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S1 Proof of the Theorem

Recall that β0 and λk0(·) are the true values and functions of β and λk(·), and Mik(·) are
iid copies of Mk(·). The proof is essentially same as that of Andersen and Gill (1982).
Write

Uh(β0) =
n∑

i=1

K∑
k=1

∫ τk

0

[hik(t)− µk,h(t)]dMik(t)−
K∑

k=1

n∑
i=1

∫ τk

0

[h̄k(t;β0)− µk,h(t)]dMik(t)

(S1.1)

The first term of the right hand side is the sum of n random vectors which are iid
copies of

∑K
k=1 ξk,h and is thus asymptotically normal at the rate n1/2 with asymptotic

variance Vh. For every 1 ≤ k ≤ K,

E
(∑n

i=1

∫ τk
0

[h̄k(t;β0)− µk,h(t)]dMik(t)
)⊗2

≤
∑n

i=1 E
(∫ τk

0
[h̄k(t;β0)− µk,h(t)]

⊗2dNik(t)
)
= o(n).

Therefore the second term of the right hand side of (S1.1) is oP (n
1/2). As a result,

n−1/2Uh(β0) → N(0, Vh). (S1.2)

It follows from the law of large numbers that

1

n

∂

∂β
Uh(β)

∣∣∣
β=β0

= − 1

n

K∑
k=1

n∑
i=1

∫ τk

0

∑n
j=1(hjk(t)− h̄k(t;β0))∑n

j=1 e
β′
0ZjkYjk(t)

×(Z ′
jk − Z̄ ′

k(t;β0))e
β′
0ZjkYjk(t)dNik(t)

→ −
K∑

k=1

E(ξk,hξ
′
k) = −Ah (S1.3)
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in probability as n → ∞. The above convergence can be shown to hold uniformly over
{β : ∥β − β0∥ ≤ ϵn} for any sequence of ϵn ↓ 0. Since Ah is assumed nondegenerate,
let a = inf{∥Ahx∥/∥x∥ : x ∈ Rp}. Then a > 0. Let B be the ball in Rp centered at β0

with radius ϵ, where ϵ > 0 is small but fixed, and let Dn = {(1/n)Uh(x) : x ∈ B} be the
image of B for the continuous mapping (1/n)Uh(·). With probability tending to 1, for
any two p-vectors x1 and x2 in B,

1/n∥Uh(x1)− Uh(x2)∥ > (a/2)∥x1 − x2∥.

It implies that, with probability tending to 1, (1/n)Uh(β) is a homeomorphism from B
to Dn and, moreover, Dn contains a ball centered at (1/n)Uh(β0) with radius a/2. Then,
with probability tending to 1, this ball contains 0 since (S1.2) implies (1/n)Uh(β0) =
oP (1). This proves that, with probability tending to 1, there exists a zero solution of
the equation Uh(β) = 0 in any small but fixed neighborhood of β0. The consistency fol-
lows. Then, (S1.2) and (S1.3) together ensures asymptotic normality and the asymptotic
variance is given by the sandwich formula. The proof is complete.

S2 Proof of the Proposition

The proof is divided into five steps. Step 1: Introducing some notations. Let L2
0 be

the space of all p-dimensional random vectors measurable to the σ-algebra generated by
{(Yk, δk), k = 1, ...,K,Z} and with zero conditional mean given Z and finite variance.
Define an inner product to be the sum of component-wise covariances so that L2

0 can
be verified to be a Hilbert space. Let Sk = {η : η ∈ L2

0, E(η|Z) = 0, η ∈ σ(Yk, δk,Z)}.
Denote by Mk the closure of {η : η =

∫ τk
0

(h(t,Z)− µh(t))dMk(t), for all p-dimensional
continuous functions h such that η ∈ L2

0} where µh = E(h(t,Z)|Yk = t, δk = 1). It is
seen that Mk and Sk are both closed linear subspaces of L2

0 and that Mk ⊆ Sk. Set
M = M1 + · · ·+MK and M̌k = M1 + · · ·+Mk−1 +Mk+1 + · · ·+MK . Then S and
Šk are likewise defined. To avoid trivialities, we assume throughout the paper M̌k, Šk,
Mk +M̌k and Sk + Šk are closed and Mk ∩M̌k = {0} = Sk ∩ Šk for every k = 1, ...,K.

Step 2. Defining the score
∑K

l=1 ξl,h⋆ through alternating projection. Denote the
projection operator in L2

0 by Π. Write

Σh =
[ K∑
k=1

E(ξk,hξ
′
k)
]−1[ K∑

k=1

E
(
ξk,h

{
Π(

K∑
l=1

ξl,h|Mk)
}′)][ K∑

k=1

E(ξkξ
′
k,h)

]−1

.

Let h⋆ satisfy

Π(

K∑
l=1

ξl,h⋆ |Mk) = ξk, k = 1, ...,K. (S2.1)

Then,

Σh⋆ =
[ K∑
k=1

E(ξk,h⋆ξ′k)
]−1

=
[
var(

K∑
k=1

ξk,h⋆)
]−1

.
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The existence of the solution of (S2.1) can be argued as follows. Let Ξk ≡ ξk−Π(ξk|M̌k)+
Π(Π(ξk|M̌k)|Mk)−Π(Π(Π(ξk|M̌k)|Mk)|M̌k)+· · · . The convergence of the series follows
from, e.g, Theorem 2 of Chapter A.4 of Bickel et al. (1993, pp.438) and Ξk is an element
of M. Furthermore, Π(Ξk|Mk) = ξk, Π(Ξk|M̌k) = 0 and, therefore, Π(Ξk|Ml) = 0

for l ̸= k since Ml ⊆ M̌k for l ̸= k. Thus, Π(
∑K

l=1 Ξl|Mk) = ξk, for 1 ≤ k ≤ K.

The existence is established. The uniqueness is argued as follows. Let
∑K

k=1 ξl,h be the

difference of any two solutions. Then, Π(
∑K

l=1 ξl,h|Mk) = 0 for all k = 1, ...,K. This

implies
∑K

k=1 ξk,h⊥M. Since
∑K

k=1 ξk,h ∈ M, it follows that
∑K

k=1 ξk,h = 0.

Step 3. Martingale representations of the projections of
∑K

l=1 ξl,h⋆ . Let M◦
k (t) =

(1−δk)I(Yk ≤ t)−
∫ t

0
λCk|Z(s,Z)Yk(s)ds where λCk|Z(·, z) is the true conditional hazard

of Ck given Z = z. It follows from the counting process martingale representation of
random variables with zero mean and finite second moment that

Π(
K∑
l=1

ξl,h⋆ |Sk) = E(
K∑
l=1

ξl,h⋆ |Yk, δk,Z)

=

∫ τk

0

h̃k(t,Z)dMk(t) +

∫ τk

0

ãk(t)dMk(t) +

∫ τk

0

G̃k(t,Z)dM
◦
k (t) (S2.2)

for some measurable functions h̃k, ãk and G̃k, 1 ≤ k ≤ K, where h̃k satisfies
E(h̃k(t,Z)|Yk = t, δk = 1) = 0 and ãk is a non-random function. The last two terms of
(S2.2) are orthogonal to each other and both are orthogonal to Mk while the first is an
element of Mk. Combining (S2.2) with (S2.1), it follows that h̃k(t,Z) = Zk(t)− µk(t).

Step 4. Constructing a parametric submodel. Let β be in a small but fixed
neighborhood of β0. Let

λk(t;β) = λk0(t)e
(β−β0)

′[−µk(t)+ãk(t)] and λCk|Z(t, z;β) = λCk|Z(t, z)e
(β−β0)

′G̃k(t,z).

Define

fk(y, d|z;β) = edβ
′zkλd

k(y;β)e
−
∫ τk∧y

0
eβ

′zkλk(t;β)dt × λ1−d
Ck|Z(y, z;β)e

−
∫ τk∧y

0
λCk|Z(t,z;β)dt

,

where z = (z1, ..., zK) and d takes value 0 or 1. If a parametric family, with parameter
β, has (conditional) marginal densities as fk, then the family is a parametric submodel
since the expression of fk fulfills the requirement of proportional hazards in (1). Such a
family of densities is constructed in the following.

Let uk(β) = fk(Yk, δk|Z, β)/fk(Yk, δk|Z, β0)− 1. Then uk(β) ∈ Sk and uk(β0) = 0.
Let

vk(β) = uk(β)−Π(uk(β)|Šk) + Π(Π(uk(β)|Šk)|Sk)−Π(Π(Π(uk(β)|Šk)|Sk)|Šk) + · · · .

Theorem 2 of A.4 of Bickel et al. (1993) ensures the convergence of the series and that

vk(β) ∈ S, Π(vk(β)|Sk) = uk(β) and Π(vk(β)|Šk) = 0. (S2.3)
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Let v(β) = 1 +
∑K

k=1 vk(β) and

f(y1, δ1, ..., yK , δK |z;β) = v(β)f0(y1, δ1, ..., yK , δK |z;β0)

where f0 denotes the true conditional density of (Y1, δ1, ..., YK , δK) given Z. Notice that f
is a (conditional) density since E(v(β)|Z) = 1 and v(β) ≥ 0 for β in a small neighborhood
of β0. Observe that fk(yk, δk|z, β0) are the true conditional marginal densities. Write

f(y1, δ1, ..., yK , δK |z;β) = fk(yk, δk|z;β0)×
v(β)f0(y1, δ1, ..., yK , δK |z;β0)

fk(yk, δk|z;β0)
.

Then, the log of the marginal density of f is

log fk(Yk, δk|Z, β0) + logE(v(β)|Yk, δk,Z)

= log fk(Yk, δk|Z, β0) + log[1 + Π(v(β)− 1|Sk)]

= log fk(Yk, δk|Z, β0) + log[1 + Π(vk(β)|Sk)]

= log fk(Yk, δk|Z, β0) + log(1 + uk(β))

= log fk(Yk, δk|Z, β).

Thus f as a parametric family of densities is indeed a parametric submodel with param-
eter β.

Step 5. Verifying that the score of the parametric submodel is
∑K

l=1 ξl,h⋆ . Observe
that v(β0) = 1 since vk(β0) = uk(β0) = 0. Moreover, ∂

∂βuk(β)|β=β0 is the same as (S2.2).

The score of the parametric family f at β = β0 is ∂
∂β log v(β)|β=β0 = ∂

∂β v(β)|β=β0 . It

follows from (S2.3) that

Π(
∂

∂β
v(β)|β=β0 |Sk) = Π(

∂

∂β
vk(β)|β=β0 |Sk) =

∂

∂β
uk(β)|β=β0 = Π(

K∑
l=1

ξl,h⋆ |Sk).

The uniqueness of the alternating projection solution then implies that the score of the
parametric submodel f at β = β0 is ∂

∂β v(β)|β=β0 =
∑K

l=1 ξl,h⋆ . The proof is complete.


