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Supplementary Material

This supplement contains technical details, proofs of lemmas and theorems in the
main article. All section and equation numbers refer to the main article.

In the following, we prove Lemmas 1, 2 and 1, and which are needed in the proof
of Theorem 1.
Proof of Lemma 1 (Necessity) Suppose that (i) and (ii) hold. By the Chebychev’s
inequality, for all P0-continuity set U and ε > 0,

P(|P (U)− P0(U)| ≥ ε|X1, . . . , Xn)

≤ 1
ε2

E(|P (U)− P0(U)|2|X1, . . . , Xn)

=
1
ε2

[Var(P (U)|X1, . . . , Xn) + {E(P (U)|X1, . . . , Xn)− P0(U)}2]

→ 0 P∞0 − a.s.

Let O be a weak neighborhood of P0. Then, there is a weak open set O1 containing P0

such that P0 ∈ O1 and

O1 = {Q ∈M : |Q(Ui)− P0(Ui)| < εi, i = 1, 2, . . . , k} ⊂ O

where Uis are P0-continuity sets and εis are real numbers. Hence,

P(Oc|X1, . . . , Xn) ≤ P(Oc1|X1, . . . , Xn)
= P[{Q ∈M : |Q(Ui)− P0(Ui)| < εi, i = 1, 2, . . . , k}c|X1, . . . , Xn]

≤
k∑
i=1

P[{Q ∈M : |Q(Ui)− P0(Ui)| ≥ εi}|X1, . . . , Xn]

→ 0 P∞0 − a.s.

This completes the proof of the necessity.
(Sufficiency) Suppose that the posterior is consistent at P0. Let U be a P0-continuity
set and ε > 0 be a positive number. Then,

A = {Q ∈M : |Q(U)− P0(U)| < ε}



is a weak neighborhood of P0.

lim
n→∞

E[P (U)|X1, . . . , Xn] ≥ lim
n→∞

E[P (U)I(P ∈ A)|X1, . . . , Xn]

≥ lim
n→∞

(P0(U)− ε)P(A|X1, . . . , Xn)

= P0(U)− ε, P∞0 − a.s.,

and

lim
n→∞

E[P (U)|X1, . . . , Xn] ≤ lim
n→∞

[(P0(U) + ε)P(A|X1, . . . , Xn) + P(Ac|X1, . . . , Xn)]

= P0(U) + ε, P∞0 − a.s.

Since ε > 0 is arbitrary,

lim
n→∞

E[P (U)|X1, . . . , Xn] = P0(U), P∞0 − a.s.

Similarly,

lim
n→∞

E[P (U)2|X1, . . . , Xn] ≥ sup
ε↓0

lim
n→∞

(P0(U)− ε)2P(A|X1, . . . , Xn) = P0(U)2, P∞0 − a.s.

lim
n→∞

E[P (U)2|X1, . . . , Xn] ≤ sup
ε↓0

lim
n→∞

(P0(U) + ε)2P(A|X1, . . . , Xn) + P(Ac|X1, . . . , Xn)

= P0(U)2, P∞0 − a.s..

Thus, limn→∞ E[P (U)2|X1, . . . , Xn] = P0(U)2, P∞0 − a.s., which implies (ii). �

Proof of Lemma 2. (i). Since X1, X2, . . . is iid sample from P0,
∑n
i=1 I(Xi 6∈ Z) ∼

Bin(n, λ), which implies k∗/n = 1
n

∑n
i=1 I(Xi 6∈ Z)→ λ, P∞0 -a.s.

Fix ε > 0. There is a sufficiently large l such that q1 + · · · + ql > 1 − λ − ε/3. By
the strong law of large numbers, for all sufficiently large n with n > 2l/ε we have

|nj/n− qj | < ε3−1−j for j = 1, . . . , l and |k∗n/n− λ| < ε,

where nj =
∑n
i=1 I(Xi = zj). Thus, for all sufficiently large n with n > 2l/ε, we get

kn/n ≤ [l + n− (nn,1 + · · ·+ nn,l)]/n ≤ ε/2 + 1− (1− λ− ε/2) ≤ λ+ ε

and

kn/n ≥ k∗n/n ≥ λ− ε.

Since ε > 0 is arbitrary, we get the result.
(ii). Suppose that λ > 0. Note

Gkn =
1
kn

∑
X̃j∈Z

δX̃j
+

1
kn

∑
X̃j 6∈Z

δX̃j
=
kn − k∗n
kn

1
kn − k∗n

∑
X̃j∈Z

δzj
+
k∗n
kn

1
k∗n

∑
X̃j 6∈Z

δX̃j
.

From (i), (kn − k∗n)/n→ 0, P∞0 -a.s. Combining these, we have

Gkn
→ µ P∞0 -a.s. �



Lemma 3. Under the assumptions in Theorem 1, the followings hold

(i) E[P (B)|X1, . . . , Xn] = [n/(n+ b)]F̃n(B)

(ii) E[P (B)2|X1, . . . , Xn] = [n2F̃n(B)2 + nF̃n(B)− a(b+ akn)(1− ν(B))]/[(n+ b)(n+
b+ 1)]

where F̃n(B) = n−1
∑n
i=1 I(Xi ∈ B)− aknGkn

(B)/n+ (b+ akn)ν(B)/n.

Proof. From the posterior distribution (3.2), we have

E(P (B)|X1, . . . , Xn) = E[
kn∑
j=1

P̃jI(X̃j ∈ B) + R̃kn
PY (a, b+ akn, ν)(B)|X1, . . . , Xn]

=
kn∑
j=1

njn − a
b+ n

I(X̃j ∈ B) +
b+ akn
b+ n

ν(B)

=
n

b+ n
Fn(B)− akn

b+ n
Gkn

(B) +
b+ akn
b+ n

ν(B)

where Fn = n−1
∑n
j=1 δXj .

Simple algebra on the Dirichlet distribution and the Pitman-Yor process also give
us

E(P (B)2|X1, . . . , Xn) = E[(
kn∑
j=1

P̃jI(X̃j ∈ B) + R̃kn
PY (a, b+ akn, ν)(B))2|X1, . . . , Xn]

=
n2

(b+ n)(b+ n+ 1)

(
Fn(B)− akn

n
Gkn

(B) +
b+ akn

n
ν(B)

)2

+
n

(b+ n)(b+ n+ 1)

(
Fn(B)− akn

n
Gkn(B) +

b+ akn
n

ν(B)(1− a+ aν(B))
)

=
n2F̃n(B)2 + nF̃n(B)− a(b+ akn)(1− ν(B))

(n+ b)(n+ b+ 1)
. �

To prove Proposition 2 and Theorem 4, we need the following lemmas for the mo-
ments of the posterior.

Lemma 4. Suppose P ∼ SSP (p, ν) and X1, . . . , Xn given P is a random sample from
P , where p is an EPPF and ν is a diffuse probability measure. Let n be the partition of
n defined by X1, . . . , Xn, and k = k(n). Then, for a measurable set B,

(i) E[P (B)|X1, . . . , Xn] =
k∑
i=1

pi(n)I(X̃j ∈ B) + pk+1(n)ν(B)

(ii) E[P (B)2|X1, . . . , Xn] =
k∑

i,j=1

pi(n)pj(ni+)I(X̃i ∈ B)I(X̃j ∈ B)+2
k∑
i=1

pi(n)pk+1(ni+)I(X̃i ∈

B)ν(B) + pk+1(n)pk+2(n(k+1)+)ν2(B) + pk+1(n)pk+1(n(k+1)+)ν(B).



Proof. Using the conditional distribution of the species sampling sequence, we obtain

E[P (B)|X1, . . . , Xn] = P(Xn+1 ∈ B|X1, . . . , Xn)

=
k∑
i=1

pi(n)I(X̃i ∈ B) + pk+1(n)ν(B).

To get (ii), first define B0 = B \ {X̃1, . . . , X̃k}. We expand P (B)2 as follows.

P (B)2 =

(
k∑
i=1

P (B ∩ {X̃i}) + P (B0)

)2

=
k∑
i=1

P (B ∩ {X̃i})2 +
∑
i 6=j

P (B ∩ {X̃i})P (B ∩ {X̃j})

+2P (B0)
k∑
i=1

P (B ∩ {X̃i}) + P (B0)2.

We obtain the posterior expectation of the above expansion term by term.

E(P (B ∩ {X̃j})2|X1, . . . , Xn)

= E[E(P (B ∩ {X̃j})2|X1, . . . , Xn, P )|X1, . . . , Xn]

= E[P(Xn+1 ∈ B ∩ {X̃j}, Xn+2 ∈ B ∩ {X̃j}|X1, . . . , Xn, F )|X1, . . . , Xn]

= P(Xn+1 ∈ B ∩ {X̃j}, Xn+2 ∈ B ∩ {X̃j}|X1, . . . , Xn)

= pj(n)I(X̃j ∈ B)pj(nj+)I(X̃j ∈ B)

= pj(n)pj(nj+)I(X̃j ∈ B).

Similarly, we get for i 6= j,

E(P (B ∩ {X̃i})P (B ∩ {X̃j})|X1, . . . , Xn)

= P(Xn+1 ∈ B ∩ {X̃i}, Xn+2 ∈ B ∩ {X̃j}|X1, . . . , Xn)

= pi(n)pj(ni+)I(X̃i ∈ B)I(X̃j ∈ B).

For the third term,

E(P (B0)P (B ∩ {X̃j})|X1, . . . , Xn)

= P(Xn+1 ∈ B ∩ {X̃j}, Xn+2 ∈ B0|X1, . . . , Xn)

= pj(n)pk+1(nj+)ν(B)I(X̃j ∈ B).

Finally, the last term becomes

E(P (B0)2|X1, . . . , Xn) = P(Xn+1 ∈ B0, Xn+2 ∈ B0|X1, . . . , Xn)

=
∫
B0

pk+1(n)
(
pk+2(n(k+1)+)ν(B0 \ {xn+1})

+pk+1(n(k+1)+)I(xn+2 = xn+1)
)
ν(dxn+1)

= pk+1(n)pk+2(n(k+1)+)ν(B0)2 + pk+1(n)pk+1(n(k+1)+)ν(B0).



Using the fact that ν is a diffuse probability measure and collecting the above results,
we obtain the result of the lemma. �

Lemma 5. Suppose the same assumptions of Theorem 4. If the posterior is consistent,
for any B ⊂ Z,

lim
n→∞

E[P (B)|X1, . . . , Xn] = P0(B), P∞0 − a.s.

Proof. We will show for B = {z}, z ∈ Z. For an arbitrary B ⊂ Z, a similar argu-
ment can be used to prove the lemma. An application of Theorem 1.2.2 of Ghosh and
Ramamoorthi (2003) for a closed set B gives us

lim sup E[P (B)|X1, . . . , Xn] ≤ P0(B), P∞0 − a.s.

By the assumptions, for all sufficiently small ε > 0, there exists an open set Bε with
B ⊂ Bε such that ν(Bε) < ε and Bε ∩ Z = B. Since z ∈ Z, for all sufficiently large n,
z = X̃j for some j. Thus,

E[P (Bε)|X1, . . . , Xn] = pj(n) + pk+1(n)ν(Bε) ≤ E[P (B)|X1, . . . , Xn] + ε.

This implies

P0(B) ≤ P0(Bε) ≤ lim inf
n→∞

E[P (Bε)|X1, . . . , Xn] ≤ lim inf
n→∞

E[P (B)|X1, . . . , Xn] + ε.

Since ε is arbitrary, this completes the proof. �

Lemma 6. Assume the assumptions in Theorem 4 and P0 is a mixture of discrete
probability measure and ν with λ > 0. The following convergences hold P∞0 − a.s.

(i)
∑

i:X̃i∈Z

∑
j:X̃j∈Z

pi(n)pj(ni+)I(X̃i ∈ B)I(X̃j ∈ B)→ P0(B ∩ Z)2,

(ii)
∑

i:X̃i∈Z

pi(n)I(X̃i ∈ B)
[ ∑
j:X̃j 6∈Z

pj(ni+)I(X̃j ∈ B) + pk+1(ni+)ν(B)
]
→ λP0(B ∩

Z)ν(B),

(iii)
∑

i:X̃i 6∈Z

pi(n)I(X̃i ∈ B)
[ ∑
j:X̃j 6∈Z

pj(ni+)I(X̃j ∈ B) + 2pk+1(ni+)ν(B)
]

+pk+1(n)ν(B)[pk+2(n(k+1)+)ν(B) + pk+1(n(k+1)+)]→ (λν(B))2.

Proof. Let the three left hand side terms in (i), (ii) and (iii) be I1, I2 and I3 respectively.
(i) Using pj(ni+) = (nj + I(i = j))/(n+ 1), I1 is separated as follows.

I1 =
∑

i:X̃i∈Z

pi(n)I(X̃i ∈ B)
n

n+ 1
Fd,n(B)

+
∑

i:X̃i∈Z

pi(n)I(X̃i ∈ B)
[ ∑
j:X̃j∈Z

(pj(ni+)− p∗j (ni+))I(X̃j ∈ B) +
1

n+ 1
I(X̃i ∈ B)

]
= I11 + I12



where Fd,n(B) = n−1
∑
j:X̃j∈Z njI(X̃j ∈ B). By the strong law of large numbers, (4.5)

and Proposition 3 (i),

|I11 − P0d(B)2| ≤
∣∣∣ n

n+ 1
Fd,n(B)2 − P0d(B)2

∣∣∣+
∑

j:X̃j∈Z

|pj(n)− p∗j (n)| → 0, P∞0 − a.s.

where P0d(B) = P0(B ∩ Z). From the assumption (4.5),

|I12| ≤
∑

i:X̃i∈Z

pi(n)
[ ∑
j:X̃j∈Z

|pj(ni+)− p∗j (ni+)|+ 1
n+ 1

I(X̃i ∈ B)
]
→ 0, P∞0 − a.s.

(ii) I2 is also separated into two groups. Let Hk∗(n)(B) = (k∗(n))−1
∑
i:X̃i 6∈B−Z pi(n).

I2 =
∑

i:X̃i∈Z

pi(n)I(X̃i ∈ B)[λν(B)

+ (k∗(ni+)p+(ni+) + pk+1(ni+)− λ)ν(B) + k∗(ni+)p+(ni+)(Hk∗(ni+)(B)− ν(B))]

= I21 + I22.

By Proposition 3 (i), I21 → P0(B ∩ Z)λν(B), P∞0 -a.s. and

|I22| ≤
∑

i:X̃i∈Z

pi(n)
[
|k∗(ni+)p+(ni+) + pk+1(ni+)− λ|+ |Hk∗(ni+)(B)− ν(B)|

]
→ 0, P∞0 − a.s.

(iii) Since
∑
i:X̃i 6∈Z pi(n)I(X̃i ∈ B) = k∗p+(n)Hk∗(B), we have

I3 = (k∗p+(n)Hk∗(B) + pk+1(n)ν(B))λν(B)

+ pk+1(n)ν(B)
[
(k∗(n(k+1)+)p+(n(k+1)+) + pk+2(n(k+1)+)− λ)ν(B)

+ pk+1(n(k+1)+) + k∗(n(k+1)+)p+(n(k+1)+)(Hk∗(n(k+1)+)(B)− ν(B))
]

+
∑

i:X̃i 6∈Z

pi(n)I(X̃i ∈ B)
[
(k∗(ni+)p+(ni+) + pk+1(ni+)− λ)ν(B)

+ k∗(ni+)p+(ni+)(Hk∗(ni+)(B)− ν(B))
]

= I31 + I32 + I33 + I34 + I35.

Note that by Proposition 3 (ii), I31 → λν(B)λν(B), P∞0 -a.s. and

|I32| ≤ |k∗(n(k+1)+)p+(n(k+1)+) + pk+2(n(k+1)+)− λ| → 0, P∞0 − a.s.
|I33| ≤ pk+1(n(k+1)+) + |Hk∗(n(k+1)+)(B)− ν(B)| → 0, P∞0 − a.s.

|I34| ≤
∑

i:X̃i 6∈Z

pi(n)|k∗(ni+)p+(ni+) + pk+1(ni+)− λ| → 0, P∞0 − a.s.

|I35| ≤
∑

i:X̃i 6∈Z

pi(n)|Hk∗(ni+)(B)− ν(B)| → 0, P∞0 − a.s.



Thus, the lemma follows. �

We now give the proofs of Propositions 2 and 3 and Theorem 4.

Proof of Proposition 2. From Lemma 2, we have

E(P (B)|X1, . . . , Xn) =
k∑
j=1

nj
n
I(X̃j ∈ B) +

k∑
j=1

(pj(n)− nj
n

)I(X̃j ∈ B) + pk+1(n)ν(B)

= Fn(B) +
k∑
j=1

(pj(n)− nj
n

)I(X̃j ∈ B) + pk+1(n)ν(B).

By the assumptions and Proposition 3 (iii), the second and the third terms tend to 0.
Thus, as n→∞, we get |E(P (B)|X1, . . . , Xn)− Fn(B)| → 0, P∞0 − a.s.

In (ii) of Lemma 2, E[P (B)2|X1, . . . , Xn] is expressed as the sum of four terms,
which we will call I1, . . . , I4 in the order of appearance.

First term I1 is separated into three parts as follows

k∑
i,j=1

[
p∗i (n)p∗j (n

i+) + p∗i (n)(pj(ni+)− p∗j (ni+)) + (pi(n)− p∗i (n))pj(ni+)
]
I(X̃i, X̃j ∈ B)

The second and third group converge to 0 P∞0 − a.s. by (4.2) and (4.4). The first group
becomes

k∑
i,j=1

p∗i (n)p∗j (n
i+)I(X̃i, X̃j ∈ B) =

n

n+ 1
Fn(B)2 +

1
n+ 1

Fn(B).

Thus, I1 → P0(B)2, P∞0 − a.s. as n→∞.
The other terms are

|I2 + I3 + I4| ≤ pk+1(n)
[
2

k∑
i=1

pi(n(k+1)+) + pk+1(n(k+1)+) + pk+2(n(k+1)+)
]

≤ 2pk+1(n)→ 0. P∞0 − a.s.

Thus, we get the desired result. �

Proof of Proposition 3.
(i). Fix a Borel set B. Using

∑k
i=1(ni/n)I(X̃i ∈ Z ∩B) = Fn(Z ∩B),

∣∣∣ k∑
i=1

pi(n)I(X̃i ∈ Z ∩B)− Fn(Z ∩B)
∣∣∣ ≤ k∑

i=1

|pi(n)− ni/n|.

Dominated convergence theorem and (4.5) give

lim
n→∞

k∑
i=1

pi(n)I(X̃i ∈ Z ∩B) = lim
n→∞

Fn(Z ∩B) = P0(Z ∩B) =
∞∑
i=1

qiI(zi ∈ B).



(ii). Apply (i) with B = Z. Then,

lim
n→∞

∑
i:X̃i∈Z

pi(n) =
∞∑
i=1

qi = 1− λ, P∞0 − a.s.

By noting that p1(n) + · · ·+ pk+1(n) = 1, we get

k∗p+(n) + pk+1(n) =
∑

j:X̃j 6∈Z

pj(n) + pk+1(n) = 1−
∑

j:X̃j∈Z

pj(n)→ λ, P∞0 − a.s.

(iii). Note that (4.5) is assumed. The equation (4.4) is

lim
n→∞

Cn = lim
n→∞

[ ∑
j:X̃j∈Z

|pj(n)− nj/n|+
∑

j:X̃j 6∈Z

|pj(n)− nj/n|
]

= lim
n→∞

[ ∑
j:X̃j∈Z

|pj(n)− nj/n|+ |(k∗p+(n) + pk+1(n))− k∗/n− pk+1(n)|
]

= lim
n→∞

[
0 + |λ− λ− pk+1(n)|

]
= lim
n→∞

pk+1(n), P∞0 − a.s.

If λ > 0 is assumed, then P∞0 -almost surely

0 = lim
n→∞

∑
j:X̃j /∈Z

|pj(n)− nj
n
| = lim

n→∞
(k∗/n)|np+(n)− 1| = λ lim

n→∞
|np+(n)− 1|. �

Proof of Theorem 4.
(Sufficiency)
Case A: when condition (i) holds. In this case, the posterior is consistent by the
Proposition 3 (iii) and Proposition 2.
Case B: when condition (ii) holds. We first consider the case when P0 is discrete,
i.e., λ = 0. By noting that pk+1(n) = 1−

∑k
j=1 pj(n)→ 1− (1− λ) = 0, P∞0 − a.s., this

case reduces to Case A and the posterior is consistent.
Now we consider the case when P0 is a mixture of a discrete probability measure

and ν with λ > 0. Note

E[P (B)|X1, . . . , Xn] =
k∑
j=1

pj(n)I(X̃j ∈ B) + pk+1(n)ν(B)

=
k∑
j=1

pj(n)I(X̃j ∈ Z ∩B) +
k∑
j=1

pj(n)I(X̃j ∈ B −Z) + pk+1(n)ν(B).

The first term converges to
∑∞
j=1 qjI(zj ∈ B) by Proposition 3 (i). The fact that Hk∗(B)

converges to ν(B) together with Proposition 3 (ii) yields

k∗p+(n)(Hk∗(B)− ν(B)) + (k∗p+(n) + pk+1(n))ν(B)→ λν(B), P∞0 − a.s,



where Hk∗ is defined by Hk∗(B) = (k∗)−1
∑k
j=1 I(X̃j ∈ B−Z) for all Borel set B. Thus,

lim
n→∞

E[P (B)|X1, . . . , Xn] =
∞∑
j=1

qjI(zj ∈ B) + λν(B) = P0(B), P∞0 − a.s.

Terms in Lemma 2 are regrouped as∑
i:X̃i∈Z

∑
j:X̃j∈Z

pi(n)pj(ni+)I(X̃i ∈ B)I(X̃j ∈ B)

+ 2
∑

i:X̃i∈Z

pi(n)I(X̃i ∈ B)
[ ∑
j:X̃j 6∈Z

pj(ni+)I(X̃j ∈ B) + pk+1(ni+)ν(B)
]

+
∑

i:X̃i 6∈Z

pi(n)I(X̃i ∈ B)
[ ∑
j:X̃j 6∈Z

pj(ni+)I(X̃j ∈ B) + 2pk+1(ni+)ν(B)
]

+ pk+1(n)ν(B)[pk+2(n(k+1)+)ν(B) + pk+1(n(k+1)+)]
= I1 + I2 + I3 + I4.

Lemma 4 shows that I1 → P0(B ∩Z)2, I2 → 2λP0(B ∩Z)ν(B) and I3 + I4 → (λν(B))2,
P∞0 -a.s. Hence, we have

lim
n→∞

E[P (B)2|X1, . . . , Xn] = (P0(B ∩ Z) + λν(B))2 = (P0(B))2, P∞0 − a.s.

Therefore, by Lemma 1, the posterior is consistent at P0.

(Necessity) Suppose the posterior is consistent at P0. By taking B = {z} with z ∈ Z
in Lemma 3, we have pj(ñ)→ qj , P∞0 −a.s, for all j such that ñj > 1 and the decreasing
ordering ñ = (ñ1, . . . , ñk) of n1, . . . , nk. Also it is not hard to see p+(n)− 1/n→ 0.

Fix ε > 0. There is L such that
∑
i>L qi < ε/6. By the strong law of large numbers

and Proposition 3 (i), there is N0 such that |p∗i (ñ)− qi| < εqi/6 and |pi(ñ)− qi| < εqi/6
for all n ≥ N0 and i = 1, . . . , L where p∗i (n) = ni/n. Again by the strong law of large
numbers and Lemma 3 with B = Z − {z1, . . . , zL}, we get∑

j:X̃j∈B

p∗j (n)→
∑
j>L

qj and
∑

j:X̃j∈B

pj(n)→
∑
j>L

qj , P∞0 − a.s.

Also, there is N1 such that for all n ≥ N1∣∣∣ ∑
j:X̃j∈B

p∗j (n)−
∑
j>L

qj

∣∣∣ < ε/6 and
∣∣∣ ∑
j:X̃j∈B

pj(n)−
∑
j>L

qj

∣∣∣ < ε/6.

By merging inequalities, for all n ≥ N0 +N1∑
j:X̃j∈Z

|pj(n)− nj/n| ≤ ε.

The arbitrariness of ε > 0 gives (4.5).



Now suppose that P0 is not a mixture of a discrete probability measure and ν. Then,
P0 is a mixture of a discrete probability measure and a diffuse probability measure µ
that is different from ν with λ > 0.

The predictive probability given by

E(P (B)|X1, . . . , Xn) =
k∑
j=1

pj(n)I(X̃j ∈ B) + pk+1(n)ν(B)

should converge to P0(B) for every P0-continuity set B. Since µ 6= ν and the predictive
probability is eventually unaffected by ν, pk+1(n) should converge to 0.

Suppose that there is a sequence nl such that pk+1(nl)→ φ > 0. Since k∗p+(n) +
pk+1(n)→ λ, k∗p+(nl)→ λ− φ ≥ 0. The predictive probability is

k∑
j=1

pj(nl)I(X̃j ∈ Z ∩B) +
k∑
j=1

pj(nl)I(X̃j ∈ B −Z) + pk+1(nl)ν(B).

By the Proposition 3 (i), the first term converges to
∑∞
j=1 qjI(zj ∈ B), P∞0 − a.s. The

second term goes to

p+(nl)
k∑
j=1

I(X̃j ∈ B −Z) = k∗p+(nl)×
1
k∗

k∑
j=1

I(X̃j ∈ B −Z)

→ (λ− φ)µ(B −Z) = (λ− φ)µ(B), P∞0 − a.s..

Hence, the predictive probability E[P (B)|X1, . . . , Xnl
] converges to

∞∑
j=1

qjI(zj ∈ B) + (λ− φ)µ(B) + φν(B) = P0(B) + φ(ν(B)− µ(B)), P∞0 − a.s.

It contradicts to the assumption that the posterior is consistent at P0. Thus, pk+1(n)→
0, P∞0 − a.s.. This completes the proof. �

The following lemma is used to check the conditions of the posterior consistency for
the N-IG process prior.

Lemma 7. When 0 ≤ k ≤ n,

nw1,n → 1 as n→∞.

Proof. Since y ≥ 1, obviously 1− y−2 ≤ 1 and

nw1,n =

∫∞
1

(1− y−2)nyk−1e−aydy∫∞
1

(1− y−2)n−1yk−1e−aydy
≤ 1.

It is not hard to see that (1 − y−2)n−1yk−1e−ay on (1,∞) is unimodal and η2
n,k =

argmaxy≥1(1−y−2)n−1yk−1e−ay goes to infinity as n increases. Thus η2
n,k is unique and

(1 − y−2)n−1yk−1e−ay increases on (1, η2
n,k) and decreases on (η2

n,k,∞). For simplicity,



let η be the positive root of η2
n,k. By reducing the integration range of numerator as

(η,∞) and separating the integration range in denominator, we have

nw1,n ≥
∫∞
η

(1− η−2)(1− y−2)n−1yk−1e−aydy∫ η
1

(1− y−2)n−1yk−1e−aydy +
∫∞
η

(1− y−2)n−1yk−1e−aydy

≥ (1− η−2)
[
1 +

∫ η
1

(1− y−2)n−1yk−1e−aydy∫ η2

η
(1− y−2)n−1yk−1e−aydy

]−1

≥ (1− η−2)
[
1 +

(η − 1)(1− η−2)n−1ηk−1e−aη

(η2 − η)(1− η−2)n−1ηk−1e−aη

]−1

=
η − 1
η
→ 1, as n→∞. �

The following lemma is used to check the conditions of the posterior consistency for
the Poisson-Kingman process prior.

Lemma 8. When 0 ≤ k ≤ n,

w(n, k)→ 1 as n→∞.

Proof. The upper bound is easily obtained by

w(n, k) =

∫∞
0

u
b+uu

n−1(b+ u)ak−ne−cΓ(1−a)(b+u)a/adu∫∞
0
un−1(b+ u)ak−ne−cΓ(1−a)(b+u)a/adu

≤ 1.

The lower bound is quite similar to Lemma 5. For fixed n and k, it is easy to show that
un−1(b + u)ak−ne−cΓ(1−a)(b+u)a/a is unimodal in u. Then, v2

n,k = argmaxu≥0 u
n−1(b +

u)ak−ne−cΓ(1−a)(b+u)a/a is unique and goes infinity as n goes to infinity. Besides, the
argument function increases on (0, v2

n,k) and decreases on (v2
n,k,∞).

Let v be the positive square root of v2
n,k. For the lower bound of w(n, k), the

integration range of numerator is reduced to (v,∞). A similar calculation to Lemma 5
gives

w(n, k) ≥
∫∞
v

v
b+vu

n−1(b+ u)ak−ne−cΓ(1−a)(b+u)a/adu∫∞
0
un−1(b+ u)ak−ne−cΓ(1−a)(b+u)a/adu

≥ v

b+ v

[
1 +

∫ v
0
un−1(b+ u)ak−ne−cΓ(1−a)(b+u)a/adu∫ v2

v
un−1(b+ u)ak−ne−cΓ(1−a)(b+u)a/adu

]−1

≥ v

b+ v

[
1 +

v · vn−1(b+ v)ak−ne−cΓ(1−a)(b+v)a/a

(v2 − v) · vn−1(b+ v)ak−ne−cΓ(1−a)(b+v)a/a

]−1

=
v − 1
b+ v

→ 1 as n→∞. �
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