
Statistica Sinica 20 (2010), 1239-1256

SADDLE POINT APPROXIMATION AND VOLATILITY

ESTIMATION OF VALUE-AT-RISK

Maozai Tian and Ngai Hang Chan

Renmin University of China and Chinese University of Hong Kong

Abstract: Value-at-Risk (VaR) is a commonly used risk measure adopted by finan-

cial engineers and regulators alike. Many of the techniques used in calculating VaR,

however, rely on simulations that can be difficult and time consuming. One of the

objectives of this paper is to conduct statistical inference for VaR based on sad-

dle point approximation and volatility estimation. Specifically, by assuming that

the loss distribution is a generalized hyperbolic, we propose a quasi-residual based

volatility estimate. Because saddle point approximation furnishes a fast and accu-

rate means to approximate the loss distribution and its percentiles, including the

VaR in particular, it is then used to approximate the loss distribution of the quasi-

residuals from which VaR can be estimated. Simulation studies and data analysis

confirm that the proposed methodology works well both in theory and practice.
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1. Introduction

One of the challenging tasks of modern risk management is fast and accurate
calculation of the loss distribution so that value-at-risk (VaR) can be computed.
The main objective of this study is to propose a fast and practical means for
calculating the VaR when the return process {Rt} of an underlying financial asset
follows the conditional heteroscedastic model. Specifically, let St be the observed
price of an asset at discrete time, t = 1, . . . , T, and let Rt = log(St/St−1) be the
log returns of the asset. Consider the conditional heteroscedastic model

Rt = σtεt , (1.1)

where σt is the volatility process which is assumed to be Ft−1 = σ{R1, . . . , Rt−1}
measurable, and {εt} are assumed to be independently and identically distributed
with E(εt)=0 and Var(εt)=1. No assumption has been imposed on the parametric
form of the volatility process at this stage. Once an appropriate estimate σ̂t of
the volatility process {σt} becomes available, the VaR of the return process can
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be easily calculated by virtue of the identity V âRp,t = σ̂tqp, where qp is the pth
quantile of the innovation process {εt}.

As far as the modelling of the volatility process is concerned, there are two
main approaches: parametric and nonparametric. Typical examples of the para-
metric approach includes the ARCH-GARCH family (see Chan et al. (2007) and
Chan et al. (2009), Engle (1995), Eberlein, Kallsen and Kristen (2003)), the
EGARCH (Nelson (1991)), and the QGARCH (Sentana (1995)). For a more
comprehensive survey of this topic, see Rossi (1996) and the references therein.
Roughly speaking, all these methods can be applied to estimate or to forecast the
volatility at certain specified periods. They are not suitable for modelling unsta-
ble time series in the long run. For the nonparametric approach, there are the
time-inhomogeneous volatility models (Mercurio and Spokoiny (2004)) and the
nonparametric generalized hyperbolic distributions (Chen, Härdle and Spokoiny
(2007)), among others. There are pros and cons for both approaches, see, for ex-
ample, Engle and Manganell (2004), Chen, Härdle and Spokoiny (2007), and the
references therein. In this paper, we propose a new quasi-residual based method
for estimating the volatility process. This method imposes no assumption on the
parametric form of the volatility process and avoids the difficulty of specifying
the homogeneous intervals, as required in Mercurio and Spokoiny (2004)).

As for the innovations {εt}, they are usually assumed to be Gaussian or to
follow some simple parametric form; here we take {εt} to follow a generalized
hyperbolic distribution (GH). One of the reasons for this assumption is that the
GH provides a better fit to the observed log-returns than the Gaussian distribu-
tions. Figure 1 illustrates that the conditional Gaussian model fails to capture
the semi-heavy-tailed nature of the extreme values (bigger than 95% or less than
5%) of the standardized log returns of foreign exchange rates between the Deutsch
Mark and the US Dollar (DEM/USD) from 1979/12/01 to 1994/04/01 that was
studied in Chen, Härdle and Spokoiny (2007). Table 1 further indicates that the
generalized hyperbolic (GH) distribution seems to match the first four empirical
moments better than the Gaussian distribution. Each given GH consists of five
parameters, however. Their estimation can be time consuming and tricky. To
circumvent this difficulty, in conjunction with the quasi-residuals, we propose to
use the saddle point approximation of the GH density from which VaR can be ef-
ficiently calculated. It will be shown that this idea works well both in simulation
studies and in the analysis of the foreign exchange data.

This paper is organized as follows. In Section 2, quasi-residuals based volatil-
ity modelling is introduced and properties of the proposed volatility process are
examined. In Section 3, the saddle point approximations to VaR are derived,
and confidence intervals are constructed for the estimator ˆV aRp,t. In Section 4,
simulation studies are conducted and data analysis of two foreign exchange rates
are used to illustrate the newly proposed methodology.
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Table 1. Comparisons for the nonparametric kernel, Gaussian and gener-
alized hyperbolic distributions of the daily DEM/USD log returns between
1979/12/01 and 1994/04/01.

Distribution mean standard deviation skewness kurtosis
Empirical 0.007734 1.000171 -0.0560728 1.513616
Gaussian 0.000000 1.000000 0.0000000 0.000000
GH 0.004534 1.002781 -0.041999 1.627289

Figure 1. Comparison of density estimations of the log returns of DEM/USD
exchange rates. The kernel density estimations are denoted by solid lines,
the normal density estimations are indicated by the dashed lines, and the
generalized hyperbolic distributions are denoted by dotted lines. The vertical
lines that are denoted by dashed-dotted lines correspond to the quantiles at
5% on the left panel and 95% on the right, respectively.

2. Quasi-residuals and Volatility

It is well known that volatility modelling plays an important role in financial
economics; statistical modelling of volatility has received considerable attention
in both theoretical and empirical research. In this section, we develop a new
method for estimating volatility using quasi-residuals that has been found to be
a useful device in estimating heteroscedasticity, further details can be found in
Müller and Stadtmüller (1987), Tian and Wu (2001), and Tian and Li (2004),
and the references therein.

To introduce the quasi-residual idea, let qp denote the pth-quantile of the
distribution of εt, i.e., P(εt < qp)= p. Then P(Rt < σtqp|Ft−1)= p. VaR is now
defined as

V aRp,t = σtqp . (2.1)

To obtain an estimate of V aRp,t, we have to estimate the volatility σt and the
quantile qp. To this end, the notion of quasi-residual estimate for volatility turns
out to be most relevant.
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Definition 1. The class of local quasi-residual based volatility estimates at time
t is defined by

σ̂2
t ≡

( m∑
j=1

ωjRt−j

)2
. (2.2)

where m > 1 is a fixed integer, {ω1, . . . , ωm} are weights.

One of the distinctive features of the volatility process σt is that it varies little
within a short time interval; although it is heteroscedastic in the long-run. The
distinctive feature is known as “time homogeneity”. It is therefore reasonable
to assume that σ2

t can be locally approximated by a constant in a short-time
interval [t − m, t] for m small.

Next, we establish properties of the estimate σ̂2
t , under general assump-

tions. Let µ0 = E(ε2
t ), Zt =

{
ε2
t − E(ε2

t )
}

/Var1/2(ε2
t ), V0 = Var(ε2

t ), and
Ωm =

∑m
j=1 ωj .

Assumption 1. The volatility σt in (1.1) is a predictable process satisfying the
condition that σt is Ft−1 measurable, where Ft−1 = σ(R1, . . . , Rt−1), the σ−field
generated by the first t − 1 observations. Further, σ2

t is homogeneous in a short
time interval I = [t − m, t], for some m.

Assumption 2. {εt} in (1.1) are independent and identically distributed vari-
ables with the generalized hyperbolic distribution prescribed in (3.1).

Assumption 3. In (2.2), the positive weights {ω1, . . . , ωm} satisfy µ0(
∑m

j=1 ωj)2

= 1.

We have the following results regarding the volatility estimates. Theorem
1 shows that σ̂2

t is a conditional unbiased estimate and provides a closed form
for the variance of the estimate. Theorem 2 offers a probability bound for the
estimation error from which statistical testing for homogeneity can be conducted.
Their proofs are given in the appendix.

Theorem 1. Suppose Assumptions 1 and 3 hold. Then

(1) E(σ̂2
t |Ft−1) = σ2

t , (2.3)

(2) Var(σ̂2
t |Ft−1) = V 2

0 σ4
t Ω

4
m. (2.4)

Theorem 2. Let ΣI ≡ sup
1≤j<k≤m

|σt−jσt−k −σ2
t |. Under Assumptions 1−3, if the

volatility process σt satisfies the condition δµ0V
−1
0 ≤ σ2

t ≤ δ∆µ0V
−1
0 , for some

positive constants δ and ∆, then there exists η > 0 such that, for every λ ≥ 1,

P
{
|σ̂2

t − σ2
t | > ΣI + λµ−1

0 V0σ
2
t , δ ≤ µ−1

0 V0σ
2
t
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≤ δ∆
}
≤ 4

√
eη−1λ(1 + log ∆) exp(−λ2

2η
). (2.5)

Remark. The value of ΣI can be viewed as a measure of departure from local
homogeneity within the interval I = [t − m, t]. Theorem 2 indicates that if σt

is homogeneous in the interval I = [t − m, t], then the bias ΣI is negligible.
Consequently, a test for the homogeneity hypothesis in the interval I = [t−m, t]
for some m > 0 can be conducted. To perform the test, I = [t − j, t] is split
into two subintervals: Ξ and I −Ξ. If σt is homogeneous in I, then the estimates
based on the two subintervals will be close. Further details of this idea can be
found in Mercurio and Spokoiny (2004).

3. Saddle Point Approximations of VaR

From a statistical perspective, VaR is simply a quantile of the loss distri-
bution. In what follows, we employ the saddle point approximation method for
constructing a fast and accurate approximation to the tail of the loss distribution
of assets. We also demonstrate how to obtain an accurate VaR without resorting
to Monte Carlo simulations.

Suppose that {εt} is an independent sequence of random variables with
a generalized hyperbolic (GH) distribution, specified by five parameters θ =
(λ, α, β, δ, µ)T, with the probability density function

fGH(x;λ, α, β, δ, µ) =
(ι/δ)λ

√
2πKλ(δι)

·
Kλ−1/2

(
α
√

δ2 + (x − µ)2
)

{√
δ2 + (x − µ)2/α

}1/2−λ
· eβ(x−µ) . (3.1)

Here µ ∈ R is the location parameter, α ∈ R is the shape parameter (kurtosis),
β ∈ R, is the asymmetry parameter (skewness), δ ∈ R is the scale parameter,
ι =

√
α2 − β2, λ ∈ R, and the modified Bessel function Kλ is given by

Kλ(ω) =
1
2

∫ ∞

0
xλ−1e1/2ω(x+x−1) dx , ω > 0.

Denote the MLE of the parameter vector θ = (λ, α, β, δ, µ)T by θ̂ = (λ̂, α̂, β̂, δ̂, µ̂)T.

3.1. Saddle point approximation

One of the main challenges in VaR is to find a fast and accurate means to
compute the value V aRt such that P(Rt > V aRt|Ft−1)= p, where 0 < p < 1.
Note that

V aR (Rt|Ft−1) = σtV aR (εt) . (3.2)

Therefore, an estimator for V aR of Rt can be computed via

ˆV aRp,t = σ̂tq̂p , (3.3)
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where σ̂t is the quasi-residuals based volatility estimator given in (2.2), and q̂p

is the estimator for the p-quantile of the distribution of εt following (3.1) with
the unknown parameter θ being replaced by its maximum likelihood estimator θ̂.
Three methods for computing the estimate of q̂p are widely used in the literature:
enumerate the exact probabilities; use a normal density approximation; use brute
force simulation. The first of these is usually intractable, the second may not
result in the desired accuracy, and the third can be time consuming even with the
speed of modern computers. Instead, we consider a saddle point approximation
method that is shown to be highly accurate and efficient. To achieve this goal,
we propose the following saddle point approximation algorithm.

1. Find the saddle point s = t̂ such that κ′
ε(t̂) = t, where κ′(·) is defined below.

2. Evaluate the pth quantile qp of the distribution of {ε} as

p = P(ε > t) (3.4)

=


exp

{
κε(t̂) − t̂t + 1

2 t̂2κ
′′
ε (t̂)

}
Φ

(
−

√
t̂2κ′′

ε (t̂)
)

, t > E(ε) ,

1
2 , t = E(ε) ,

1 − exp
{

κε(t̂) − t̂t + 1
2 t̂2κ

′′
ε (t̂)

}
Φ

(
−

√
t̂2κ′′

ε (t̂)
)

, t < E(ε) ,

where Φ(·) denotes the cumulative normal distribution function. In (3.4),

E(ε) = µ +
δβ

ι
· Kλ+1(δι)

Kλ(δι)
,

κ(z) = µz + log ιλ − λ log ιz + log Kλ(διz) − log Kλ(δι),

κ′(z) = µ +
δ(β + z)

ιz
· Kλ+1(διz)

Kλ(διz)
,

κ′′(z) =
δ

ιz
· Kλ+1(διz)

Kλ(διz)
+

δ2(β + z)2

ι2z
· Kλ+2(διz)

Kλ(διz)
− δ2(β + z)2

ι2z
·
K2

λ+1(διz)
K2

λ(διz)
.

(Once κε(s), κ
′
ε(s) and κ

′′
ε (s) are calculated, it is straightforward to calculate

the VaR. First use expression (3.4) with t being replaced by κ
′
ε(t̂) and then

adjust t̂ until the right-hand side of (3.4) equals a given p. Note that this step
is a simple root-finding problem. After obtaining t̂, it is easy to calculate the
value t, which is labelled as q̂p.)

3. Calculate the VaR of the return process Rt by means of V âRp,t = σ̂tq̂p.

3.2. Confidence intervals for VaR

In this subsection, two ways to construct confidence intervals for the VaR
are considered. The Wald-type confidence interval based on MLE (WM), and
the saddle point approximation confidence interval (SA).



SADDLE POINT VaR 1245

For the Wald-type confidence intervals, consider the log-likelihood function.
Using the result of Pawitan (2001), we have the following.

Theorem 3. Under Assumptions 1−3 and (3.3), as n → ∞, we have

{
Var(log ˆV aRp,t)

}−1/2
· log

ˆV aRp,t

V aRp,t

D→ N(0, 1) . (3.5)

Hence, a 100(1 − α)% confidence interval for V aR is[
ˆV aRp,t exp

{
−zα/2

√
Var(log ˆV aRp,t)

}
, ˆV aRp,t exp

{
zα/2

√
Var(log ˆV aRp,t)

}]
,

(3.6)
where zq is the 100qth upper percentile of the standard normal distribution.

The Wald-type confidence interval considered is based on large sample theory
and its performance under small sample sizes remains to be determined. As
an alternative, consider the saddle point approach to approximating the tail
probability of the distribution. It is well known that a saddle point approximation
provides a good approximations to the tail probabilities or to the density in the
tail of the distribution (see Daniels (1954, 1987) and Jensen (1995)).

Theorem 4. Let F̂sd(V aR|p) be the saddle point approximation function of
the cumulative distribution function F (V aR|p) of Rt, i.e., F (V aR|p) = P (Rt <

V aR|Ft−1)=p. Let 0<α<1 be a fixed value. For a given V aR, let F̂sd(V aRU (p)
|p)) = 1−α/2 and F̂sd(V aRL(p)|p) = α/2. Then the interval [V aRL(p), V aRU (p)]
is a (1 − α)% confidence interval for V aR.

Proof. The proof directly follows from Tian, Tang and Chan (2008).

4. Monte Carlo Simulations and Applications

4.1. Simulations

We first evaluate the performance of the saddle point approximation in con-
junction with the quasi-residuals volatility estimates by means of Monte Carlo
simulations. Specifically, the following algorithm is computed.

1. Find an estimator σ̂t for the volatility process using (2.2).

2. Estimate the GH parameters based on {Rt/σ̂t} using the MLE.

3. Calculate the p-quantile of the value q̂p based on the saddle point approxima-
tion method (3.4).

4. Calculate ˆV aRt = σ̂tq̂p .
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Observe that by (3.3), the accuracy of the VaR estimate depends on two
factors: the accuracy of the estimate of the pth quantile qp and the accuracy
of predicting the volatility process σ̂t. We focus on estimating the volatility.
To examine the performance of the quasi-residuals method, two estimators of
the first step are considered in this simulation study: the quasi-residuals based
estimator and the GARCH (1,1) based estimator, see for example McNeil, Frey
and Embrechts (2005). Three sets of weights (m = 3, 4, 5) are used in (2.2) and
two typical models (see Mercurio and Spokoiny (2004)) for the volatility processes
are considered.

I. Small jumps model:

σ1(t) =


0.1, 1 ≤ t ≤ 120,

0.2, 120 < t ≤ 240,

0.1, 240 < t ≤ 360.

II. High frequency model:

σ2(t) =


|0.001t2 − 7|, 1 ≤ t ≤ 120,

|0.007t − 0.2|, 120 < t ≤ 240,

|0.002t − 0.5|, 240 < t ≤ 360.

Consider the generalized hyperbolic distribution with λ = 1 in (3.1). Two
hyperbolic return series were generated by multiplying the 360 simulated gen-
eralized hyperbolic random variables by the volatility processes σ1(t) and σ2(t).
Specifically, for model I, we generated εi(1), . . . , εi(360) from the hyperbolic dis-
tribution with parameters α = 1, β = 0, δ = 1, µ = 0, and σ1(1), . . . , σ1(360)
from model I. Then we computed ri

1(t) = σ1(t)εi(t), t = 1, . . . , 360. Next we
repeated this step 5,000 times independently to obtain the series {ri

1(t) : t =
1, . . . , 360 and i = 1, . . . , 5, 000}. Similarly, we computed σ2(1), . . . , σ2(360) from
model II to obtain ri

2(1), . . . , ri
2(360), i = 1, . . . , 5, 000.

For a criterion independent of the scale of σ(t), consider the relative error
criterion defined by

360∑
t=1

5,000∑
i=1

(
σ̂ti − σt

σt

)2

. (4.1)

This was used by Mercurio and Spokoiny (2004). To simplify the presentation,
we only report results for the quasi-residual method in Table 2 and Figure 2 for
the case of m = 4. Other results are available from the authors upon request.

As mentioned earlier, Theorems 1−2 constitute the theoretical basis for
choosing the parameter m and the weights ωi. For this particular example, results
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Table 2. Estimation relative errors for different weights.

Weight m = 3 m = 4 m = 5
Model I 19,231 17,171 17,254
Model II 44,087 42,032 42,008

Table 3. Summary statistics of DEM/USD daily exchange rates and German
bank portfolio (GBP) from 1979/12/01 to 1994/04/01.

DESCRIPTION n Mean Std Skewness Kurtosis
DEM/USD 3,720 2.061 0.466 -0.408 0.810
GBP 3,720 0.610 0.097 0.309 0.573

in Table 2 indicate that m = 4 is the best choice. Figure 2 depicts the graphi-
cal comparison of volatility estimations based on the quasi-residual approach on
the left side and the GARCH model on the right. The solid line represents the
true volatility process for Models I and II (straight line), the empirical median
process among all estimates (thick dotted lines), and the 90% confidence confi-
dence bands (two dashed lines). From Figure 2, it is clear that the behavior of
the quasi-residual based estimate was stable here, whereas the GARCH-based
approach overestimated the volatility process.

4.2. An application

We now demonstrate the saddle point approximation approach in the calcu-
lation of the VaR of two foreign exchange rate data sets: DEM/USD exchange
rates and a German bank portfolio. These are daily exchange rates between
DEM/USD from 1979/12/01 to 1994/04/01. Each series consists of 3,720 obser-
vations and is available at http://www.quantlet.org/mdbase/. Table 3 gives
descriptive statistics for the two data sets. As shown in Figure 1 and Table 1,
the GH distribution fits the foreign exchange rates DEM/USD better than the
conditional Gaussian models because it can capture heavy tails.

4.2.1. Comparisons of different volatility estimators

Comparisons of the proposed quasi-residual approach with five commonly
used volatility estimation approaches is pursued in this subsection. The five
approaches are the following.

1. The equally weighted moving average approach (Hendricks (1996)).

2. The exponentially weighted moving average approach with the decay factor
λ = 0.97 (Hendricks (1996)).

3. RiskMetrics with the decay factor λ = 0.94 (Morgan (1996)).

http://www. quantlet.org/mdbase/
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Figure 2. Graphical comparison of volatility estimations based on the quasi-
residual approach on the left side, and the GARCH model on the right.
The solid line represents the true volatility process. The thick dotted line is
the median of all estimates. The two dashed lines are the lower and upper
confidence bounds. The area between the lower and upper confidence bounds
is a 90% point wise confidence band. The left column is the result of using
quasi-residual method with m = 4. The right column corresponds to using
the GARCH(1,1) method in estimating the volatility process.

4. Historical simulation (Hendricks (1996)) in which the estimation of volatility
is defined as the sample standard deviation of the return process for the past
500 days.

5. The GARCH(1,1) model (Engle (1995)) using the quasi-maximum likelihood
method in the case of estimating the volatility with a holding period of 1 day.
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The initial period was set to t0 = 500 for both series. To compare the
performance of the different volatility estimators, the following three measures
(see for example, Mercurio and Spokoiny (2004) and Fan and Gu (2003)) were
adopted.
I. Empirical Mean Forecast Deviations (EMFD). Since E(R2

t+1|Ft) =
σ2

t+1, for a given forecast σ̂2
t+1|t, the empirical mean value of |R2

t+1 − σ̂2
t+1|t|

p can
be used to measure the quality of this forecast. As a result, the criterion

1
T − t0 − 1

T∑
T−t0−1

|R2
t+1 − σ̂2

t+1|t|
p, (4.2)

is used to evaluate forecasting performance, see also Mercurio and Spokoiny
(2004). In this study, p was 0.5.

II. Mean Absolute Deviations Error (MADE).

MADE =
1
n

T+n∑
t=T+1

|R2
t − σ̂2

t |. (4.3)

III. Square-root Absolute Deviations Error (SADE).

SADE =
1
n

T+n∑
t=T+1

∣∣∣∣∣|Rt| −
√

2
π

σ̂t

∣∣∣∣∣ . (4.4)

More explanations on the motivations of choosing MADE and SADE as
measures can be found in Fan and Gu (2003).

It is seen from Table 4 that the smallest values of EMFD, MADE and SADE
were always attained by the quasi-residual saddle point approach. Based on these
experiments, it is reasonable to argue that the quasi-residual approach performed
the best among the commonly used competitors. On the other hand, the equally
weighted moving average approach performed the worst in our study.

4.2.2. Comparisons of different VaR estimators

We compared six VaR estimators generated from the six approaches dis-
cussed in Section 4.2.1. Again, the daily returns of DEM/USD and GBP were
used. We examined the absolute deviations errors (ADE), defined as the abso-
lute difference between the p-value and a given confidence level. To compute the
p-value, the following criterion (FM) was used.

FM =
1
n

T+n∑
t=T+1

I(Rt < q̂pσ̂t). (4.5)
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Table 4. Comparisons of six volatility estimation methods for the three
measures.

Index Methods EMFD MADE SADE
(×10−3) (×10−5) (×10−3)

Equally 6.694 5.583 3.735
Exponentially 6.457 5.373 3.597

DEM RiskMetrics 6.376 5.335 3.560
/USD Historical 6.679 5.562 3.725

GARCH(1,1) 6.481 5.383 3.587
Quasi-residuals 6.254 5.307 3.540

Equally 6.627 5.546 3.722
Exponentially 6.381 5.321 3.566

GBP RiskMetrics 6.321 5.321 3.566
Historical 6.614 5.528 3.714
GARCH(1,1) 6.381 5.293 3.554
Quasi-residuals 6.107 5.201 3.522

This quantity measures the number of events for which the loss exceeds the loss
predicted by (3.3) at a given confidence level. The quantity FM is similar to the
exceedance ratio at a given confidence level discussed in Fan and Gu (2003).

We report only the confidence levels 0.95 and 0.999 in Table 5. It is clear
from this table that the ADE varied among the six approaches. But, at both
confidence levels, the saddle point approach outperformed all its competitors.
The improvement was even more conspicuous at an extreme quantile (0.001),
where the saddle point method clearly distinguished itself from the other methods
for both series.

5. Conclusion

A new method that combines quasi-residual estimation and the saddle point
approximation is proposed for one-step ahead VaR forecasting. This method not
only furnishes a fast and efficient means to calculate the VaR, as demonstrated
by the simulated studies, it also allows one to conduct statistical inference.

Although some consider multi-step ahead VaR forecasting more useful, there
exists empirical evidence suggesting that mult-step ahead forecast of VaR may
not be that relevant at all; see for example Christoffersen and Diebold (2000),
where it was argued that there is scant evidence of volatility prediction at horizons
longer than ten days. Furthermore, one-step ahead forecasting of VaR is being
conducted day in and day out on Wall Street and in major financial markets
elsewhere. As multi-step ahead forecasting of VaR constitutes a well-known
unsolved and challenging problem; see McNeil, Frey and Embrechts (2005), it
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Figure 3. VaR forecast for the exchange rate DEM/USD at quantile p =
0.025. The circles are the log returns, the solid line is the VaR forecast based
on the generalized hyperbolic distribution with parameters λ̂ = 0.9845, α̂ =
1.74385, β̂ = −0.01856, δ̂ = 0.78177, µ̂ = 0.01194, which are the MLE based
on the saddle point approximations method.

would be interesting to see how well the saddle point approximation would work
in this context. Results in this paper furnish an intermediate step to solving this
general, albeit much more difficult and challenging problem.
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Appendix

Proof of Theorem 1. Note that R2
t = µ0σ

2
t + V0σ

2
t Zt, which is a transform

of (1.1). Obviously, this transformed model is also a heteroscedastic regression
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Table 5. Comparisons of exceedance ratios of six VaR estimators using FM
at two given confidence levels: p1 = 0.05 and p2 = 0.001.

p = 0.05 p = 0.001
Index Methods p-value ADE-I p-value ADE-II

(×10−2) (×10−2) (×10−3) (×10−3)
Equally 4.536 0.464 5.592 4.592
Exponentially 5.592 0.592 5.592 4.592

DEM RiskMetrics 5.592 0.592 6.213 5.213
/USD Historical 4.536 0.464 5.592 4.592

GARCH(1,1) 4.908 0.092 4.970 3.970
Saddle point 4.978 0.022 4.011 3.011

Equally 4.567 0.433 5.902 4.902
Exponentially 4.753 0.247 2.796 1.796

GBP RiskMetrics 4.753 0.247 2.796 1.796
Historical 4.567 0.433 5.902 4.902
GARCH(1,1) 4.567 0.433 3.107 2.107
Saddle point 4.981 0.019 2.545 1.545

∗ ADE-I and ADE-II denote the absolute deviations errors at nominal levels: 5% and 99.9%,

respectively.

model. Consider the transformation of (2.2) as

σ̂2
t =

( m∑
j=1

ωjRt−j

)2

=
m∑

j=1

ω2
j R

2
t−j + 2

∑
1≤j<

∑
k≤m

ωjωkRt−jRt−k

=
m∑

j=1

ω2
j (µ0σ

2
t−j + V0σ

2
t−jZt−j) + 2

∑
1≤j<

∑
k≤m

ωjωkσt−jσt−kεt−jεt−k

=
m∑

j=1

ω2
j (µ0σ

2
t−j + V0σ

2
t−jZt−j) + 2

∑
1≤j<

∑
k≤m

ωjωkσt−jσt−k(V0Zt−j + µ0)

=
m∑

j=1

ω2
j (µ0σ

2
t + V0σ

2
t Zt) + 2

∑
1≤j<

∑
k≤m

ωjωkσ
2
t (V0Zt + µ0)

= µ0σ
2
t Ω

2
m + V0σ

2
t Ω

2
mZt.

The last approximation follows from Assumption 1. It follows that

(1) E(σ̂2
t |Ft−1) = E

(
µ0σ

2
t Ω

2
m + V0σ

2
t Ω

2
mZt

∣∣∣Ft−1

)
= µ0σ

2
t Ω

2
m.

(2) Var(σ̂2
t |Ft−1) = Var

(
µ0σ

2
t Ω

2
m + V0σ

2
t Ω

2
mZt

∣∣∣Ft−1

)
= V 2

0 σ4
t Ω

4
m.
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The proof of Theorem 1 is complete.

Proof of Theorem 2. The proof of the theorem can be divided into three
parts.
1. For Zt =

{
ε2
t − E(ε2

t )
}

/Var1/2(ε2
t ), there exist a constant η > 0, such that

log E exp(sZt) ≤
ηs2

2
. (A.1)

This can be established by direct calculation.
2. To show that the process

Ut = exp

 m∑
j=0

σt−jZt−j −
η

2

m∑
j=0

σ2
t−j

 (A.2)

is a supermartingale, that is, E(Ut|Ft−1) ≤ Ut−1. To this end, we have

E(Ut|Ft−1) − Ut−1

= E(Ut|Ft−1) − E(Ut−1|Ft−1)

= E
{

exp
( m∑

j=0

σt−jZt−j −
η

2

m∑
j=0

σ2
t−j

)

− exp
( m−1∑

j=1

σt−jZt−j −
η

2

m−1∑
j=1

σ2
t−j

)∣∣∣Ft−1

}

= E
{

exp
( m∑

j=1

σt−jZt−j −
η

2

m∑
j=1

σ2
t−j

){
exp

(
σtZt −

η

2
σ2

t

)
− 1

}∣∣∣Ft−1

}

=
( m∏

j=1

exp(σt−jZt−j)
exp(η

2σ2
t−j)

)
E

{
exp

(
σtZt −

η

2
σ2

t

)
− 1

∣∣∣Ft−1

}
≤ 0.

Assertion 2 immediately follows from (A.1).
3. It remains to show that

P
{
|σ̂2

t − σ2
t | > ΣI + λµ−1

0 V0σ
2
t , δ ≤ µ−1

0 V0σ
2
t ≤ δ∆

}
= P

{( m∑
j=1

ωjRt−j

)2
− σ2

t | > ΣI + λµ−1
0 V0σ

2
t , δ ≤ µ−1

0 V0σ
2
t ≤ δ∆

}

= P
{ m∑

j=1

ω2
j R

2
t−j + 2

∑
1≤j<

∑
k≤m

ωjωkRt−jRt−k − σ2
t > ΣI + λµ−1

0 V0σ
2
t ,
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δ ≤ µ−1
0 V0σ

2
t ≤ δ∆

}
= P

{ m∑
j=1

ω2
j (µ0σ

2
t−j + V0σ

2
t−jZt−j) + 2

∑
1≤j<

∑
k≤m

ωjωkσt−jσt−kεt−jεt−k − σ2
t

> ΣI + λµ−1
0 V0σ

2
t , δ ≤ µ−1

0 V0σ
2
t ≤ δ∆

}
= P

{ m∑
j=1

ω2
j (µ0σ

2
t−j+V0σ

2
t−jZt−j)+2

∑
1≤j<

∑
k≤m

ωjωkσt−jσt−k(V0Zt−j+µ0)−σ2
t

> ΣI + λµ−1
0 V0σ

2
t , δ ≤ µ−1

0 V0σ
2
t ≤ δ∆

}
= P

{
µ0

m∑
j=1

ω2
j σ

2
t−j + 2µ0

∑
1≤j<

∑
k≤m

ωjωkσt−jσt−k + V0

m∑
j=1

ω2
j σ

2
t−jZt−j

+2V0

∑
1≤j<

∑
k≤m

ωjωkσt−jσt−kZt−j − σ2
t > ΣI + λµ−1

0 V0σ
2
t ,

δ ≤ µ−1
0 V0σ

2
t ≤ δ∆

}
= P

{
µ0

m∑
j=1

ω2
j (σ

2
t−j − σ2

t ) + 2µ0

∑
1≤j<

∑
k≤m

ωjωk(σt−jσt−k − σ2
t )

+V0

m∑
j=1

ω2
j σ

2
t−jZt−j + 2V0

∑
1≤j<

∑
k≤m

ωjωkσt−jσt−kZt−j > ΣI + λµ−1
0 V0σ

2
t ,

δ ≤ µ−1
0 V0σ

2
t ≤ δ∆

}
≤ P

{
µ0

m∑
j=1

ω2
j ΣI + 2µ0

∑
1≤j<

∑
k≤m

ωjωkΣI + V0

m∑
j=1

ω2
j σ

2
t−jZt−j

+2V0

∑
1≤j<

∑
k≤m

ωjωkσt−jσt−kZt−j > ΣI + λµ−1
0 V0σ

2
t ,

δ ≤ µ−1
0 V0σ

2
t ≤ δ∆

}
≤ P

{
ΣI + Ω2

mV0σ
2
t Zt > ΣI + λµ−1

0 V0σ
2
t , δ ≤ µ−1

0 V0σ
2
t ≤ δ∆

}
≤ P

{
µ−1

0 V0σ
2
t Zt > λµ−1

0 V0σ
2
t , δ ≤ µ−1

0 V0σ
2
t ≤ δ∆

}
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≤ 4
√

eη−1λ(1 + log ∆) exp(−λ2

2η
).

Theorem 2 now follows from the results of Lipster and Spokoiny (2000) and
Mercurio and Spokoiny (2004).
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