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Abstract: This paper considers a regression imputation method for estimating the

regression coefficients in the Cox model when some failure indicators are missing

at random, and the conditional probability of the censoring indicator is assumed to

be of a parametric form. To avoid problems with missspecification of the paramet-

ric form, two augmented inverse probability weighted estimators are defined, and

their asymptotic properties are established. Simulation studies were conducted to

demonstrate the performance of the proposed estimators, and a data set from a

stage II breast cancer trial is used to illustrate our methods.
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1. Introduction

Failure time T , associated with a p-vector Z of possibly time-varying covari-
ates, is commonly characterized by the proportional hazards regression model as
follows:

λ(t|Z) = λ0(t) exp{β>
0 Z(t)},

where λ0(t) is an unspecified baseline hazard function and β is a p-vector of
unknown regression coefficients, see Cox (1972). Let C denote the censoring
time and I(·) be the indicator function. Under random censorship, one observes
only (X, δ, Z), where X = min{T,C} and δ = I(T ≤ C). Assume that the
censoring is noninformative in the sense that T and C are independent given Z.
Andersen and Gill (1982) made elegant use of counting processes and martingale
theory to obtain the asymptotic properties of the maximum partial likelihood
estimate for the regression coefficients β, and hence the baseline hazard function
λ0(t).

The failure indicator δ may not always be available. For instance, for com-
peting risks survival data, failure is attributed to multiple causes. If one just
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assesses the effects of covariates on cause-specific hazard, failure times beyond
interest are also treated as censoring variables. Meanwhile when cause of failure
is unknown, as might happen in some settings, to save expense without autopsy
say, δ is missing. For example, van der Laan and Mckeague (1998) describe
epidemiological studies in which death certificates were missing for some people
mainly due to emigration, or inconclusive hospital case notes and autopsy results,
and point out that it may be impossible to determine whether death was due
to the cause of interest. Missing causes of death can also arise in some studies
when only a subset of animals is examined for tumors to cut costs. Occasion-
ally, tissues autolyze or are cannibalized by cage mates before a necropsy can
be performed, and pathologists are not always able to determine each tumor’s
role in causing death. Kalbfleisch and Prentice (1980) provide data on mice who
died from leukemia, from other known (non-leukemia) causes, or from unknown
causes; and Cummings et al. (1986) present a data set on elderly women with
breast cancer who died from breast cancer, from other known causes, or from
unknown causes. This last data set is analyzed in Section 5.

A naive method for handling missing data is the complete case (CC) method,
i.e., discard records with unknown failure indicators. Such a strategy is easy to
carry out but tends to be highly inefficient for small sample cases, and to be
biased for dependently missing mechanisms, see Little and Rubin (1987). Some
authors improved on the CC method at the expense of invoking the missing com-
pletely at random (MCAR) assumption. Thus, Gijbels, Lin and Ying (1993) con-
structed an estimating equation for subjects with missing failure indictors based
on the estimated missing proportion, and hence derived an efficient estimator for
the vector of regression coefficients. McKeague and Subramanian (1998) consid-
ered an alternative estimating equation based on certain cumulative transition
intensities, and discussed the asymptotic properties of the conditional survival
function; the asymptotic efficiencies of the estimates were discussed by Subra-
manian (2000) for the case of MCAR and the case without missing. Zhou and
Sun (2003) extended McKeague and Subramanian (1998) to the additive hazard
regression model, but MCAR was also assumed. The method of Gijbels, Lin and
Ying (1993) depends heavily on the assumption of MCAR, and McKeague and
Subramanian (1998) also mentioned that the missing mechanism in their work
could not be relaxed without modification. However, the MCAR assumption is
impractical in many cases.

Missing at random (MAR) is a more general assumption that is commonly
used in missing data analysis. Here missingness depends on observed data only.
There has been a good deal of work on the framework of competing risks model
with the failure types missing at random, see Goetghebeur and Ryan (1995),
Lu and Tsiatis (2001), Gao and Tsiatis (2005), among others. The existing
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estimators due to Gijbels, Lin and Ying (1993) and McKeague and Subramanian
(1998) for the Cox model are inconsistent under MAR.

In this paper, we treat the estimation of Cox models with failure indicators
missing at random. In Section 2, we specify a parametric form for the conditional
mean function of censoring given covariates, and derive an estimator for the vec-
tor of regression coefficients by performing a regression imputation method. To
avoid problems with the misspecified parametric forms, in Section 3, we further
consider an augmented inverse probability weighted (AIPW) estimation for the
parameter vector β, see Robins, Rotnitzky and Zhao (1994), Wang et al. (1997)
and Tsiatis (2006), while the probability of missingness is fitted by a nonpara-
metric method and a parametric one. Some simulation experiments are presented
in Section 4, and we illustrate the results via a data set from a clinical trial in-
volving elderly women with stage II breast cancer in Section 5. The proofs of
main results are given in Appendices A and B.

2. Regression Imputation Estimation

Let {Xi, δi, Zi(t)}, i = 1, . . . , n, be n independent copies of {X, δ, Z(t)}.
When failure indicators are observed completely, the maximum partial likelihood
estimate of β0 is obtained as the solution of the following estimation equation

U(β) :=
∑

δi

{
Zi −

∑n
j=1 Yj(Xi) exp(β>Zj(Xi))Zj(Xi)∑n

j=1 Yj(Xi) exp(β>Zj(Xi))

}
= 0, (2.1)

where Yi(·) = I(Xi ≥ ·) is the at-risk process, see Cox (1975). Andersen and Gill
(1982) considered this estimator, denoted by β̂AG, and established asymptotic
normality by using counting processes and martingale theory. For notational
convenience, denote {Xi, Zi(Xi)} by Wi, and the ratio under the brackets in
(2.1) by Z̄(β,Xi).

Let ξ be an indicator, it is set to zero when δ is missing and is one otherwise.
Hence the observed data are {Wi, δi, ξi = 1} or {Wi, ξi = 0}. For a missing
failure indicator, say δi, its conditional expectation E(δi|Wi) = m(Wi) is a natural
surrogate, and then (2.1) can be used to obtain the estimate of β by replacing the
missing δi by an estimate of m(Wi). We posit a parametric model m0(Wi, θ0) for
m(Wi) with unknown parameter vector θ0 that can be estimated by a maximum
likelihood approach. The conditional mean function m(·) may then be estimated
parametrically through m0(·, θ̂n), where θ̂n is the maximizer of the likelihood
function

Ln(θ) =
∏

m0(Wi, θ)ξiδi [1 − m0(Wi, θ)]ξi(1−δi).

The widely used logit model may be used for m0(Wi, θ) since δi is binary, and
other parametric forms are possible. An imputation estimator, denoted by β̃n,
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can then be defined to be the solution in β of

Ũ(β) =
∑

[ξiδi + (1 − ξi)m0(Wi, θ̂n)]
{

Zi − Z̄(β,Xi)
}

= 0. (2.2)

For stating the asymptotic behavior of β̃n, we need some notation as follows:

∇m0(Wi, θ) =
∂m0(Wi, θ)

∂θ
;

I(θ) = E
ξi∇m0(Wi, θ)∇>m0(Wi, θ)
m0(Wi, θ){1 − m0(Wi, θ)}

;

S(r)(β, t) = n−1
∑

Yi(t) exp(β>Zi(t))Zi(t)
N

r, r = 0, 1, 2;

s(r)(β, t) = E{S(r)(β, t)}, r = 0, 1, 2;

Z̄(β, t) =
S(1)(β, t)
S(0)(β, t)

, z̄(β, t) =
s(1)(β, t)
s(0)(β, t)

;

Σ1 = E{[Z1 − z̄(β0, X1)]
N

2m0(W1, θ0)};
Σ2 = E{[Z1 − z̄(β0, X1)]

N

2m0(W1, θ0)[1 − m0(W1, θ0)](1 − ξ1)};
Σ3 = E{[Z1 − z̄(β0, X1)]∇>m0(W1, θ0)};
Σ4 = E{[Z1 − z̄(β0, X1)]∇>m0(W1, θ0)ξ1};
Σ0 = Σ1 − Σ2 + Σ3I

−1(θ0)Σ>
3 − Σ4I

−1(θ0)Σ>
4 .

Note that Z̄(β,Xi) is just the ratio in the brackets at (2.1). Let τH = sup{t :
1−H(t) > 0} and τ0 be a positive constant, where H(t) is the survival function
of X. Two assumptions are needed:

(C1) |Z(t)| ≤ K < ∞ a.s.;

(C2) the function H(t) is continuous on [τ0, τH), and the matrix Σ0(τ) given
in Appendix A is positive definite for each τ ∈ [τ0, τH).

The asymptotic normality of β̃n can now be stated.

Theorem 2.1.
(i) Under (C1) and (C2), if (A1)−(A6) in Appendix A are satisfied, then

n−1/2Ũ(β0) →d N (0, Σ0).

(ii) If Σ1 is positive definite, n1/2(β̃n − β0) →d N (0, Σ−1
1 Σ0Σ−1

1 ).

When all failure indicators are fully observed, i.e., all ξi’s are equal to one,
then Σ2 = 0, Σ3 = Σ4, so Σ0 = Σ1 and one has the results in Andersen and Gill
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(1982). Let

Σ̂1 = n−1
∑

[Zi − Z̄(β̃n, Xi)]
N

2m0(Wi, θ̂n),

Σ̂2 = n−1
∑

[Zi − Z̄(β̃n, Xi)]
N

2m0(Wi, θ̂n)[1 − m0(Wi, θ̂n)][1 − ξi],

Σ̂3 = n−1
∑

[Zi − Z̄(β̃n, Xi)]∇>m0(Wi, θ̂n),

Σ̂4 = n−1
∑

[Zi − Z̄(β̃n, Xi)]∇>m0(Wi, θ̂n)ξi

Σ̂0 = Σ̂1 − Σ̂2 + Σ̂3I
−1(θ̂n)Σ̂>

3 − Σ̂4I
−1(θ̂n)Σ̂>

4 .

It can be shown that Σ̂i, i = 1, . . . , 4 are consistent estimators for Σi, i = 1, . . . , 4,
respectively. Thus Σ̂0 is also a consistent estimator for Σ0.

3. Augmented Inverse Probability Weighted Estimation

The regression imputation estimator in Section 2 may be biased when the
parametric form m0(Wi, θ) is misspecified. The augmented inverse probability
weighted (AIPW) method is commonly used to solve this problem, and such
estimates enjoy the property of double robustness, see Wang et al. (1997), Robins,
Rotnitzky and Zhao (1994), and Tsiatis (2006).

Under the MAR assumption, the indicators ξi and δi are independent con-
ditional on Wi, i.e., P(ξi = 1|Wi, δi) = P(ξi = 1|Wi) = π(Wi). Generally, the
function π(·) is estimated by assuming a parametric model for π(·), and then
acts as the weights in AIPW methods. However, the resulting estimator is in-
consistent when both π(·) and m(·) are misspecified. This motivates us to use
a nonparametric method to estimate π(·) to obtain a robust estimation of the
regression coefficients. This can be done by using the Nadaraya-Watson kernel
in the form

πn(w) =
∑

ξiKH(w − Wi)∑
KH(w − Wi)

,

where KH(·) = {det(H)}−1K(H−1·) denotes a multivariate kernel function with
bandwidth matrix H. The bandwidth matrix can be chosen by Scott’s rule, see
Scott (1992). Under some regularity conditions, πn(w) is consistent, i.e.,

sup
w

|πn(w) − π(w)| = op(1), (3.1)

see Devroye (1978) and Hardle, Janssen and Serfling (1988). Then we derive a
new estimating equation as,

S(β) =
∑ {

ξiδi

πn(Wi)
+

[
1 − ξi

πn(Wi)

]
m0(Wi, θ̂n)

}
{Zi − Z̄(β,Xi)} = 0, (3.2)
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and the augmented inverse probability weighted estimator β̃IPW
n is defined as

the solution to (3.2).
We now show the consistency of β̃IPW

n . It is sufficient to prove that the
expectation of (3.2) with [πn(Wi), β, θ̂n] replaced by [π(Wi), β0, θ

∗] is zero, see
Gao and Tsiatis (2005). Note then that∑

[Zi−Z̄(β0, Xi)]
[

ξiδi

π(Wi)
+

{
1− ξi

π(Wi)

}
m0(Wi, θ

∗)
]

=
∑

[Zi−Z̄(β0, Xi)]δi+
∑

[Zi−Z̄(β0, Xi)]
[
1− ξi

π(Wi)

]
[m0(Wi, θ

∗)−δi]. (3.3)

The expectation of the first term on the right side of (3.3) is readily shown to
be zero by martingale theory for counting processes (Fleming and Harrington
(1991)), and the expectation value of the second summation in (3.3) is always
zero regardless of θ∗ = θ0. Thus, the augmented inverse probability weighted
estimator β̃IPW

n is consistent, hence robust.
To construct the inverse probability weighted estimate, a technical condition

is needed,

(C3) infw π(w) > 0.

For any τ < τH , let

Σ5(τ) = E
{

[Z1−z̄(β0, X1)]
N

2m0(W1, θ0)[1−m0(W1, θ0)][π−1(W1)−1]I(X1≤τ)
}

.

Let Σ5 = Σ5(τH). In order to state the asymptotic normality of β̃IPW
n , we need

another assumption.

(C4) There exists a τ0 < τH such that H is continuous on [τ0, τH), and the
matrix Σ1(τ), given in Appendix A, or Σ5(τ) is positive definite for each
τ ∈ [τ0, τH).

Theorem 3.1.
(i) Under (C1), (C3) and (C4), if (A1)−(A6) in Appendix A and (3.1) are

satisfied, then n−1/2S(β0) →d N (0, Σ1 + Σ5).

(ii) If Σ1 is positive definite, then n1/2(β̃IPW − β0) →d N (0, Σ−1
1 + Σ−1

1 Σ5Σ−1
1 ).

For survival data, if we know the missing mechanism well, a parametric
method might be used to fit the probability of missingness. Suppose π(w) =
π0(w, γ0), where the form of the function π0(w, γ) is known, and depends on
an unknown finite dimensional parameter vector γ. We estimate γ0 by γ̂n, the
maximizer of the likelihood function,∏

π0(Wi, γ)ξi [1 − π0(Wi, γ)]1−ξi .
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Under some regularity conditions, the estimator γ̂n satisfies

γ̂n − γ0 = Op(n−1/2). (3.4)

Based on the above estimation, we replace S(β) by

S∗(β) =
∑ [

ξiδi

π0(Wi, γ̂n)
+

{
1 − ξi

π0(Wi, γ̂n)

}
m0(Wi, θ̂n)

]
[Zi − Z̄(β,Xi)] = 0,

and we define the new augmented inverse probability weighted estimator β̃DR
n to

be its solution in β. Note that β̃DR
n is double robust, see Gao and Tsiatis (2005),

and asymptotically normal.

Theorem 3.2. Under (C1), (C3), (C4), (A1)−(A6), and (3.4), if Σ1 is positive
definite, then n1/2(β̃DR − β0) →d N (0, Σ−1

1 + Σ−1
1 Σ5Σ−1

1 ).

Note that β̃IPW and β̃DR have the same asymptotic variance. We recom-
mend use of β̃IPW if the dimension of w is low, and β̃DR otherwise.

We conclude that the methods of fitting π(Wi) asymptotically have no effect
on the inverse probability weighted estimates. Then if

Σ̂5 = n−1
∑

[Zi − Z̄(β̃∗
n, Xi)]

N

2m0(Wi, θ̂n)[1 − m0(Wi, θ̂n)][π̃−1(Wi) − 1],

where (β̃∗
n, π̃(Wi)) can be either of (β̃IPW , πn(Wi)) or (β̃DR, π0(Wi, γ̂)), Σ̂5 is

a consistent estimator of Σ5, and the matrix Σ̂−1
1 + Σ̂−1

1 Σ̂5Σ̂−1
1 can be used to

estimate the asymptotic variance.

4. Simulation Studies

Monte Carlo simulations were conducted to evaluate the finite-sample behav-
ior of the proposed estimators β̃n, β̃IPW

n , and β̃DR, and to compare them with
the full-data estimator β̂AG and the complete-case estimator β̂CC . Although it
is not achievable because of the missingness of failure indicators, β̂AG can serve
as a gold standard.

The baseline hazard λ0(t) was set at one, and a univariate covariate Z was
uniformly distributed on [0, 2]. The censoring variable was generated indepen-
dent of Zi from an exponential distribution with rate λc. Under this scenario, the
true m(w) is a logistic regression model 1/[1+λc exp(−β0z)]. We set m0(w, θ) =
1/[1 + exp(−θ1 − θ2x − θ3z)], and λc varied to yield censoring rates of approxi-
mately 30% and 70%. A logistic regression π0(w, a) = 1/[1+exp(−a0−a1x−a2z)]
was adopted and (a0, a1, a2)> was adjusted to generate missing rates of roughly
20% and 50%. A bivariate Epanechnikov kernel function was chosen for the bi-
variate Nadaraya-Watson estimate of the probability of missingness. As to the
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Table 1. Simulation results comparing five estimators for different combina-
tions of censoring rate (CR) and missing rate (MR) (1, 000 replications and
n = 200).

MR CR β̂AG β̂CC β̃n β̃IPW
n β̃DR

20% 30% Bias -0.0005 0.1872 0.0012 0.0009 0.0008
SSE 0.1558 0.1764 0.1636 0.1654 0.1647
SEE 0.1534 0.1752 0.1614 0.1799 0.1623
CP 0.947 0.825 0.946 0.957 0.944

70% Bias 0.0041 -0.2553 0.0034 0.0046 0.0058
SSE 0.1525 0.2142 0.1726 0.1762 0.1752
SEE 0.1534 0.2227 0.1757 0.1776 0.1780
CP 0.959 0.792 0.957 0.959 0.948

50% 30% Bias 0.0097 0.2409 0.0148 0.0176 0.0174
SSE 0.2411 0.2679 0.2677 0.2743 0.2723
SEE 0.2361 0.2722 0.2614 0.2622 0.2649
CP 0.948 0.871 0.950 0.959 0.949

70% Bias 0.0087 -0.1356 0.0026 0.0013 0.0008
SSE 0.2359 0.3389 0.3064 0.3130 0.3120
SEE 0.2359 0.3439 0.3097 0.3168 0.3126
CP 0.957 0.936 0.959 0.958 0.959

SSE: Estimated standard error; SEE: Monte Carlo empirical standard error; CP:
Empirical coverage probability.

parametric estimate of the probability of missingness, a logit model was adopted
again.

We chose β0 = 0.5. The sample size was set to be 200. For each scenario,
the Monte Carlo simulation consisted of 1,000 replicates. Tables 1 presents the
bias, the estimated standard errors (SSE), the Monte-Carlo empirical standard
errors (SEE), and the empirical coverage probability (CP) of the 95% confidence
interval.

Table 1 summarizes the results for various scenarios of censoring rates and
missing rates. The simulation results were consistent with the theoretical ones.
In all cases, three presented estimates are significantly superior to the complete-
case estimator as to accuracy or efficiency. The bias of the augmented inverse
probability estimates were always close to zero (consistency). The SEE was very
close to the SSE, except for the case of estimating the probability of missingness
nonparametrically. The bias, SSE, and SEE of the proposed estimators had good
efficiency compared to β̂AG. Furthermore, in almost all cases, the coverage prob-
abilities of the normal approximation confidence intervals of the three proposed
estimators were close to 95%.
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Table 2. Simulation results with the parametric form of m misspecified.

MR CR β̂AG β̂CC β̃n β̃IPW
n β̃DR

20% 30% Bias 0.0052 0.2072 -0.0098 0.0019 0.0043
SSE 0.1175 0.2025 0.1829 0.1846 0.1846
SEE 0.1761 0.2031 0.1738 0.1842 0.1745
CP 0.953 0.839 0.938 0.948 0.940

70% Bias -0.0048 0.1826 -0.0425 -0.0078 0.0021
SSE 0.3031 0.3710 0.3433 0.3557 0.3549
SEE 0.3038 0.3771 0.3111 0.4125 0.3168
CP 0.956 0.928 0.929 0.960 0.923

50% 30% Bias 0.0011 -0.2553 0.0562 0.0042 0.0014
SSE 0.1759 0.2488 0.2152 0.2185 0.2169
SEE 0.1758 0.2549 0.2002 0.2721 0.2042
CP 0.953 0.835 0.920 0.971 0.936

70% Bias -0.0062 -0.1648 0.0388 -0.0025 -0.0020
SSE 0.3034 0.4381 0.4044 0.4208 0.4171
SEE 0.3037 0.4408 0.3615 0.5440 0.3695
CP 0.950 0.934 0.925 0.980 0.925

SSE: Estimated standard error; SEE: Monte Carlo empirical standard error; CP:
Empirical coverage probability.

As suggested by a referee, we also conducted an experiment to check the
robustness of the parametric and semi-parametric estimators proposed in Section
3. Here, the censoring variable C followed an exponential distribution with rate
λce

0.5Z3
conditional on Z, and λc was set to generate censoring rates with 30%

and 70%. Note that the true m(ω) is equal to 1/[1 + λc exp(−β0z + 0.5z3)]
under the above setting, and we consider the model m0(w, θ) = 1/[1+exp(−θ1−
θ2x− θ3z)] to fit m(ω). All other settings are the same as before; the simulation
results are presented in Table 2. As can be seen from the table, the bias for β̃n

is significantly larger than those of β̃IPW
n and β̃DR, and the situation is much

worse for larger censoring rates and/or missing rates. Thus the augmented inverse
probability weighted estimators appear to be quite robust.

5. Data Analysis

We illustrate our methods with a data set from a clinical trial that evaluated
tamoxifen as a treatment for stage II breast cancer among elderly women, see
Cummings et al. (1986). One hundred seventy elderly women were considered
eligible and analyzed in this trial, although we restrict our attention to the 79
women who died by the end of the trial. Among this subset, the censoring rate for
the observed individuals and the missing rate are approximately 72% and 23%,
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Table 3. Proposed parameter estimates (and jackknife estimates of the stan-
dard errors) based on the breast cancer data set.

Z1=Treatment Z2=Tumor Size Z3=Node Count

β̃n 0.0215 (0.016) -0.0245 (0.017) -0.0280 (0.016)
β̃IPW

n 0.0310 (0.580) -0.1413 (0.590) -0.6330 (0.430)
β̃DR

n 0.0056 (0.017) -0.0254 (0.017) -0.0240 (0.017)

respectively, since 44 women died of breast cancer, 17 died from other known
causes, and the cause of death was unknown for 18 women. In this example, X is
the survival time (in days)of the individual observation, δ is an indicator showing
whether death was due to breast cancer, ξ is an indicator of whether cause
of death was known, and Z = (Z1, Z2, Z3) is a vector of covariates, wherefore
W = (X,Z1, Z2, Z3) is four-dimensional. Here Z1 denotes whether the individual
received tamoxifen treatment or placebo, Z2 denotes whether the subject had a
tumor size less than 3cm, and Z3 denotes whether the patient had 4-10 positive
axillary lymph nodes.

The estimates of regression coefficients of the three covariates, together with
the corresponding jackknife standard error estimators, are presented in Table 3.
All three proposed methods led to the same conclusion that none of the covariates
appear predictive of the breast-cancer survival. Under the Cox model, time to
breast-cancer death was not significantly affected by whether a woman received
tamoxifen or placebo, whether her primary tumor was larger or smaller than
3cm, or whether the patient had more or fewer than four positive axillary lymph
nodes. Note that the semiparametric augmented inverse probability weighted
estimator had the largest SE. This was attributable to the sample size of 79 in
the presence of dimension 4.

6. Concluding Remark

When π(·) is unknown and there are many covariates involved in the survival
data, the ‘curse of dimensionality’ in fitting multivariate nonparametric regres-
sion functions can arise, and a semiparametric approach may be more suitable
than fully parametric or fully nonparametric modelling. We might consider the
idea of a single index model and introduce an index-variable to fit the conditional
probability of missingness, see Ichimura (1993). Let π(Xi, Zi) = π̃(Xi, α

>Zi),
where α is a unknown p-dimensional parameter vector and π̃(·, ·) is an unknown
function. Since ξ is a binary variable, based on the log likelihood

log L(α) =
∑ [

ξi log π̃n(Xi, α
>Zi) + (1 − ξi) log{1 − π̃n(Xi, α

>Zi)}
]
,

where π̃n(·) is an nonparametric estimate of π̃(·), the semiparametric maximum
likelihood estimator α̂n for α is a root of ∂ log L(α)/∂α = 0. Letting (Xi, α̂

>
n Zi)
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be W ∗
i , we get a semiparameric estimate π̃n(W ∗) for π(Wi). Klein and Spady

(1993) showed that α̂n is root-n consistent. This method will be discussed in a
separate paper.

Appendix A: Proof of Theorem 2.1

Some regularity conditions required for the proofs are listed.

(A1) For each θ 6= θ0,∫
m(w, θ)I[m(w, θ) = 0]dH̄1(w)

= 0 =
∫

(1 − m(w, θ))I[m(w, θ) = 1]dH̄1(w)

and
∫

I[m(w, θ) 6= m(w, θ0)] dH̃1(w) > 0, where H̄1(w) = P(W ≤
w, ξ = 1).

(A2) log m(w, θ) and log(1−m(w, θ)) are upper-semicontinuous with proba-
bility one.

(A3) log m(w, θ) and log{1 − m(w, θ)} are uniformly integrable from above
under θ0 for at least a sufficiently small neighborhood Vε(θ∗) of θ∗.

(A4) m(w, θ) possesses continuous partial derivatives of second order with
respect to θ at each θ ∈ Θ and the definition region of w; ∇m(w, θ0) is
continuous on [0, τ ] and, for each θ ∈ Θ, there exists ε > 0 such that
Eθ0J(W, θ, ε) < ∞, where

J(W, θ, ε) = sup
{∣∣∣∂2m(w, θ)

∂ϕr∂ϕs

∣∣∣ : ‖ϕ − θ‖ ≤ ε, 1 ≤ r, s ≤ p

}
.

(A5) E[Drm(W, θ0)/m(W, θ0)]2 < ∞ and E[Drm(W, θ0)/(1 − m(W, θ0))]2 <

∞ for all 1 ≤ r ≤ p.

(A6) The matrix I(θ0) = (σr,s)p×p > 0.

As in the classical approaches of Andersen and Gill (1982) and Fleming and
Harrington (1991), a two-step method is employed to show (i) in Theorem 2.1.
We first show the result with time truncated, then complete the proof by showing
tightness as a second step. Let τH = sup{t : 1−H(t) > 0}. For any fixed positive
number τ < τH , let

Ũ(β, τ) =
∑ {

Zi − Z̄(β,Xi)
}{

ξiδi + (1 − ξi)m0(Wi, θ̂n)
}

I(Xi ≤ τ).

Note that Ũ(β, τH) = Ũ(β). We first show the asymptotic normality of Ũ(β0, τ).
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From the proof of Theorem 8.4.1 of Fleming and Harrington (1991), we know
that

∫ τ
0 λ0(t)dt < ∞ and

sup
0≤x≤τ,β∈B

‖ Z̄(β, x) − z̄(β, x) ‖= op(1), (A.1)

where B is any compact neighborhood of β0 and ‖ · ‖ denotes the Euclidean
norm of a vector.

To present the asymptotic results of U(β0, τ), time is truncated and we let

Σ1(τ)=E
{

[Z1−z̄(β0, X1)]
N

2m0(W1, θ0)I(X1 ≤ τ)
}

,

Σ2(τ)=E
{

[Z1−z̄(β0, X1)]
N

2m0(W1, θ0)[1−m0(W1, θ0)][1−π(W1)]I(X1≤τ)
}

,

Σ3(τ)=E
{

[Z1−z̄(β0, X1)]∇>m0(W1, θ0)I(X1 ≤ τ)
}

,

Σ4(τ)=E
{

[Z1−z̄(β0, X1)]∇>m0(W1, θ0)π(W1)I(X1 ≤ τ)
}

,

Σ0(τ)=Σ1(τ) − Σ2(τ) + Σ3(τ)I−1(θ0)Σ>
3 (τ) − Σ4(τ)I−1(θ0)Σ>

4 (τ).

Note that, by (C1), (A.1), the Strong Law of Large Numbers and Lenglart’s
inequality, we can show that Σ1(τ) =

∫ τ
0 v(β0, s)s(0)(β0, s)λ0(s)ds; this is the

asymptotic variance in Theorem 3.2 of Andersen and Gill (1982). Based on the
above notation and the condition

(C2′) The matrix Σ1(τ) is positive definite,

we state the asymptotic normality of Ũ(β0, τ).

Lemma A.1. Under (C1) and (C2′), together with (A1)−(A6), we have n−1/2

Ũ(β0, τ) →d N (0, Σ0(τ)).

Proof. Consider a decomposition of Ũ(β, τ),

Ũ(β, τ) =
∑

[Zi − Z̄(β,Xi)]δiI(Xi ≤ τ)

+
∑

[Zi − Z̄(β,Xi)][m0(Wi, θ0) − δi](1 − ξi)I(Xi ≤ τ)

+
∑

[Zi − Z̄(β,Xi)][m0(Wi, θ̂n) − m0(Wi, θ0)](1 − ξi)I(Xi ≤ τ)

:= U1(β, τ) + U2(β, τ) + U3(β, τ).

And let Ũ2(β, τ) =
∑

[Zi − z̄(β,Xi)][m0(Wi, θ0)− δi](1− ξi)I(Xi ≤ τ). By (C1),
it can be shown that U2(β0, τ) = Ũ2(β0, τ) + op(n1/2). Let

Ũ3(β0, τ) = [Σ3(τ) − Σ4(τ)]I−1(θ0)
∑ ξi[δi − m0(Wi, θ)]

m0(Wi, θ)[1 − m0(Wi, θ)]
∇m0(Wi, θ0).
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By (A1)−(A6), arguments similar to those in Dikta (1998) can be used to show
that

√
n(θ̂n − θ0) = I−1(θ0)

1√
n

∑ ξi[δi − m0(Wi, θ0)]
m0(Wi, θ0)[1 − m0(Wi, θ0)]

∇m0(Wi, θ0) + op(1).

(A.2)
By (C1) and (A.2), it can be shown that U3(β0, τ) = Ũ3(β0, τ)+op(n1/2). Hence,
it is sufficient to derive the asymptotic distribution of U1(β, τ) + Ũ2(β, τ) +
Ũ3(β, τ).

For U1(β, τ), by counting processes and martingale theory as in Andersen
and Gill (1982),

n−1/2U1(β0, τ) −→d N (0, Σ1(τ)). (A.3)

Note that Ũ2(β0, τ) and Ũ3(β0, τ), are sums of i.i.d. variables with mean zero.
Hence, by the Central Limit Theorem, we have

n−1/2Ũ2(β0, τ) −→d N (0, Σ2(τ)), (A.4)

n−1/2Ũ3(β0, τ) −→d N
(
0, [Σ3(τ) − Σ4(τ)]I−1(θ0)[Σ>

3 (τ) − Σ>
4 (τ)]

)
. (A.5)

We next consider the covariance structures between the three terms. Note
that ξi(1 − ξi) is equal to zero, and then

Cov
[
n−1/2Ũ2(β0, τ), n−1/2Ũ3(β0, τ)

]
= 0. (A.6)

By (C1) and (A.1), we can show that E|Z̄(β0, Xi) − z̄(β0, Xi)| = o(1) using
Serfling (1980, p.11). Furthermore, the indictors ξi and δi are independent given
Xi and Zi, and E{δi[m0(Wj , θ0) − δj ]|Wl, l = 1, . . . , n} = 0 for i 6= j. We now
calculate the other two covariances directly. As n → ∞,

Cov
[
n−1/2U1(β0, τ), n−1/2Ũ2(β0, τ)]

= n−1E
{ ∑

[Zi − Z̄(β0, Xi)][Z(Xi) − z̄(β0, Xi)]>δi[m0(Wi, θ0) − δi]

×(1 − ξi)I(Xi ≤ τ)
}

= E
{

[Z1 − Z̄(β0, X1)][Z(X1) − z̄(β0, X1)]>δ1[m0(W1, θ0) − δ1]

×(1 − ξ1)I(X1 ≤ τ)
}

→ E
{

[Z1 − z̄(β0, X1)]
N

2m0(W1, θ0)[m0(W1, θ0) − 1][1 − π(W1)]I(X1 ≤ τ)
}

= −Σ2(τ), (A.7)
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Cov[n−1/2U1(β0, τ), n−1/2Ũ3(β0, τ)]

→ E
{

[Z1 − z̄(β0, X1)]∇>m0(W1, θ0)π(W1)
}

I−1(θ0)[Σ>
3 (τ) − Σ>

4 (τ)]

= Σ4(τ)I−1(θ0)[Σ>
3 (τ) − Σ>

4 (τ)]. (A.8)

We complete the proof by combining (A.3)−(A.8).

Proof of Theorem 2.1. The process {n−1/2Ũ(β0, τ)} is tight since n−1/2Ũ(β0, τ)
−Ũ(β0, τH))

p−→ 0 and limτ→τH Σ1(τ) = Σ1(τ) = Σ1(τH) and, together with
Lemma A.1, it will imply Theorem 2.1 (i).

(ii) By Taylor’s expansion, we have that

n−1/2Ũ(β0) = −n−1 ∂Ũ(β∗)
∂β

· n1/2(β̃n − β0), (A.9)

where β∗ is a vector between β̃n and β0. Let V (β, t) = S(2)(β, t)/S(0)(β, t) −
Z̄(β, t)

N

2.For n−1∂Ũ(β∗)/∂β, we consider the same decomposition as in the
proof of Lemma A.1:

n−1 ∂Ũ(β)
∂β

= −n−1
∑

V (β,Xi)δi − n−1
∑

V (β,Xi)[m0(Wi, θ0) − δi](1 − ξi)

−n−1
∑

V (β,Xi)[m0(Wi, θ̂n) − m0(Wi, θ0)](1 − ξi). (A.10)

Note that, by (C1), the quantity V (β,Xi) is uniformly bounded, say by C. Then
we can show that

n−1 sup
β

∣∣∣∣ ∑
V (β,Xi)[m0(Wi, θ0) − δi](1 − ξi)

∣∣∣∣ = op(1), (A.11)

n−1 sup
β

∣∣∣∣ n∑
i=1

V (β,Xi)[m0(Wi, θ̂n) − m0(Wi, θ0)](1 − ξi)
∣∣∣∣ = op(1). (A.12)

By the same argument as in Andersen and Gill (1982) and Fleming and Harring-
ton (1991), we have

β̃n = β + op(1) and n−1 ∂Ũ(β∗)
∂β

= −Σ1 + op(1). (A.13)

Hence, Theorem 2.1 (ii) follows from Theorem 2.1 (i), (A.9)−(A.13) and Slutsky’s
Theorem.

Appendix B: Proof of Theorem 3.1
The proof is similar to that of Theorem 2.1 in Appendix A, and we only

show the case with truncated time. For some τ ∈ (0, τH), we define S(β0, τ) as
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we did Ũ(β0, τ) in Appendix A, and consider the decomposition,

S(β, τ) =
∑

{Zi − Z̄(β,Xi)}[m0(Wi, θ0) − δi]ξi

{ 1
π(Wi)

− 1
πn(Wi)

}
I(Xi ≤ τ)

+
∑

{Zi−Z̄(β,Xi)}[m0(Wi, θ̂n)−m0(Wi, θ0)]
{

1− ξi

πn(Wi)

}
I(Xi≤τ)

+
∑

{Zi − Z̄(β,Xi)}[m0(Wi, θ0) − δi]
{

1 − ξi

π(Wi)

}
I(Xi ≤ τ)

+
∑

{Zi − Z̄(β,Xi)}δiI(Xi ≤ τ)

:= S1(β, τ) + S2(β, τ) + S3(β, τ) + S4(β, τ).

We will show that

n−1/2S(β0, τ) →d N
(
0, Σ1(τ) + Σ5(τ)

)
. (B.14)

First by (C1),

E|n−1/2S1(β0, τ)|2 = n−1
∑

E
{
|Zi − Z̄(β,Xi)|2[m0(Wi, θ0) − δi]2

×ξi

{ 1
π(Wi)

− 1
πn(Wi)

}2
I(Xi ≤ τ)

}
≤ K2E

∣∣∣ 1
π(Wi)

− 1
πn(Wi)

∣∣∣2.
Note that 0 < infw π(w) ≤ supw π(w) ≤ 1, together with (3.1) implies that
E{supw |πn(w) − π(w)|2} → 0, by Serfling (1980). Thus,

n−1/2S1(β0, τ) = op(1). (B.15)

Let

S̃21(β, τ) =
∑

[Zi − z̄(β,Xi)]∇>m0(Wi, θ0)
{

1 − ξi

π(Wi)

}
I(Xi ≤ τ),

S̃22(β, τ) =
∑

[Zi − z̄(β,Xi)]∇>m0(Wi, θ0)ξi

{ 1
π(Wi)

− 1
πn(Wi)

}
I(Xi ≤ τ)

and S̃2(β, τ) = n−1/2S̃21(β, τ) + n−1/2S̃22(β, τ). It is easy to show that S2(β0, τ)
= S̃2(β0, τ) ·

√
n(θ̂n−θ0)+op(n−1/2). Furthermore, by the Law of Large Numbers

and (C3), we have that n−1S̃21(β0, τ) = op(1), and n−1S̃22(β0, τ) ≤ supw |πn(w)−
π(w)| · n−1

∑
K‖∇m0(Wi, θ0)‖ = op(1). Hence

n−1/2S2(β0, τ) = op(1). (B.16)
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For the third term in the decomposition, by (A.1), S3(β0, τ) = S̃3(β0, τ) +
op(n−1/2), where

S̃3(β0, τ) =
∑

[Zi − z̄(β0, Xi)][m0(Wi, θ0) − δi]
{

1 − ξi

π(Wi)

}
I(Xi ≤ τ).

Note that S̃3(β0, τ) is the sum of i.i.d. variables and then, by the Central Limit
Theorem,

n−1/2S̃3(β0, τ) −→d N (0, Σ5(τ)). (B.17)

Recall that δi and ξi are independent conditioned on W1, . . . ,Wn. Processing as
at (A.7) and (A.8), we can obtain that

Cov
(
n−1/2S̃3(β0, τ), n−1/2S4(β0, τ)

)
−→ 0. (B.18)

Notice that S4(β, τ) is exactly the term U1(β, τ) in Appendix A. Hence, the
asymptotic normality in (B.14) follows from (B.15)−(B.18), and Andersen and
Gill (1982). Some arguments similar to those used in the proof of Theorem 2.1
can then be used to prove Theorem 3.1(i).

The proof of the Theorem 3.2 is similar to that of Theorem 3.1, except that
some regularity conditions for π(·, γ) are required. The proof is omitted.
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