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Supplementary Material

S1 Proof of Theorem in the Paper “A Nonlinear Fil-
ter Control Chart for Detecting Dynamic Changes

Let Y1, Y2, ... be i.i.d., F (x) = P (Yi ≤ x) and E(.) denotes the expectation. Suppose the
distribution, F (x), satisfies the following two conditions:

(I) The moment-generating function is h(θ) = E(eθYi) < ∞ for some θ > 0.

(II) For x > E(Yi) there is a θ(x) ∈ (0, θ1) such that x = h′(θ(x))/h(θ(x)), where
θ1 = sup{θ : h(θ) < ∞}.

Let E(Yi) < 0. Since h′(0) = E(Yi) < 0, h′(θ)/h(θ) is strictly increasing (see
Durrett(1991), p.60) and log h(θ) → +∞ as θ → θ1, it follows that there exits at most
one θ∗ ∈ (θ(0), θ1) such that h(θ∗) = 1 or log h(θ∗) = 0, where θ(0) > 0 satisfies
0 = h′(θ(0))/h(θ(0)). That is, h(θ) attains its minimum value at θ(0) > 0. We can call
θ∗ an exponential rate of F (x) of random variable Yi. The meaning of θ∗ is given in
Theorem 1.

Let u = h′(θ∗) and θ(u) = θ∗. It is clear that u > 0, and log h(θ(x)) < 0 for x < u
and log h(θ(x)) > 0 for x > u. Thus,

θ(
1
x

)− x log h(θ(
1
x

)) ≥ θ∗ (S1.1)

for x > 0. In fact, if

H(x) = θ(
1
x

)− x log h(θ(
1
x

))− θ∗,
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we have H(1/u) = 0 and

H ′(x) = −θ′(
1
x

)
1
x2
− log h(θ(

1
x

)) + x
h′(θ( 1

x ))
h(θ( 1

x ))
θ′(

1
x

)
1
x2

= − log h(θ(
1
x

)).

It follows that H ′(x) > 0 for x > 1/u and H ′(x) < 0 for 0 < x < 1/u. Thus, (S1.1) is
true. Since H ′(x) > 0 for x > 1/u, we can take

b = inf{x > 1/u : θ(
1
x

)− x log h(θ(
1
x

)) ≥ 2θ∗} (S1.2)

such that

θ(
1
x

)− x log h(θ(
1
x

)) ≥ 2θ∗ (S1.3)

for x ≥ b.

Now we define the stopping time of a control chart, T ,

T = inf{n : max
1≤k≤n

[
n∑

i=n−k+1

Yi] ≥ c}, (S1.4)

where c > 0 is the control limit. For this chart, we have the following theorem.

Theorem 1. Suppose the conditions (I) and (II) hold. If E(Yi) < 0, then

E(T ) ∼ D(c)ecθ∗ (S1.5)

for large c, where θ∗ > 0 is the exponential rate satisfying h(θ∗) = 1, 1/bc ≤ D(c) ≤ c/u,
u = h′(θ∗) > 0 and b is the positive constant defined in (S1.2). If E(Yi) > 0, then

E(T ) ∼ c

E(Yi)
(S1.6)

for large c, where x ∼ y means that x/y → 1 as x, y →∞.

Proof of Theorem 1. In order to prove (S1.5) we need only to prove

ecθ∗/bc ≤ E(T ) ≤ cecθ∗/u (S1.7)

for large c. Some results of large deviations theory will be used in the proof. We first
prove the upward inequality of (S1.7). Choose λ ∈ (θ∗, θ1) and v > h′(λ)/h(λ) and let
m = tu−1c exp{c(vλ/u− log h(λ)/u)} for t > 0 and mk = ku−1c for k ≥ 0, we have

P (T > m) = P (
n∑

i=n−k+1

Yi < c, 1 ≤ k ≤ n, 1 ≤ n ≤ m) ≤ [P (
m1∑

i=1

Yi < c)]m/m1
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for large c, where the last equality holds since the events

{
mj∑

i=mj−1+1

Yi},

1 ≤ j ≤ k, are mutually independent and have an identity distribution. Let n = c/u. It
follows from Theorem 9.5 of Chapter 1 in Durrett (1991) that

P (
m1∑

i=1

Yi ≥ c) = P (
n∑

i=1

Yi ≥ nu)

≥ exp{−n(vλ− log h(λ) + o(1/n))}
= exp{−c(vλ/u− log h(λ)/u + o(1/c))}

for large c, and therefore

[P (
m1∑

i=1

Yi < c)]m/m1

≤ [1− exp{−c(vλ/u− log h(λ)/u + o(1/c))}]m/m1

= (1− tm1

meo(1)
)m/m1 → e−t

as c →∞. That is, P (T > m) ≤ e−t for large c. Thus, by the properties of exponential
distribution, we have

E(T ) ≤ c

u
exp{c(vλ/u− log h(λ)/u)}

for large c. Since λ > θ∗ and v > h′(λ)/h(λ) are arbitrary, the upward inequality of
(S1.7) is true. To prove the downward inequality of (S1.7), let

Um = {
n∑

i=n−k+1

Yi < c, 1 ≤ k ≤ min{n, bc− 1}, 1 ≤ n ≤ m}

and

Vm = {
n∑

i=n−k+1

Yi < c, bc ≤ k ≤ n, bc ≤ n ≤ m}

for large c, where b is defined in (S1.2). Obviously, {T > m} = UmVm. For k ≥ 1, take
x > 0 such that xc = k and 1/x = h′(θ(1/x))/h(θ(1/x)). By Chebyshev’s inequality, we
have

eθ(1/x)k/xP (
n∑

i=n−k+1

Yi ≥ c)

= eθ(1/x)k/xP (
k∑

i=1

Yi ≥ k/x) ≤ E(exp{θ(1/x)
k∑

i=1

Yi}) = h(θ(1/x))k
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or

P (
n∑

i=n−k+1

Yi < c) ≥ 1− exp{−k[θ(1/x)/x− log h(θ(1/x))]}

= 1− exp{−c[θ(1/x)− x log h(θ(1/x))]} ≥ 1− e−cθ∗ ,

where the last inequality follows from (S1.1). Thus, take m = tecθ∗/bc for t > 0. We
have

P (Um) ≥
m∏

n=1

min{n,bc}∏

k=1

P (
n∑

i=n−k+1

Yi < c)

≥ [1− e−cθ∗ ]bcm → e−t,

as c → +∞. The first inequality follows from Theorem 5.1 in Esary, Proschan and
Walkup (1967). Similarly, taking xc = k and using (S1.3) we have ( Note that x ≥ b if
k ≥ bc )

P (Vm) ≥
m∏

n=bc

n∏

k=bc

P (
n∑

i=n−k+1

Yi < c)

=
m∏

n=bc

n∏

k=bc

P (
n∑

i=n−k+1

Yi < k/x)

≥
m∏

n=bc

n∏

k=bc

[1− exp{−c[θ(1/x)− x log h(θ(1/x))]}]

≥ [1− e−2cθ∗ ](m−bc)2 → 1,

as c → +∞. Hence, P (T > m) ≥ P (Um)P (Vm) → e−t as c → +∞. This proves the
downward inequality of (S1.7).

To prove (S1.6), we first mention some known results (see Chapters V and VIII
in Petrov’s book (1975)). Let Φ(·) be a standard normal distribution and Fn(x) the
distribution function of the sum Sn = (nD2

1)
−1/2

∑n
k=1(Yk−E1)), where D2

1 = V ar(Yi))
and E1 = E(Yi)). Then

Fn(x)− Φ(x) =
e−x2/2

√
2π|x| [O(

|x|3√
n

) + o(
1
|x| )], (S1.8)

as |x| → +∞ and |x|3/√n → 0, and

|Fn(x)− Φ(x)| ≤ Aa3

a0
√

n(1 + |x|)3 (S1.9)

for every x and n ≥ 1, where A is a constant, a3 = E(Yi −E1))3 and a0 = (D1)2/3. The
following elementary facts also will be used:

1− Φ(x) <
e−x2/2

√
2πx
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for x > 0, and

1− Φ(x) =
e−x2/2

√
2πx

(1 + O(
1
x2

))

for large x. Let

Am = {
n∑

i=n−k+1

Yi < c; 1 ≤ k ≤ n, 1 ≤ n ≤ m}. (S1.10)

Obviously, {T > m} = Am and

Am = {
∑n

i=n−k+1(Yi − E1)√
kD2

1

<
c− kE1√

kD2
1

, 1 ≤ k ≤ n, 1 < n ≤ m}

⊂ {
∑m

i=1(Yi − E1)√
mD2

1

<
c−mE1√

mD2
1

}.

Let N = c/E1 + d
√

2c ln c and n = N + k, where d = D1/(E1)3/2. It follows that

c− E1n

D1
√

n
= −E1

D1

√
N + k{1− 1

1 + D1/
√

E1

√
2 ln c/c + E1k/c

}

≤ −E1

D1
AN

√
N + k ∼ −

√
2 ln c → −∞,

as c → ∞ since ((E1/D1)AN )2(N) → 2 ln c as c → ∞, where AN = [1 − (1 +
D1

√
E1

√
2 ln c/c)−1]. Thus, by (S1.8), we have

∞∑

n=N+1

P (T > n) ≤
∞∑

n=N+1

P (
∑n

i=1(Yi − nE1)
D1
√

n
<

c− E1n

D1
√

n
)

≤ (1 + o(1))
∞∑

k=1

e−((E1/D1)AN )2(N+k)/2

√
2πE1/D1AN

√
N

≤ (1 + o(1))
exp{− 1

2 (E1/D1AN )2(N))}√
2πE1/D1AN

√
N(1− e−

1
2 (E1/D1AN )2)

≤ (1 + o(1))
1

4
√

πE1(ln c)3/2

for large c, and therefore,

E(T ) ≤
N∑

n=1

P (T > n) +
1

4
√

πE0(ln c)3/2

≤ N +
1

4
√

πE1(ln c)3/2

≤ c/E1 + d
√

2c ln c + o(
1

ln c
) (S1.11)



S6 DONG HAN, FUGEE TSUNG, YANTING LI and KAIBO WANG

for large c. This proves the upward inequality of (S1.6).

On the other hand, let M = c/E1 − d
√

6c ln c, where d = D1/(E1)3/2. Since

c− E1k

D1

√
k
≥ c− E1M

D1

√
M

∼
√

6 ln c (S1.12)

for k ≤ M and c → ∞, it follows that Φ( c−E1M

D1
√

M
) ∼ 1 − (2

√
3π ln cc3)−1 as c → ∞. Let

lc = (ln c)4,

Am,lc = {
n∑

i=n−k+1

Yn,k,i < c, 1 ≤ k ≤ lc, lc ≤ n ≤ m}

and

Bm,lc = {
n∑

i=n−k+1

Yn,k,i < c; lc < k ≤ n, lc < n ≤ m}

for m > lc. Obviously, Am = Am,lcBm,lc for m > lc. Then,

M∑

m=lc+1

P (Bm,lc)

≥
M∑

m=lc+1

P{
∑n

i=n−k+1(Yi − E1)

D1

√
k

<
c− E1k

D1

√
k

,

lc < k ≤ n, lc < n ≤ m}

≥
M∑

m=lc+1

m∏

n=lc+1

n∏

k=lc+1

P{
∑n

i=n−k+1(Yi − E1)

D1

√
k

<
c− E1k

D1

√
k
}

≥
M∑

m=lc+1

m∏

n=lc+1

n∏

k=lc+1

Φ(
c− E1k

D1

√
k

) ≥ (M − lc)[Φ(
c− E1M

D1

√
M

)](M−lc)(M−lc+1)/2

∼ (M − lc)(1−O(
1

c
√

ln c
)) ∼ M − lc −O(

1√
ln c

)

for large c. Here, the second inequality follows from Theorem 5.1 in Esary, Proschan and
Walkup (1967) and the third inequality from (S1.8). Similarly, by using (S1.9) we have
1−O(1/(lcc3)) ≥ P (Am) ≥ (1−O(1/c3))l2c ∼ 1−O(l2c/c3) for m ≤ lc and

P (Am,lc) ≥ (1−O(
1
c3

))(M−lc)lc ∼ 1−O(
lc
c2

)

for lc < m ≤ M as c →∞. Thus

E(T ) ≥
lc∑

m=1

P (Am) +
M∑

m=lc+1

P (Am,lcBm,lc)
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≥
lc∑

m=1

P (Am) +
M∑

m=lc+1

P (Am,lc)P (Bm,lc)

≥ lc(1−O(
l2c
c3

)) + (1−O(
lc
c2

))(M − lc −O(
1√
ln c

))

∼ c/E1 − 2d′
√

c ln c−O(
1√
ln c

) (S1.13)

for large c. From (S1.10) and (S1.11) we see that (S1.6) is true. This completes the
proof of Theorem 1.
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