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Abstract: This paper is concerned with dimension reduction in regressions with

multivariate responses on high-dimensional predictors. A unified method that can

be regarded as either an inverse regression approach or a forward regression method

is proposed to recover the central dimension reduction subspace. By using Stein’s

Lemma, the forward regression estimates the first derivative of the conditional

characteristic function of the response given the predictors; by using the Fourier

method, the inverse regression estimates the subspace spanned by the conditional

mean of the predictors given the responses. Both methods lead to an identical kernel

matrix, while preserving as much regression information as possible. Illustrative

examples of a data set and comprehensive simulations are used to demonstrate the

application of our methods.
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1. Introduction

Consider the regression of a multivariate response Y = (Y1, . . . , Yq)τ on a
p-dimensional predictor X = (X1, . . . , Xp)τ , where the superscript “τ” denotes
the transpose operator. When p is large, it is desirable to reduce the dimension
of X to improve the efficacy of modeling. Toward this end, sufficient dimension
reduction (SDR) is introduced to reduce the dimension of predictors without
losing information of the regression of Y|X. The central subspace (CS, Cook
(1998)), an important notion in the area of SDR, is defined as the smallest
column space of B satisfying

Y⊥⊥X|BτX. (1.1)

Without notational confusion, we assume that the CS, denoted by SY|X, is
spanned by the columns of B, namely, SY|X = span{B}. The dimension of CS,
denoted by K in this context, is usually referred to as the structural dimension.
Potential advantages accrue from working in the SDR context because it preserves
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the integrity of the regression information of Y given X without a pre-specified
model. To reduce the dimension of predictors in the SDR context, there has been
a focus on research in regressions with univariate response Y. See, among many
others, for example, sliced inverse regression (SIR, Li (1991)), slicing average
variance estimation (SAVE, Cook and Weisberg (1991)), contour regression (SCR
and GCR, Li, Zha, and Chiaromonte (2005)), directional regression (DR, Li and
Wang (2007)), and references therein.

We consider general q ≥ 1. For multivariate response data, the identification
of SY|X has been developed in three main directions. The first estimates the
joint CS directly by generalizing the slicing methodology of Li (1991) to multi-
variate Y (Aragon (1997); Hsing (1999); Setodji and Cook (2004)); similar to
slicing the univariate response Y into intervals in the original form of SIR (Li
(1991)), the multi-dimensional Y is divided into hypercubes. The joint slicing
is effective when the dimension of Y is relatively small. However, as the dimen-
sion of Y increases, the number of observations within each hypercube decreases
exponentially, which deteriorates the estimation efficacy. The second approach
is to first estimate the marginal CS SYi|X for each coordinates of Y, and then
to combine all q marginal CS SYi|X to estimate the joint CS SY|X (Cook and
Setodji (2003); Saracco (2005); Yin and Bura (2006)). This does not guarantee
recovery of the joint CS SY|X. The third approach relies on classical methods;
it is designed for a univariate response using one-dimensional projections of the
original response Y. Li et al. (2003) considered only a few projections of the
responses, which may result in loss of information of the CS, and their method
relies upon the choice of the initial value. We demonstrate this point with a
simulated example in Section 5. Li, Wen, and Zhu (2008) proposed a random
projection method with the benefit that multivariate slicing is avoided while the
integrity of the joint CS SY|X is preserved under some mild conditions. These
projection methods, together with all previous ones, however, bring in the se-
lection of tuning parameters, say, the number of slices in slicing estimation (Li
(1991)), the bandwidth in kernel smoothing (Zhu and Fang (1996), Zhu and Zhu
(2007)), or the number of knots in spline approximation (Zhu and Yu (2007)),
etc. Because the performance of higher moments methods such as SAVE rely
heavily on the choice of the number of slices (Cook and Critchley (2000), Zhu,
Ohtaki, and Li (2007), Li and Zhu (2007)) even when the response is univariate,
the tuning parameters must be selected delicately. However, the selection of an
optimal tuning parameter is still an open problem.

The present paper represents another effort to reduce the dimension of pre-
dictors in regressions with multivariate responses. Our proposed approach is
essentially a unification of inverse regression and forward regression that is called
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the UIF method. The forward regression estimates the first derivative of the con-
ditional characteristic function of the response given the predictors, using Stein’s
Lemma, and the inverse regression estimates the subspace spanned by the condi-
tional mean of the predictors given the responses, using Fourier methods. Both
methods lead to an identical kernel matrix, while preserving as much regression
information as possible.

We illustrate in detail the rationale of our UIF method by using the inverse
regression E(X|Y), termed the UIF method using the first moment or, simply,
UIF1. The UIF1 is on the basis of the seed vector

φ(t) = E(eitτYX) − E(eitτY)E(X) (1.2)

whose real and imaginary parts, denoted by α(t) and β(t) respectively, lie in
SY|X for any given t ∈ Rq under very mild conditions. Clearly, the subspace
span{α(t), β(t), t ∈ Rq} is identical to the subspace span{M}, where

M = real{E[φ(T)φ̄τ (T)]} = E[α(T)ατ (T) + β(T)βτ (T)], (1.3)

in which φ̄(T) is the conjugate of φ(T), and T is a q-dimensional random vector
whose support is Rq. The notation real{γ} stands for the real part of a complex
matrix γ. Consequently,

span{M} ⊆ SY|X, (1.4)

Theoretically, (1.4) holds for any T whose support is Rq. In implementation,
we design a data-adaptive mechanism to choose the random vector T to ensure
estimation efficacy.

In recovering the CS it is also important to ask whether the candidate matrix
M is capable of identifying CS exhaustively. It is known that SIR and UIF1,
using the first moment E(X|Y), fails to capture directions along which Y is
symmetric. However SAVE, using the second moment Cov(X|Y), can recover
CS exhaustively when X|Y is multivariate normal (Li and Wang (2007)). In this
paper, we will explore our UIF method using the second moment, which we term
the UIF2 method.

The remainder of this paper is organized as follows. Section 2 motivates
our UIF method and derives the candidate matrix M to identify the CS in the
population level. Sections 3 turns to the implementation of our method for
identifying the CS. Comprehensive simulation studies are reported in Section 4
to compare our method with others. Using the ideas of UIF1, we also develop
in Section 4 the UIF2 method using the second conditional moment of X|Y. An
analysis of a data set is reported in Section 5. The technical derivations are
relegated to the Appendix.
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The following notations are frequently used in our subsequent exposition.
The notation “⊥” is the perpendicular operator in algebra, and “⊥⊥” denotes
statistical independence. For a complex matrix γ, the notation real{γ} stands
for the real part of γ, and γ is the conjugate of γ. Let Ip be the p × p identity
matrix. The notation trace(A) means the trace of a matrix A, span(A) denotes
the subspace of Rp spanned by the columns of A, and PA is the projection
operator in the standard inner product of A, namely, PA = A(AτA)−1Aτ , and
‖A‖ =

√
trace(AτA).

2. Methodology Development

For ease of illustration, our discussion is in terms of standardized predictors
satisfying E(X) = 0 and Cov(X) = Ip. Here we present the rationale of the
UIF method that is in spirit a unification of forward regression, from a viewpoint
of Stein’s 1981 lemma, and inverse regression, from a viewpoint of the Fourier
method in Zhu and Zeng (2006).

Note that the conditional independence model (1.1) is equivalent to, for all
t ∈ Rq,

E[eitτY|X] = ψY|X(t) = ψY|BτX(t) = E[eitτY|BτX]. (2.1)

This, taking the form of the conditional mean, relates to the CS rather than the
central mean subspace (CMS, Cook and Li (2002)) only. Therefore, it suffices to
estimate the first derivative of the conditional characteristic function to recover
the CS in terms of

∂[ψY|X(t)]

∂X
=

B∂[ψY|BτX(t)]

∂(BτX)
. (2.2)

To estimate the column space spanned by ∂[ψY|X(t)]/∂X, Zhu and Zeng (2006)
proposed a Fourier method through the kernel matrix

M = E[S(Ω,T)S(Ω,T)], (2.3)

where the expectation is taken with respect to the random variables Ω and T,
and the seed vector

S(ω, t) = E
[
eiωτX ×

∂(ψY|X(t))

∂X

]
(2.4)

is, in spirit, the Fourier expansion of ∂(ψY|X(t))/∂X×f(X) in which f(·) is the
density function of X. To estimate M, Zhu and Zeng (2006) assumed f(X) to
be given; this is restrictive in the high dimensional regression context. When the
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distribution of the predictors is unknown, Zhu and Zeng’s (2006) Fourier method
deserves further exploration.

Recall that Lemma 4 in Stein (1981) is applicable to estimating the average
of ∂(ψY|X(t))/∂X when the standardized predictor vector X is assumed to be
normally distributed. From a forward regression viewpoint, a direct application
of the Lemma has

E
[∂[ψY|X(t)]

∂X

]
= E[XE(eitτY|X)] = E(XeitτY) =: φ(t). (2.5)

In other words, Stein’s Lemma, together with (2.2), shows that the real and imag-
inary part of φ(t), denoted by α(t) and β(t) respectively, satisfy span{α(t), β(t)}
⊆ span(B) = SY|X, for any given t ∈ Rq.

The seed vector φ can also be defined from an inverse regression perspec-
tive. Similar to Zhu and Zeng’s (2006) method, φ(t) = E[eitτYE(X|Y)] can
be regarded as the Fourier expansion for the inverse regression E(X|Y) × g(Y)
where g(Y) is the density function of Y. However, the density function of Y
does not appear in φ(t) by the law of iterated expectations, and thus we avoid
assuming a parametric form for f(X) or g(Y); this differs from Zhu and Zeng’s
(2006) Fourier method. Here we assume the widely used linearity condition. The
result is stated as follows.

Proposition 1. Assume that E(X|BτX) = PBX. Then span{α(t), β(t)} ⊆
SY|X for any fixed t ∈ Rq.

The linearity condition is typically regarded as mild. Hall and Li (1993)
showed that, if the structural dimension K of CS remains fixed as the dimension
of the predictors p increases, this condition holds to a good approximation in
many problems. See also Diaconis and Freedman (1984) and Cook and Ni (2005).

This proposition implies that φ(t) for any given t helps to infer CS. Then
we define M as in (1.3). Clearly, the fact {v ⊥ φ(t), for all t ∈ Rq}, which
means that {vτα(t) = 0, and vτβ(t) = 0, for all t ∈ Rq}, is equivalent to the
fact {v ⊥ M} if T be a q-dimensional random vector whose support is Rq. This
motivates the following proposition.

Proposition 2. In addition to the linearity condition, assume that T is sup-
ported on Rq. Then M ⊆ SY|X.

It is worth pointing out that M still works even when the response is dis-
crete or categorial, as is illustrated by an example once used in Li, Zha, and
Chiaromonte (2005).

Example 1. Let Y ∼ Bernoulli(1/2). Let X = (X1, X2)τ satisfy X|(Y =
i) ∼ N(µi,Σi), with µ0 = (0,−1/

√
2)τ and µ1 = (0, 1/

√
2)τ , and Σ0 = Σ1 =
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diag{1, 1/2}, where diag{a1, . . . , ap} denotes a diagonal matrix with ai as the
i-th entry. Here SY|X is one-dimensional span{(0, 1)τ}. To verify the efficacy of

the UIF1 method, we calculate M as follows. Note that φ(t) = [µ0 + eitµ1]/2,

and µ0µ
τ
0 = −µ0µ

τ
1 = −µ1µ

τ
0 = µ1µ

τ
1 = diag{0, 1/2}. Thus, M = µ0µ

τ
0E[1 −

cos(T)]/2, which implies span{M} ⊆ SY|X. This example shows that M can
apply to regressions with discrete numerical response.

While Zhu and Zeng’s (2006) Fourier method is designed for regressions
with univariate response, we notice that it can be readily extended to handle the
multivariate response case. Recall the definition of the seed matrix S(ω, t) in
(2.4). Following similar arguments as in Zhu and Zeng (2006), we can show that

S(ω, t) = −E[(iω + G(X))eiωτX+itτY], (2.6)

where G(X) = ∂ log f(X)/∂X. If X is standard normal, we have

S(0, t) = φ(t). (2.7)

The connection (2.7) leads to the following result.

Proposition 3. Under the conditions in Proposition 2, span{M} = span{Cov
[E(X|Y)]}.

We remark here that Proposition 8 of Zhu and Zeng (2006) achieves the
same result, but they assumed the standard normal distribution, while the UIF1

method requires only the linearity condition. Moreover, the UIF1 method avoids
estimating E(X|Y), which is often challenging when the dimension of Y is large,
though it spans the identical space as does SIR.

3. Implementation

3.1. Estimation

Let {(xτ
i ,y

τ
i )

τ , i = 1, . . . , n} be a random sample of (Xτ ,Yτ )τ , and {ti, i =
1, . . . , n} be an independent random sample of T. We illustrate how to choose
T below.

For any given t the estimate of ψ(t), denoted by ψn(t), is a classical moment
estimator. Specifically,

ψn(t) =
1
n

n∑
j=1

eitτyjxj =
1
n

n∑
j=1

[cos(tτyj) + i sin(tτyj)]xj = αn(t) + iβn(t),

and thus the estimate of M, written as Mn, takes the form

Mn =
1
n

n∑
k=1

real{ψn(tk)ψ̄
τ
n(tk)} =

1
n

n∑
k=1

[αn(tk)ατ
n(tk) + βn(tk)βτ

n(tk)]. (3.1)
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3.2. Choice of T

In the population version, we prefer a T whose support is Rq to pool all seed
vectors φ(t) together to recover CS. However, when ‖T‖ is too large, a relatively
large amount of weight gets assigned to patterns with high frequencies which
being sensitive to noise can make our method unstable (Zhu and Zeng (2006)).
Our main idea for selecting T = (t1, . . . , tq)τ is illustrated as follows. To ensure
that the support of T is Rq, we choose ti’s, i.i.d. N(0, σ2) and, it remains to
specify the parameter σ2. We remark here that the normality is not essential, as
we shall see later.

Recall the definitions of φ in (1.2) and M in (1.3). Notice that ei·TτY =
ei·(TτY+2π), which implies that when |TτY| > π, TτY does not provide addi-
tional information in recovering CS. To ensure estimation efficacy, we can simply
choose T satisfying |TτY| ≤ π with large probability (1 − s), namely,

P{|TτY| > π} ≤ s. (3.2)

By the Chebyshev inequality, the LHS of (3.2) is less than or equal to Var(TτY)
/π2. Accordingly, (3.2) is reduced to finding σ2 to satisfy

Var(TτY) = E(YτY)σ2 ≤ sπ2. (3.3)

The equality follows from the fact that T⊥⊥Y. For any given s, we take

σ2 ≤ sπ2

E(YτY)
. (3.4)

Still, if σ2 is too small (e.g. ‖T‖ is close to 0), then φ(t) is close to zero.
Consequently, the column space of M is close to the null space, and will miss
some interesting directions in CS. We prefer the largest σ2 (3.4) and so choose
σ2 = sπ2/E(YτY).

3.3. UIF1 algorithm

We summarize the algorithm of the UIF1 method below.
Step 1 Standardize the predictors to have zero mean and identity covariance
matrix.
Step 2 Specify the probability s, and estimate E(YτY) by

∑n
i=1 yτ

i yi/n. Ran-
domly sample tk,j ’s, for k = 1, . . . , n, and j = 1, . . . , q, from N(0, σ̂2) with σ̂2 =
n · s · π2/

∑n
i=1 yτ

i yi. (We can usually choose a small value from 0.02 < s < 0.30.
Our limited experience shows that the performance of UIF1 is insensitive to the
choice s. Throughout our empirical studies, we set s = 0.10.)
Step 3 Calculate Mn from (3.1), where tk = (tk,1, . . . , tk,q)τ .
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Step 4 Find the spectral decomposition of Mn. The eigenvectors associated
with the largest K eigenvalues of M are used to estimate the CS.

4. Simulation

The performance of our method is evidenced here through synthetic exam-
ples. We also develop the method UIF2 as a subsequent development.

The seven competitors that are designed to recover CS for multivariate re-
sponse data are used to compare with our methods.

1: The multi-dimensional slicing method (MS), which is the direct extension of
the methodology designed for scalar Y . That is , slicing the multi-dimensional
Y into hypercubes, just as one slices the scalar Y into intervals in the original
form of SIR or SAVE. In our simulation, we followed the standard slicing
scheme: the first slice was made on the first response, yielding h slices of
equal length, each of which was then further sliced into h sub-slices according
to the second variable, and so on. We took h = 3, 4, 5, 6, and 7, corresponding
to sample size n = 100, 200, 400, 800 and 1, 600 respectively.

2: Alternating SIR (aSIR, Li, Zha, and Chiaromonte (2005)), in which case we
slice the M.P. variates Mτ

1Y instead of slicing the entire Y. As the di-
mension of Mτ

1Y is lower than that of Y, aSIR can improve the accuracy
of MS. The initial values of M1 are the canonical directions identified by
maxθ,β ρ(θτY, βτX).

3: Nearest neighbor inverse regression (nnIR, Hsing (1999)), in which the slices
are determined by nearest neighbors.

4: The K-means inverse regressions (Setodji and Cook (2004)), including KSIR
and KSAVE algorithms, which are the same as SIR and SAVE except that
the slices are replaced by K-means clusters. In our simulations, we dropped
those clusters which contained just one point because KSIR and KSAVE are
sensitive to outliers.

5: The methods based on the estimation of central moment spaces that were
proposed by Yin and Bura (2006). We only consider two of them, based on
the matrices K21c and K22c in their paper. The first of these targets the space
spanned by the first and the second central moment subspace

span
(
SE(Y|X),SE(Y

N

2|X)

)
,

and the second targets the central mean space SE(Y|X). We refer to the
methods as YB21 and YB22, respectively.

6: The marginal combination method (MC), which recovers the joint CS SY|X
by pooling together the marginal dimensional reduction subspaces SYi|X, i =
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1, · · · , q. We remark here that MC is a special case of the following projective
resampling method.

7: The projective resampling method (Li, Wen, and Zhu (2008) is based on the
following simple fact: suppose, for any t ∈ Rq, M(t) is a p × p matrix whose
column space spans StτY|X. Note that tτY is scalar, thus StτY|X can be
easily recovered by many existing methods such as SIR, SAVE, and Directional
Regression. In our simulation, the projected CS StτY|X was estimated with
SIR, SAVE, or the Directional Regression algorithm, and the corresponding
methods are referred to as PSIR, PSAVE and PDR. Let T be random vector
defined on the unit sphere in Rq. Then, span{E[M(T)]} = SY|X. The LHS
can be estimated through Monte Carlo simulation.

We use the trace correlation coefficient r(K) = trace(PBP
cB)/K proposed in

Ferré (1998) to measure the closeness of CS span{B} and its estimate span{B̂},
where K is the structural dimensionality. It can be verified that 0 ≤ r(K) ≤ 1,
and larger r(K) values indicate better performance. In particular, r(K) = 1 if
S(B̂) is identical to S(B) and 0 if S(B̂) is perpendicular to S(B).

Throughout we take X20×1 to be normally distributed with mean zero and
identity covariance matrix. The dimension K of CS is assumed to be known;
the mean and standard deviation of r(K) reported in the following tables were
computed from 1,000 repetitions. Unless stated otherwise, in PSIR and KSIR,
the slice numbers or cluster numbers were 10, 10, 20, 40, and 40 corresponding
to the sample size n = 100, 200, 400, 800, and 1, 600. Li (1991) and Setodji and
Cook (2004) showed that the results of the SIR-based methods were not very
sensitive to the number of slices or clusters. We chose s = 0.10 throughout our
empirical studies.
Example 2. Consider the simple model

Y|X ∼ N2(0, Σ(βτX)),

Σ(βτX) =
(

1 sin(βτX)
sin(βτX) 1

)
,

and β = (0.8, 0.6, 0, 0, · · · , 0, 0)τ . Clearly, SY|X = span{β}. However, as SYi|X =
{0} for i = 1, 2, we do not expect MC to work well. As Cov(X,Y) = E(XY) = 0,
we cannot get the desired initial value of M efficiently in aSIR and the method
does not work. The comparison of the performance of the other estimators is
presented in Table 4.1. We can see that UIF1 performed better than all other
methods when the sample size was comparatively small. When n was large, the
results were very close except for the MC and aSIR methods. In all UIF1 was
effective in detecting the true direction.
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Table 4.1. Comparison based on Example 2.

n = 100 n = 200 n = 400 n = 800 n = 1, 600

MC 0.0540(0.0712) 0.0479(0.0594) 0.0538(0.0708) 0.0488(0.0648) 0.0533(0.0690)
MS 0.2674(0.1831) 0.6027(0.1686) 0.8096(0.1672) 0.9203(0.0274) 0.9636(0.0125)
aSIR 0.0540(0.0820) 0.0545(0.0796) 0.0847(0.1495) 0.0848(0.1602) 0.0878(0.1793)
nnSIR 0.2335(0.1899) 0.4134(0.2266) 0.6593(0.0484) 0.8387(0.0670) 0.9194(0.0309)
KSIR 0.3816(0.2016) 0.6787(0.1441) 0.8622(0.0568) 0.9382(0.0204) 0.9697(0.0104)
YB21 0.4566(0.1514) 0.6801(0.1032) 0.8257(0.0732) 0.9095(0.0294) 0.9524(0.0151)
PSIR 0.2653(0.2050) 0.6343(0.1867) 0.8678(0.0499) 0.9390(0.0212) 0.9716(0.0098)
PDR 0.1230(0.1294) 0.1463(0.1536) 0.2949(0.2111) 0.5901(0.2005) 0.8463(0.0660)
UIF1 0.3796(0.2179) 0.7114(0.1355) 0.8733(0.0457) 0.9379(0.0210) 0.9682(0.0110)

Table 4.2. Comparison based on Example 3.

n = 100 n = 200 n = 400 n = 800 n = 1, 600

MC 0.5189(0.1117) 0.7899(0.0762) 0.8984(0.0321) 0.9627(0.0106) 0.9820(0.0048)
MS 0.3935(0.1270) 0.5907(0.1243) 0.7904(0.1009) 0.9246(0.0291) 0.9728(0.0090)
aSIR 0.6125(0.1125) 0.8296(0.0663) 0.9289(0.0214) 0.9652(0.0108) 0.9833(0.0049)
nnSIR 0.5126(0.1163) 0.7086(0.1159) 0.8713(0.0487) 0.9428(0.0180) 0.9737(0.0080)
KSIR 0.7126(0.0854) 0.8663(0.0416) 0.9415(0.0168) 0.9722(0.0078) 0.9879(0.0035)
YB21 0.4252(0.1257) 0.6241(0.1322) 0.8077(0.1043) 0.9278(0.0302) 0.9673(0.0105)
PSIR 0.7984(0.0605) 0.8970(0.0313) 0.9500(0.0145) 0.9752(0.0070) 0.9880(0.0034)
PDR 0.6018(0.1180) 0.8003(0.0725) 0.9253(0.0252) 0.9654(0.0102) 0.9830(0.0046)
UIF1 0.7751(0.0627) 0.8892(0.0356) 0.9480(0.0175) 0.9707(0.0081) 0.9844(0.0043)

Example 3. We consider a slightly more complicated model in which Y1 =
1+X1 +sin(X2 +X3)+ ε1, Y2 = (X2 + X3)/(0.5 + (X1 + 1)2)+ ε2, Y3 = |X1|ε3,
Y4 = ε4, Y5 = ε5, where ε = (ε1, . . . , ε5)τ ∼ N5(0,Σ) with

Σ =


1 −1

2 0 0 0
−1

2
1
2 0 0 0

0 0 1
2 0 0

0 0 0 1
3 0

0 0 0 0 1
4

 .

In this model, CS is spanned by directions β1 = (1, 0, 0, · · · , 0, 0)τ and β2 =
(0, 1, 1, 0, 0, · · · , 0, 0)τ . We can see from Table 4.2 that all methods converged for
large sample size and recovered CS. The performance of UIF1 was comparable to
PSIR, though it outperformed other methods significantly when the sample size
was small. The aSIR method performed better than MS in this example, this
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Figure 4.1. The average of the empirical r(K) values versus different s values.
We fixed the sample size n=800 in Examples 2 and 3.

is because only Y1, Y2 and Y3 depend on X, so slicing on Y4 and Y5 is useless,
the slicing on the reduced M.P. variates Mτ

1Y can recover as many directions as
slicing the entire Y.

Remark. We also made simulations in Examples 2 and 3 to show our UIF1

method insensitive to the choice of s by applying UIF1 with different s values to
recover SY|X. The average of the empirical r(K) values over 1,000 repetitions
versus different s values with a fixed sample size n = 800 are shown in Figure
4.1; clearly, for 0.02 < s < 0.30, our UIF1 method had a stable and satisfactory
performance, which suggests that UIF1 is robust to the choice of s values.
Example 4. The SIR-based algorithms such as KSIR and PSIR fail to detect
directions when the link function is even and symmetric about the functional
components, as in the following model. Meanwhile, Yin and Bura (2006) ar-
gued that YB21 is analogous to SIR methodology and also fails to detect such
structure. To counter this, they proposed the YB22 method. Our method UIF1

suffers from the same problem as well, as can be easily seen from an inverse re-
gression perspective. Thus we introduce a second moment based method, called
UIF2, that replaces φ(t) = E(eitτYX) at (1.2) by E[eitτY(XXτ − Ip)], and
we construct M in the same way as in (1.3). The UIF2 method is essentially
similar to the UIF1 method that targets the CS under the linearity condition
and the constant variance condition (Cook and Weisberg (1991)), and hence the
theoretical investigations are omitted in the present context.
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Table 4.3. Comparison based on Example 4.

n = 200 YB21 0.2689 (0.1240) UIF1 0.1499 (0.0855)
YB22 0.5369 (0.0984) UIF2 0.7332 (0.0801)

H = 2 H = 5 H = 10 H = 20 H = 40

KSAVE 0.3287(0.0803) 0.3170 (0.1040) 0.3220(0.1209) 0.3110(0.1307) 0.2095(0.1182)
PSAVE 0.4002(0.1169) 0.6472 (0.1216) 0.5629(0.1235) 0.4319(0.1177) 0.3025(0.1128)

n = 400 YB21 0.2788(0.1261) UIF1 0.1482(0.0855)
YB22 0.6452(0.0960) UIF2 0.8988(0.0288)

H = 2 H = 5 H = 10 H = 20 H = 40

KSAVE 0.4025(0.0568) 0.3861(0.0992) 0.3905(0.1246) 0.4434(0.1574) 0.3822(0.1506)
PSAVE 0.5841(0.1077) 0.8738(0.0431) 0.8332(0.0618) 0.7471(0.0997) 0.5878(0.1244)

n = 800 YB21 0.2996(0.1358) UIF1 0.1532(0.0862)
YB22 0.7501(0.0984) UIF2 0.9529(0.0116)

H = 2 H = 5 H = 10 H = 20 H = 40

KSAVE 0.4571(0.0399) 0.4592(0.0983) 0.4412(0.1115) 0.5575(0.1811) 0.5763(0.1770)
PSAVE 0.7599(0.0974) 0.9490(0.0151) 0.9368(0.0196) 0.9177(0.0272) 0.8775(0.0480)

In the example, we compare UIF2 with YB22 and the SAVE-based methods
KSAVE and PSAVE. The model takes Y1 = 1 + X2

1 + sin(X2 + 3X3) + ε1, Y2 =
X1(X2 + 3X3) + (1 + (X2 + 3X3)2)ε2, Y3 = ε3, Y4 = ε4, Y5 = ε5, where ε =
(ε1, . . . , ε5)τ ∼ N5(0,Σ) with the Σ given in the previous example. The CS is
spanned by directions β1 = (1, 0, 0, · · · , 0, 0)τ and β2 = (0, 1, 3, 0, 0, · · · , 0, 0)τ .

Li and Zhu (2007) showed that the slice number is crucial to SAVE, we report
the results of KSAVE and PSAVE with different slice/cluster numbers here. We
can see that the results of KSAVE were not satisfactory if the slice number was
not chosen properly, even when sample size was large. YB22 need not choose the
slice number, but it converged very slowly. To be precise, the result for the YB22
method was 0.8596(0.0564) when n = 1, 600, and 0.9230(0.0334) when n = 3, 200.
Let H denote the number of slices in PSAVE or the number the clusters in
KSAVE. As can be seen from Table 4.3, the PSAVE method was efficient if the
slice number was properly selected. Comparatively, UIF2 performed much better,
and moreover, it avoided selection of the slice number.

Example 5. Now we consider a model including both linear structure and a sym-
metric component. Suppose Y1 = 1+X2

1 +eX2 ·ε1, Y2 = X1(X1 +X2)+ε2, Y3 =
X2

1 + 0.5 · ε3, Y4 = X2
2 + 0.5 · ε4, Y5 = ε5, where εi’s are independent standard

normal variables. The central space is spanned by β1 = (1, 0, 0, · · · , 0, 0)τ and



ON DIMENSION REDUCTION IN REGRESSIONS WITH MULTIVARIATE RESPONSES 1303

Table 4.4. Comparison based on Example 5.

n = 200 n = 400 n = 800 n = 1, 600

MC 0.3088(0.1009) 0.4198(0.0724) 0.4785 (0.0503) 0.5116(0.0494)
MS 0.5689(0.1381) 0.6946(0.1184) 0.7862 (0.0895) 0.8409(0.0672)
nnSIR 0.3913(0.1107) 0.5079(0.0943) 0.6063 (0.1210) 0.7264(0.1315)
KSIR 0.4567(0.0987) 0.5552(0.1073) 0.6737 (0.1289) 0.7905(0.1122)
KSAVE 0.3614(0.1927) 0.4707(0.2085) 0.5772 (0.2313) 0.7054(0.2392)
YB21 0.4240(0.1151) 0.4935(0.1195) 0.5344 (0.1193) 0.5676(0.1132)
YB22 0.8153(0.0624) 0.9171(0.0302) 0.9623 (0.0145) 0.9825(0.0053)
PSIR 0.3824(0.0950) 0.4873(0.0806) 0.5503 (0.0924) 0.5854(0.1012)
PSAVE 0.8656(0.0447) 0.9509(0.0128) 0.9787 (0.0051) 0.9878(0.0024)
PDR 0.7014(0.1055) 0.9145(0.0240) 0.9514 (0.0131) 0.9805(0.0047)
UIF1 0.3942(0.0967) 0.4788(0.0756) 0.5285 (0.0761) 0.5601(0.0803)
UIF2 0.8468(0.0505) 0.9510(0.0120) 0.9748 (0.0060) 0.9882(0.0029)

β2 = (0, 1, 0, 0, · · · , 0, 0)τ . Based on our experience in the previous example, the
slice number in the PSAVE algorithm was fixed at 5, the slice numbers or cluster
numbers in KSIR, KSAVE, PSIR and PDR algorithm were taken to be 10, 20,
40, and 40, corresponding to sample sizes 200, 400, 800, and 1,600. The results
reported in Table 4.4 show that PSAVE and UIF2 outperformed other methods,
the SIR-based methods were not effective in detecting such model structure.

5. Determinants of Plasma Retinol and Beta-carotene Levels

Observational studies suggested that low dietary intake or low plasma con-
centrations of retinol, beta-carotene, or other carotenoids might be associated
with increased risk of developing certain types of cancer. However, relatively
few studies have investigated the determinants of plasma concentrations of these
micronutrients. To address this issue, Nierenberg et al. (1989) designed a cross-
sectional study to investigate the associations of retinol and beta-carotene plasma
concentrations with 12 personal characteristics and dietary factors in 315 patients
with nonmelanoma skin cancer, enrolled at four American study centers in a can-
cer prevention clinical trial.

The response Y = (Y1, Y2) is two-dimensional, where Y1 and Y2 denote, re-
spectively, the plasma beta-carotene (ng/ml) and the plasma retinol (ng/ml).
The quantitative predictors X = (X1, . . . , X9)T are related to personal charac-
teristics and dietary factors: the age (in years) of each subject X1, the quetelet
variable defined by weight/height2 X2 (kg/m2), the calories consumed per day
X3, fat consumed per day X4 (grams), fiber consumed per day X5 (grams),
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Table 5.5. Comparison of different candidate methods.

competitors MC MS PDR UIF1 PSIR YB21 YB22

variability 0.2189 0.2391 0.0788 0.0669 0.1036 0.1189 0.0741

number of alcoholic drinks consumed per week X6, cholesterol consumed (mg)
per day X7, dietary beta-carotene consumed (mcg) per day X8, and dietary
retinol consumed (mcg) per day X9. Categorical predictors such as gender, vita-
min use, and smoking status may be relevant, but are excluded from our analysis
to ensure the linearity condition. There was one extremely high leverage point
(NO 62) in alcohol consumption (X6) that was deleted prior to the analysis to
avoid possible modeling bias. We further standardized the predictors to have
zero mean and identity covariance matrix before our analysis.

The multiple correlation coefficient between plasma beta-carotene levels and
the full linear model was 0.15, and the multiple correlation coefficient between
the plasma retinol and the full linear model was only 0.11. The linear model may
be insufficient and model-free dimension reduction method is sought. We apply
the UIF1 method. The largest two eigenvalues account for over 99% variability,
which complies with the BIC type criterion with ln(n) as the penalty (Zhu and
Zhu (2007)) that the joint CS is two-dimensional. In the sequel we assume the
structural dimension of the joint CS is known.

Now we compare the performance of UIF1 with some competitors designed
for multivariate response data, including the marginal combination method (MC),
the multi-dimensional slicing method (MS), the projective resampling method
combined with SIR (PSIR), and directional regression (PDR), the methods pro-
posed by Yin and Bura (2006, YB21, YB22). One can refer to Section 4 for
detailed descriptions of these methods. To select among dimension reduction
estimators ŜY|X, we follow the idea of Ye and Weiss (2003, p. 972) and prefer
the one with smallest variability, assuming no or minimal bias. To put this into
practice, we used the bootstrap method to generate a set of Ŝ

b

Y|X , and calcu-
lated the trace correlation coefficient rb(K) (Ferré (1998)) between ŜY|X and

Ŝ
b

Y|X , b = 1, . . . , B. We adopted the median of (1 − rb(K)), b = 1, . . . , B, as a
measure of variability of the estimator ŜY|X . The medians for different dimen-
sion reduction estimators from 2,000 repetitions between ŜY|X and the bootstrap

estimator Ŝ
b

Y|X are summarized in Table 5.5.
In terms of variability, UIF1 performed the best, followed by YB22 and PDR.

It is not surprising to find that these methods bested MC and MS.
The coefficients of the first two UIF1 directions are presented in Table 5.6.

Recall that the predictors are standardized. If these predictors are independent,
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Table 5.6. The coefficients of the first two UIF1 directions.

coefficients X1 X2 X3 X4 X5 X6 X7 X8 X9

1st direction 0.6054 -0.2700 -0.0982 -0.3354 0.0655 0.4344 -0.2940 0.3623 -0.1667
2nd direction 0.3136 0.4860 0.0056 -0.0253 -0.4321 0.4460 0.2193 -0.4792 -0.0370

then we can judge the predictors’ contribution by the magnitude of the coeffi-
cients. In particular, X1 may be the most important predictor, while X3 may be
the least important, because it seems irrelevant to Y. We conclude that there
is wide variability in plasma concentrations of these micronutrients in humans,
and that much of this variability is due to the dietary habits and most personal
characteristics, except for the calories consumed each day.
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Appendix

All technical derivations are relegated to this Appendix.
Proof of Proposition 1. By the definition of φ, we have that

φ(t) = E[E(eitτYX|BτX)]

= E[E(eitτY|BτX)E(X|BτX)]

= B(BτB)−1BτE[E(eitτY|BτX)X] = B(BτB)−1Bτφ(t).

The second equality holds by the conditional independence (1.1), the third equal-
ity follows from the linearity condition, and the last equality holds because
E(eitτY|X) = E(eitτY|BτX), which is implied by (1.1). Therefore, the real
and imaginary parts of φ(t) lie in CS. Thus the conclusion follows.

Proof of Proposition 2. Notice that the fact that v ⊥ φ(t), for all t ∈ Rq is
equivalent to saying that v ⊥ M if T is a q-dimensional random vector whose
support is Rq. Therefore, the desired conclusion follows directly from Proposition
1 and the linearity condition.
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Proof of Proposition 3. We only sketch the outline of this proof because it is
parallel to the arguments used in proving Proposition 8 in Zhu and Zeng (2006,
p. 1,642). Notice that φ is in spirit the Fourier transform of E(X|Y = y)fY(y).
Then for any v ∈ Rp, vτE(X|Y = y)fY(y) = 0 for y ∈ Rq is equivalent
to vτα(t) = vτβ(t) = 0 for all t ∈ Rq, where φ(t) = α(t) + i · β(t). Hence
span{φ(t), t ∈ Rp} = span{E(X|Y = y) : y ∈ Support(Y)}. The former is
exactly the space spanned by M, and the latter is the space aimed at by SIR.
Thus the proposition is proved.
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