation is data driven, for the following reasons. First, in smoothing splines
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the penalty is on the mth derivative of the regression function, and the mth
derivative is only assumed to be square integrable, not necessarily continuous.
Therefore the penalty function should be allowed to have discontinuities. This
can be seen in our numeric examples and data application. Second, even when
the penalty function is continuous, a step function with data driven segmenta-
tion is a good approximation. The value of the step function in each segment
is an average of the penalty function in that segment. Note that the step func-
tion approximation of the penalty function is different from the step function
approximation of the regression function itself. From the Bayesian point of view,
the penalty is only a smoothness prior (Wahba (1978)), and approximating the
penalty function in a short segment by its mean usually can lead to a good esti-
mate of the regression function that can be viewed as the posterior mean. This
is also confirmed in our simulations.

An immediate consequence of the step function approximation is that the
number of segments serves as a measure of complexity, which leads to a natural
criterion for selecting the best segmentation. For a given segmentation, we can
maximize the extended version of the generalized likelihood (Wecker and Ansley
(1983), Wahba (1985)), which is the marginal likelihood from the equivalent
Bayesian model. Borrowing a similar idea from the Akaike information criterion
(AIC) (Akaike (1974)), we propose to penalize the complexity by the number of
degrees of freedom used for the penalty function, which equals the number of
segments. Thus an AIC-like model selection criterion is formulated. We term
it “AIC-like” criterion as the generalized likelihood is not a true likelihood and
its justification is only through the mathematical equivalence of the joint density
function of the Bayesian model and the penalized least squares criterion (Wahba
(1978)). This AIC-like criterion is straightforward to calculate and works well in
our simulations even though it is not a true AIC. We also derive the state space
representation of the adaptive smoothing splines and propose an O(n) algorithm
for model fitting and model selection to alleviate the computational burden.

Equipped with the step function approximation and the model selection cri-
terion, we can theoretically fit the adaptive model with a flexible segmentation.
However, without imposing any constraint on the possible segmentations, the
total number of possible models is daunting. We propose to impose a binary tree
structure on the possible segmentations with the depth prespecified. We then
develop a search algorithm similar to the Best Basis algorithm (BBA) (Coif-
man and Wickerhauser (1992)) to enable fast and automatic search for the best
segmentation.

The rest of the article is organized as follows. Section 2 introduces the back-
ground of smoothing splines and adaptive smoothing splines. Section 3 presents
the proposed method and the asymptotic rate. Section 4 shows the visual quality
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of the fitted results for some typical examples. Section 5 presents the results from
an extensive simulation comparing the performance of our proposed algorithm
with wavelet shrinkage, smoothing splines with prespecified smoothness pattern,
and Bayesian adaptive P-spline. In Section 6 we apply our method to an epileptic
electroencephalograms (EEG) data example.

2. Background

Consider the smoothing problem

y (ti) = f (ti) + εi, i = 1, . . . , n,

where f is the regression function, εi are independent and identically distributed
with E(εi) = 0 and var(εi) = σ2. In classical smoothing splines, f is estimated
by

min
f∈Wm

[
1
n

n∑
i=1

{yi − f (ti)}2 + λ

∫ 1

0
{f (m) (t)}2 dt

]
, (2.1)

where the Sobolev space Wm comprises functions that are absolutely continuous
up to the (m − 1)th derivative and have square integrable mth derivatives on
[0, 1].

When the homogeneity of smoothness cannot be reasonably assumed across
the whole domain, a natural extension is to allow the smoothing parameter to
vary over the domain, adapting to the smoothness pattern. Wahba (1995) sug-
gested replacing (2.1) by

min
f∈Wm

[
1
n

n∑
i=1

{yi − f (ti)}2 +
∫ 1

0
λ (t) {f (m) (t)}2 dt

]
, (2.2)

to achieve adaptive smoothing. She derived the corresponding reproducing kernel
as

Kλ (s, t) =
∫ 1

0
λ (u)−1 (s − u)m−1

+

(m − 1)!
(t − u)m−1

+

(m − 1)!
du, (2.3)

where (t)+ = max(0, t).
Pintore, Speckman, and Holmes (2006) studied the solution and properties

of adaptive smoothing splines under the RKHS approach for a given λ. They
demonstrated the adaptive smoothing splines by imposing an equal-size piecewise
structure for the penalty function, where the number of segments is prespecified
and therefore is not data driven. Abramovich and Steinberg (1996) investigated
the equivalent Bayesian model

F (t) =
m∑

j=1

djφj(t) + σ

∫ 1

0
λ (s)−1/2 (t − s)m−1

+

(m − 1)!
dW (s) ,
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where d = (d1, . . . , dm) ∼ N(0, κI) , κ → ∞, φj(t) = tj−1/(j − 1)!, W (s) is the
standard Weiner process, and y(ti) = F (ti)+εi. Let y = (y1, . . . , yn)′ and denote
the solution to (2.2) as fλ; they showed limκ→∞ E{F (t) |y} = fλ (t).

3. The Proposed Method

In this section we approximate the penalty function as a step function with
data driven segmentation. We derive the corresponding state space representa-
tion for efficient estimation. We propose a model selection criterion based on
penalizing the generalized maximum likelihood. We develop an automatic algo-
rithm to search for the optimal segmentation. We show the consistency of the
final estimate.

3.1 Step function approximation

We propose to approximate the penalty function

λ (t) ≈
K∑

k=1

λkIt∈Ak
, λk > 0, k = 1, . . . ,K, (3.1)

where It∈Ak
is the indicator function, Ak = [τk−1, τk) and 0 = τ0 < τ1 < · · · <

τK = 1. The collection of all Ak forms a segmentation of the interval [0, 1] that
is uniquely defined by the number of segments K, and the lengths of each.

Minimization of the penalized least squares in (2.2) projects the function
estimation problem from the infinite-dimensional Sobolev space onto a finite-
dimensional subspace. Within the functional subspace, the regression function
takes the form

f (t) =
m∑

j=1

djφj (t) +
n∑

i=1

ciξi (t) , (3.2)

where ξi(·) = Kλ (ti, ·), and the basis φj(·) and ξi(·) span the functional subspace.
For a given stepwise penalty function defined in (3.1), the reproducing kernel has
a closed form (Pintore, Speckman, and Holmes (2006)). For v ∈ (ti, 1],

Kλ (ti, v) =
K∑

k=1

m∑
j=1

λ−1
k (−1)j

{
(ti − τk)

m−1+j
+ (v − τk)

m−j

(m − 1 + j)! (m − j)!

−
(ti − τk−1)

m−1+j
+ (v − τk−1)

m−j

(m − 1 + j)! (m − j)!

}
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and, for v < ti with v ∈ (τl, τl+1),

Kλ (ti, v) =
K∑

k=1

m∑
j=1

λ−1
k (−1)j

{
(ti − τk)

m−1+j (v − τk)
m−j
+

(m − 1 + j)! (m − j)!

−
(ti − τk−1)

m−1+j (v − τk−1)
m−j
+

(m − 1 + j)! (m − j)!

}
+ λ−1

l (−1)m (ti − v)2m−1

(2m − 1)!
,

Consequently the mth and higher derivatives have jumps at τk (Pintore, Speck-
man, and Holmes (2006)):

∣∣∣f (m−1+l)
λ

(
τ+
j

)
− f

(m−1+l)
λ

(
τ−
j

) ∣∣∣ =
∣∣∣∣ n∑

k=1

ck

(tk − τj)
m−l
+

(m − l)!

∣∣∣∣∣∣∣∣λ
(
τ−
j

)
− λ

(
τ+
j

)
λ

(
τ−
j

)
λ

(
τ+
j

) ∣∣∣∣,
for (1 ≤ l ≤ m).

Then one has ξi(t) ∈ C2m−2 for t 6= τk and ξi(t) ∈ Cm−1 for t = τk, where Cp

denotes functions continuous up to the pth derivative. Consequently f ∈ C2m−2

for t ∈ (τk−1, τk), which has the same property as the classical smoothing splines;
but f ∈ Cm−1 for t = τk, which is less smooth than the classical smoothing
splines. Hence the step function model not only allows different penalties for
different segments, but also allows abrupt changes between two consecutive seg-
ments.

From the RKHS point of view, different segmentations define different basis
ξi(·), which consequently span different functional subspaces. Adapting to the
smoothness pattern is essentially finding the optimal functional subspace for the
data.

3.2. Estimation through state space method

The RKHS estimation approach is computationally intensive. In this sec-
tion, we propose an equivalent state space model extending Wecker and Ansley
(1983). First consider the m-dimensional stochastic process. Write the (m−γ)th
derivative of F , F (m−γ), as x(γ). Define x (t) =

[
x(m) (t) , . . . , x(1) (t)

]′
with ele-

ments

x(γ) (t) =
γ−1∑
i=0

dm−i
(t)i

i!
+ σ

K∑
k=1

λ
−1/2
k

∫ τk

τk−1

(t − u)γ−1
+

(γ − 1)!
dW (u) , γ = m, . . . , 1,

It is straightforward to show that limκ→∞ E{x(m) (t) |y} = limκ→∞ E{F (t) |y} =
fλ (t) following Wahba (1978).
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Define the m × m matrix H(ti, tj) by

Hij =


1 (ti − tj) . . .

(ti−tj)
m−1

(m−1)!

0 1 . . .
(ti−tj)

m−2

(m−2)!
...

...
. . .

...
0 . . . 0 1


and the m × 1 random vector ηij with element

η
(γ)
ij = σ{λ−1/2

l−1

∫ τl

tj

(ti − h)γ−1

(γ − 1)!
dW (h) +

u∑
q=l

λ−1/2
q

∫ τq+1

τq

(ti − h)γ−1

(γ − 1)!
dW (h)

+λ−1/2
u

∫ ti

τu

(ti − h)γ−1

(γ − 1)!
dW (h)}, γ = m, . . . , 1,

where tj ∈ [τl−1, τl), ti ∈ [τu, τu+1) and ti > tj .
For any three time points ti ≥ tj ≥ ts, it is straightforward to verify that

His = HijHjs and ηis = Hijηjs+ηij . Thus we have the state space representation

yj = Zx (tj) + ej , x (tj) = Hj,j−1x (tj−1) + ηj,j−1,

Z = [1 0 · · · 0], ηj,j−1 ∼ N(0, Ωj,j−1) ,

where ej ∼ N
(
0, σ2

)
and Ωj,j−1 has pqth entry

Ωj,j−1 (pq) = λ−1 (tj) σ2{ (tj − tj−1)
2m+1−p−q

(2m + 1 − p − q) (m − p)! (m − q)!
}.

The simple form of Ωj,j−1 is a direct result of the piecewise constant structure of
λ.

Forward filtering and backward smoothing, which give the solution fλ as
the posterior mean, can be implemented in O(n) steps. The algorithm is given
in the on-line supplement at http://www.stat.sinica.edu.tw/statistica/.
The readers are referred to Durbin and Koopman (2001) for details of the algo-
rithm.

3.3. Parameter estimation and the model selection criterion

We first extend the generalized likelihood (Wahba (1985)) to the adaptive
smoothing splines. Define the n × n matrix Σλ = Kλ (ti, tj)i,j=1,...,n, and the

n × m matrix T = {φj (ti)}i=1,...,n,j=1,...,m. Let T = (Q1 : Q2)
(
RT : 0T

)T be the
QR decomposition of T , where Q1 is n × m, Q2 is n × (n − m), Q = (Q1, Q2)
is orthogonal, and R is upper triangular. Let z = Q′

2y, which is independent of

http://www.stat.sinica.edu.tw/statistica/
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d = (d1, . . . , dm) and z ∼ N
(
0, σ2 (Q′

2ΣλQ2 + I)
)
. The generalized loglikelihood

for θ = (λ1, . . . , λK , σ2) based on z is

l (θ| y) = −n − m

2
log (2π) − 1

2
log

[
det{σ2

(
Q′

2ΣλQ2 + I
)
}
]

−1
2
y′Q2{σ2

(
Q′

2ΣλQ2 + I
)
}−1Q′

2y.

In the state space method, we impose a diffuse prior on the initial state
vector x(0) ∼ N(0, κI) with κ → ∞. The loglikelihood calculated in the filtering
step with this diffuse prior is the same as l(θ|y) defined above. The readers are
referred to Koopman (1997) for the details on diffuse initialization. Maximizing
l(θ|y) gives the GML estimate θ̂. Kohn, Ansley and Tharm (1991) showed by
extensive simulation that GML outperforms GCV in many typical settings.

For model selection, we propose to penalize the complexity of the segmen-
tation by the degrees of freedom in the penalty function, which is the number of
segments, K. Thus an AIC like criterion is formulated, and we term it GAIC as
generalized AIC,

GAIC = −l
(
θ̂|y

)
+ K.

When comparing two candidate segmentations, the one with smaller GAIC cri-
terion is preferred. Computationally this criterion is efficient because it can be
done simultaneously with parameter estimation by GML.

Similar to other penalized likelihood criteria, GAIC is a trade-off between
the goodness of fit, l(θ̂|y), and the complexity penalty. The penalty form is mo-
tivated by the classical AIC (Akaike (1974)), but the generalized likelihood is
not a true likelihood, it is derived from the mathematically equivalent Bayesian
model (Wahba (1985)). While this model selection criterion works well in our
simulations, the theoretical properties require further investigation. A referee
suggested that a BIC-like criterion can also be formulated based on the gener-
alized likelihood. We study this in our simulation and it performs similarly to
our proposed GAIC criterion. The key finding here is that generalized likelihood
behaves similarly to a true likelihood even though it is not one.

3.4. Search algorithm

The number of possible segmentations without imposing any structure is
2n−2, which is daunting. We therefore impose a binary tree structure on the step
function. We first grow the binary tree to the maximal depth J , which needs
to be prespecified. We then sequentially trim the leaves if trimming the subtree
leads to a smaller overall GAIC.

For j = 0, . . . , J , we write a partition of [0, 1] at the jth level as

[0, 1] = Bj,1 ⊕ Bj,2 ⊕ · · · ⊕ Bj,Rj ,
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where ⊕ denotes that two segments are kept separate and Rj is the number of
segments in the partition. At the deepest level, RJ = 2J and for r = 1, . . . , Rj ,
BJr = [(r − 1)/2J , r/2J). The number of possible models that can be generated
by trimming the tree, denoted as MJ , can be calculated sequentially as MJ+1 =
M2

J + 1 (Coifman and Wickerhauser (1992)). Thus for J = 0, 1, 2, 3, 4, 5, MJ =
1, 2, 5, 26, 677, 458330, and MJ+1 ≥ 22J

.
We then propose an algorithm similar to BBA (Coifman and Wickerhauser

(1992)) to search the binary tree in 2J steps. For j = J − 1, J − 2, . . . , 0, and
r = 1, . . . , Rj , we use the GAIC to determine whether to trim the subtree in the
lower level. Define the two settings as

S1 : Bj,1 ⊕ · · · ⊕ Bj,r−1⊕ {Bj+1,2r−1 ∪ Bj+1,2r} ⊕Bj+1,2r+1 ⊕ · · ·Bj+1,Rj

S2 : Bj,1 ⊕ · · · ⊕ Bj,r−1⊕ Bj+1,2r−1 ⊕ Bj+1,2r ⊕Bj+1,2r+1 ⊕ · · ·Bj+1,Rj ,

where ∪ denotes collapsing two adjacent intervals. We start with Rj = Rj+1, and
if GAIC(S1) ≤ GAIC(S2), trim the subtree, define Bj,r = {Bj+1,2r−1∪Bj+1,2r},
and Rj = Rj − 1; if GAIC(S1) > GAIC(S2), keep the subtree, define Bj,r =
Bj+1,2r−1 and Bj,r+1 = Bj+1,2r. When we finish the jth level, Rj is the number of
segments kept at the jth level and eventually R0 is the final number of segments
chosen in the model, denoted as K previously. While J can grow with the sample
size n, K is much smaller than number of initial segments (2J), and is assumed
to be fixed, determined only by the underlying true signal.

In practice the maximal depth J needs to be chosen according to the sample
size and computational constraint. Starting with a larger J we allow the true un-
derlying penalty function to be approximated in smaller steps, but this is done at
the heavy computational expense. Another consideration is that enough obser-
vations are needed in each segment to ensure a reliable estimate of the smoothing
parameter for that segment. In classical smoothing splines, 25− 30 observations
are usually needed to ensure a reliable estimate of smoothing parameters (Wahba
(1990, p.65)). We find this to be true in adaptive smoothing splines through our
simulations. Therefore J ≤ (logn − log25) /log2. Our recommendation is that
for a complex signal, one can choose to grow the tree to the maximal depth
where, at the finest level, each segment has only 25 observations. When the
roughness of the signal does not change rapidly, smaller J can be adopted to
ease the computational demand.

3.5. Bayesian confidence intervals

Many results in smoothing splines can be easily extended for adap-
tive smoothing splines. The Bayesian confidence intervals are defined pointwise
(Wahba (1983)) as

[CL, CU ]j = lim
κ→∞

(
E{F (tj) |y} ± Zα/2 × [Var{F (tj) |y}]1/2

)
,
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where Zα is the (1 − α)100th standard normal percentile. Although confidence
intervals are calculated pointwise, they have a nice curvewise coverage rate from
a frequentist viewpoint. Define the average coverage probability(ACP(1−α)) at
the nominal 1 − α level as

ACP (1 − α) =
1
n

n∑
j=1

I{f (tj) ∈ [CL, CU ]j},

Nychka (1988) showed that ACP is close to its nominal level both asymptotically
and by simulation.

3.6. Consistency

In this section we prove the consistency of the adaptive smoothing spline.
While the maximal depth of the binary tree J usually depends on the sample size
n, we assume the final number of segments K does not depend on n. This means
that the optimal segmentation only depends on the structure of the underlying
signal. The results are summarized by the following lemma and theorem.

Lemma. Let Σ have elements Σ(i, j) = K(ti, tj) where K(·, ·) is the reproduc-
ing kernel for classical smoothing splines. Let δ∗1n ≥ · · · ≥ δ∗nn be the ordered
eigenvalues of Σ, similarly δ1n ≥ · · · ≥ δnn be the ordered eigenvalues of Σλ. Let
λmin = min{λ(t)} and λmax = max{λ(t)}. Then for every i,

λ−1
maxδ∗in ≤ δin ≤ λ−1

minδ∗in. (3.3)

Theorem. The integrated risk, IR, is of the order

IRn (λ) =
∫ 1

0
E{f (t) − fλ (t)}2p (t) dt ≤ O (λmax) + O

(
λ
−1/2m
min n−1

)
,

where the design density p (t) satisfies
∫ tj
0 p (t) dt = (2j − 1)/(2n). As n → ∞,

λmin = O(n−2m/(2m+1)) and λmax = O(n−2m/(2m+1)), the asymptotic rate of IR
is O(n−2m/(2m+1)).

The proofs are given in the on-line supplement at http://www.stat.sinica.
edu.tw/statistica/.

As in classical smoothing splines, IR can be decomposed into bias and vari-
ance parts. The proof shows that the bias part is bounded above by λmax. If
we choose λmax as the global smoothing parameter, the bias will achieve its
upper bound, but regions other than the one corresponding to λmax will be over-
smoothed. On the other hand, the variance part is bounded above by λ

−1/2m
min . If

we choose λmin as the global smoothing parameter, the variance will achieve its

http://www.stat.sinica. edu.tw/statistica/
http://www.stat.sinica. edu.tw/statistica/
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upper bound, but regions other than the one corresponding to λmin will be under-
smoothed. By letting λmax and λmin have the same rate, we get the optimal rate
O(n−2m/(2m+1)), which is the same as for classical smoothing splines.

Adaptive smoothing allows different balances of bias and variance for differ-
ent roughness patterns. Therefore we expect that the finite sample performance
of adaptive smoothing splines, for signals with strong roughness heterogeneity,
will outperform classical smoothing splines. This is confirmed by our simulations
in Section 5.

4. Numerical Examples

In this section we examine the visual quality of the proposed method and
the resultant penalty functions. We work with four functions: Blocks, Bumps,
HeaviSine, and Doppler, used in Donoho and Johnstone (1994) and Donoho
and Johnstone (1995). These four functions are examples where the classical
smoothing spline does not work well because of smoothness inhomogeneity.

We use the same settings as in Donoho and Johnstone (1994) and Donoho
and Johnstone (1995): n = 2, 048, with independent Gaussian noise εi ∼ N(0, 1).
Signals are rescaled so that the signal-to-noise ratio (SNR) is 7. For wavelet
reconstruction we use the hybrid version of SureShrink, with levels j = 5, . . . , 10.
We work with m = 2, thus cubic smoothing splines from this point on, and we
take J = 4 as the depth of the tree.

Figure 1 to Figure 4 present those four functions with the true signal, the sim-
ulated data and the smoothed results from wavelet SureShrink and the proposed
method. In general the visual qualities of the proposed method and Wavelet
SureShrink are comparable. Wavelet SureShrink is better at uniforml denoising
while small wiggles are left over the whole domain. For Blocks, over some re-
gion the proposed method does not smooth out large noises, while it is better at
smoothing out almost all wiggles over long flat regions. For Bumps, the proposed
method is better than SureShrink almost everywhere except it is less denoised
for a short interval around 0.2. For HeaviSine and Doppler the proposed method
and SureShrink are comparable.

Figure 5 shows the estimated penalty functions. The penalty functions do
adapt to the smoothness pattern of the signals, for example for the HeaviSine
signal, two small penalties are chosen for intervals around 0.3 and 0.7, where
there are two abrupt changes. For Blocks, Bumps and HeaviSine, the differences
of λ̂ks between two consecutive segments are so large that continuity cannot
be reasonably assumed. The estimated penalty function for Doppler implies a
continuous λ, while fλ under the stepwise penalty function still looks good.
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Figure 4.1. Numerical example: Blocks. (a) The true function; (b) with
i.i.d. Gaussian noise at SNR=7; (c) reconstruction from Wavelet hybrid
SureShrink; (d) final estimate from the proposed method.

Figure 4.2. Numerical example: Bumps. (a) The true function; (b) with
i.i.d. Gaussian noise at SNR=7; (c) reconstruction from Wavelet hybrid
SureShrink; (d) final estimate from the proposed method.
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Figure 4.3. Numerical example: HeaviSine. (a) The true function; (b)
with i.i.d. Gaussian noise at SNR=7; (c) reconstruction from Wavelet hybrid
SureShrink; (d) final estimate from the proposed method.

Figure 4.4. Numerical example: Doppler. (a) The true function; (b) with
i.i.d. Gaussian noise at SNR=7; (c) reconstruction from Wavelet hybrid
SureShrink; (d) final estimate from the proposed method.
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Figure 4.5. Estimated penalty functions: (a) Blocks; (b) Bumps; (c) Heavi-
Sine; (d) Doppler. The penalty for Blocks is truncated above at 1020.

5. Simulation

We conducted a simulation to investigate the performance of the proposed
method by comparing the true mean square errors(TMSE),

TMSE =
1
n

∑
{f (ti) − fλ (ti)}2.

We also examined the performance of Bayesian confidence intervals by ACP
at the nominal level of 95%. Besides the four functions used in the previous
section, we added two more sine functions: Sin-141 and Sin-1414. For Sin-
141, we divided [0, 1] into three intervals of equal-length B1 ⊕ B2 ⊕ B3 and the
signal was generated as sin(6πt)I{t ∈ (B1, B3)} + sin(24πt)I(t ∈ B2) where I(.)
is the indicator function. For Sin-1414, we divided [0, 1] into four intervals of
equal-length B1 ⊕ B2 ⊕ B3 ⊕ B4 and the signal was generated as sin(6πt)I{t ∈
(B1, B3)} + sin(24πt)I{t ∈ (B2, B4)}.

In adaptive smoothing, Blocks and Bumps represent frequent and irregular
abrupt changes in smoothness. HeaviSine represents slow change but for a few
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abrupt changes. Doppler represents gradual changes. In Sin-1414, the binary tree
structure covered the true. We expect the proposed method to select the true
step function almost every time. In Sin-141, the binary tree structure did not
cover the true. We ran the proposed method, a smoothing spline with one global
smoothing parameter (SS1), a smoothing spline with four smoothing parameters
on equal-sized segments (SS4), a smoothing spline with eight smoothing param-
eters on equal-sized segments (SS8), the wavelet hybrid SureShrink, and the
Bayesian adaptive P-spline (Krivobokova, Crainiceanu, and Kauermann (2008))
by R package AdaptFit. For computational consideration we let n = 1, 024.
We tried J = 4 and J = 5 as the depth of the binary tree for a few replicates
in our simulations, and found that they performed similarly. To speed up the
simulation, we used J = 4 for the full scale simulation. Independent and identi-
cally distributed Gaussian noises were added and the signals were scaled to have
SNR levels of 7 and 3, strong and weak signals, respectively. Each setting was
repeated 100 times. The median TMSE and the range between the first and the
third quartiles are summarized in Table 1. The median ACP for the proposed
method varied from 0.939 to 0.962, which are close to the nominal level 0.95.

First we compared the performance of the proposed method with Bayesian
adaptive P-spline. We set the options of AdaptFit as: 80 knots for the regression
function; 20 knots for the penalty function; 100 maximal iterations for the mean
function (the default is 20); 1, 000 maximal iterations for the variance of random
effects estimation (the default is 50). As pointed out by T. Krivobokova, the
author of AdaptFit, Bayesian adaptive P-spline is developed to smooth contin-
uous functions with continuous smoothing parameters. Therefore for functions
with abrupt changes like Blocks, Bumps and HeaviSine, AdaptFit is not sup-
posed to perferm well, which was confirmed by our simulations. AdaptFit also
has a convergence problem. For all the settings except for HeaviSine signal, there
were always some cases that would not converge despite increased maximal iter-
ation numbers. Following a suggestion from T. Krivobokova, we also tried 160
knots for the regression function in Doppler signal. Subsequently the percentage
of converged runs increased and TMSE decreased: at SNR 7, TMSE decreased
from 1.936 to 0.659, at SNR 3 TMSE decreased from 0.383 to 0.164. This indi-
cates that since P-spline uses only a subset of knots, it cannot adapt to abrupt
changes as quickly as the proposed method that uses all the data points as knots.
In addition adaptive P-spline models the penalty function as continuous, but in
situations like Blocks and Heavisine, the roughness changes abruptly and the
step function approximation used by the proposed method is more robust.

We compared the proposed method with Wavelet, SS1, SS4 and SS8. For
Blocks, Bumps, HeaviSine and Doppler, Table 1 shows that in general the pro-
posed method outperformed other methods; the better performance is more ob-
vious at higher SNR levels. There were two exceptions: for Blocks at SNR
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Table 5.1. TMSE result: Median (Range).

SNR Proposed SS1 SS4 SS8 SureShrink P-spline
Blocks 7 0.5447 1.0720 1.0041 0.8008 0.4809 2.5656

(0.0420) (0.0568) (0.0523) (0.0540) (0.0436) (0.0264)
3 0.2732 0.4018 0.3903 0.3403 0.3669 0.5408

(0.0248) (0.0237) (0.0247) (0.0293) (0.0324) (0.0200)
Bumps 7 0.3900 1.0288 0.8122 0.5244 0.5845 †

(0.0382) (0.0847) (0.0663) (0.0427) (0.0530)
3 0.3018 0.6326 0.5451 0.3980 0.4887 ‡

(0.0348) (0.0464) (0.0501) (0.0335) (0.0545)
HeaviSine 7 0.0691 0.1212 0.0999 0.1293 0.1309 0.1272

(0.0140) (0.0133) (0.0113) (0.0866) (0.0193) (0.0140)
3 0.0464 0.0485 0.0460 0.0753 0.0645 0.0518

(0.0148) (0.0117) (0.0123) (0.0265) (0.0160) (0.0090)
Doppler 7 0.1125 0.4702 0.1695 0.1310 0.2740 1.9360

(0.0190) (0.0441) (0.0240) (0.0269) (0.0315) (0.0114)
3 0.0881 0.2645 0.1259 0.1048 0.1834 0.3833

(0.0184) (0.0286) (0.0210) (0.0251) (0.0260) (0.0098)
Sin-1414 7 0.0893 0.1127 0.0893 0.0898 0.0995 0.1450

(0.0178) (0.0168) (0.0178) (0.0181) (0.0184) (0.0158)
3 0.0624 0.0807 0.0624 0.0631 0.0707 0.0728

(0.0157) (0.0139) (0.0157) (0.0159) (0.0156) (0.0137)
Sin-141 7 0.0608 0.0849 0.0661 0.0664 0.0814 0.0518

(0.0150) (0.0156) (0.0156) (0.0159) (0.0162) (0.0129)
3 0.0438 0.0596 0.0466 0.0583 0.0572 0.0401

(0.0127) (0.0132) (0.0124) (0.0215) (0.0157) (0.0142)
†: None of 1,000 runs converged.
‡: 11 of 1,000 runs converged, the median value was 3.1745.

7, wavelet SureShrink performed slightly better than the proposed method; for
HeaviSine at SNR 3, SS4 performed slightly better than the proposed method.
For Sin-1414, the proposed method outperformed other methods. This is due to
the fact that the binary tree covered the true structure and indeed chose the true
for every repeat. For Sin-141 the proposed method outperformed the others. In
this case the true structure was not covered by the binary tree, but we can see
that the approximation performed reasonably well.

6. Application to an EEG data

Epilepsy is one of the most common neurological disorders. About one quar-
ter of epileptic seizure cannot be controlled by medication or surgery. The idea
of predicting seizure so that preventive treatment can be given before the clini-
cal onset has fascinated neurologists since the 1970s (see Mormann et al. (2007)
and references therein). As part of the effort to construct a statistical predic-
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tion framework, our first step was to characterize EEG. Early research on EEG
from epilepsy patients focused on high voltage low frequencies (≤ 25Hz), which
exhibit a continuously build-up of energy before seizure. Recent biomedical re-
search and statistical analysis of the time-varying spectral (Qin, Guo and Litt
(2009)) show that the low voltage frequency band 26 − 50Hz also has an impor-
tant role in epileptic seizure. The rapid discharges in frequency band 26 − 50Hz
might indicate seizure’s spatial-temporal organization.

Accordingly, studying the high frequencies may help neurologists determine
the spatial-temporal initiation of seizure. Figure 6(a) shows a 15-minute long
intracranial EEG series. The sampling rate is 200Hz and the seizure onset is
at the 8th minute (Litt et al. (2001)). For every half second we calculated the
time-varying log-spectral band power of 26 − 50Hz,

y (t) =
50Hz∑

ν=26Hz

log{pν (t)},

where pν(t) is the raw periodograms at frequency ν and time t. The band powers
are usually very noisy, as shown in Figure 6 (b), and smoothing is needed before
further analysis. Figure 6 (e) shows the fit of the classical smoothing spline. The
global smoothing parameter shown in Figure 6 (f) is a result of compromising
between the flat regions and the abrupt-changing regions in order to capture
the big jump. This compromise led to under-smoothing the flat regions and
over-smoothing the abrupt changing regions. As a consequence the information
around seizure was lost and small false waves were left everywhere. This impedes
the effort in identifying seizure initiation. For competing adaptive smoothing
methods, wavelet SureShrink did not smooth the data much as shown in Figure
6 (c); Bayesian adaptive P-spline by AdaptFit did not converge with maximal
iteration number of 100,000.

Figure 6(d) shows the fit from the proposed method. The profile before
seizure is almost a straight line, and more details are preserved before the onset
of seizure. The post-seizure region shows a smooth recovery. This is a big contrast
to the result from the classical smoothing spline where artifacts were generated in
the before and after seizure periods due to undersmoothing. For this given EEG
series, the band power of 26 − 50Hz shows little change until 33 seconds before
the seizure. Then it begins to fluctuate and keeps fluctuating for the next 33
seconds; this may be a meaningful predictor of seizure and may help identify the
spatiotemporal initiation of seizure. There is a sharp increase at the beginning
of the seizure and a sharp decrease at the end of the seizure. After seizure, the
band power drops below the pre-seizure level, indicating a suppression of neuron
activities. Then it begins to regain slowly, but not back to the pre-seizure level
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Figure 6.6. EEG data example. (a)Raw series. (b) log spectral band power.
(c) Reconstruction from Wavelet hybrid SureShrink. (d) Final estimate from
the proposed method with 95% Bayesian Confidence intervals. (e) Final
estimte from smoothing spline with 95% Bayesian confidence intervals. (f)
Estimated penalty functions on the logarithm scale: broken line for the
smoothing spline, solid line for the proposed method.

after 5 minutes. This suggests that it takes more than 5 minutes for neurons to
recover.

7. Discussion

We have proposed a data driven method to model the penalty function in
adaptive smoothing splines. This method outperformed wavelet shrinkage and
Bayesian adaptive P-spline in our simulations when the roughness of the underly
signal changed rapidly. This is due to the robustness of the step-function approxi-
mation to the true underlying penalty function. Another key finding is that, while
the generalized likelihood is not a true likelihood, the generalized likelihood based
model selection criteria, such as the proposed GAIC, performed well in our simu-
lation. However, our method is computationally expensive compared to wavelet
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shrinkage and Bayesian P-splines, mainly due to the large number of candidate
models and the proposed tree searching algorithm. Despite the O(n) algorithm
of the proposed equivalent state space model, our method still takes significant
longer computation time than does the Bayesian P-spline. For example, in our
simulation setting of n = 1, 024 using a regular desktop PC, Wavelet SureShrink
only took seconds, the Bayesian P-spline method took a few minutes, while the
proposed method required 40-50 minutes. This heavy computational demand is
a serious limitation and motivates us to explore faster search algorithms for the
best segmentation.
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