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S1. Derivation of Cross-validation Score

In this section, we shall derive the cross-validation score (7) from the Kullback-Leibler distance

(6). Dropping the terms that do not involve ΘΛ = (ηΛ,bΛ), one can estimate the remaining

part of (6) by

1

n

n∑
i=1

∫ Xi

Zi

eηΛ(t,Ui)+zT
i bΛdt− 1

n

n∑
i=1

∫ Xi

Zi

[ηΛ(t, Ui) + zT
i bΛ]eη(t,Ui)+zT

i bdt. (S1)

The first term of (S1) is available through ΘΛ. But the second term, denoted by µΘ(ΘΛ),

involves the unknown Θ and has to be estimated.

The unknown Θ appears in the exponential power within µΘ(ΘΛ), which is not friendly

to deal with. So our first step is to transform µΘ(ΘΛ) using the counting processes for frailty

models introduced by Nielsen, Gill, Andersen, and Sørensen (1992).

Let N(t) = I[X≤t,δ=1] be the event process and Y (t) = I[Z<t≤X] the at-risk process. Write

A(t) =
∫ t

0
Y (s)Eb[eη(s,U)+zT b]ds, with Eb being the expectation with respect to b. Define

M(t) = N(t)−A(t). Then conditioning on Z and U , M(t) is a martingale. By the martingale

transform theorem, the integral
∫ t

0
f(s, U)dM(s), given Z and U , is also a martingale for f(t, u)

independent of X and continuous in t, ∀u ∈ U . Thus, one has E[
∫
T f(t, U)dM(t)] = 0, where

the expectation is with respect to b, Z, X and U . ”Estimating zero” by the corresponding

sample mean, one has

0 ≈ 1

n

n∑
i=1

{
δif(Xi, Ui)−

∫ Xi

Zi

f(t, Ui)e
η(t,Ui)+zT

i bdt

}
. (S2)

A naive estimate of µΘ(ΘΛ) can be obtained by setting f(t, Ui) = ηΛ(t, Ui) + zT
i bΛ:

µ̃Θ(ΘΛ) =
1

n

n∑
i=1

∫ Xi

Zi

(ηΛ(t, Ui) + zT
i bΛ)eη(t,Ui)+zT

i bdt ≈ 1

n

n∑
i=1

δi(ηΛ(Xi, Ui) + zT
i bΛ) (S3)
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However, the resulting estimate of the Kullback-Leibler distance would simply be the nega-

tive log likelihood, clearly favoring λ = 0. The naive estimate (S3) is biased since the samples

(Xi, Ui) contribute to the estimate ΘΛ. An alternative to ΘΛ is its approximation through stan-

dard cross-validation. Consider the following delete-one version of a quadratic approximation

to (1) at Θ̃,

− 1

n− 1

n∑
j=1
j 6=i

δj(η(Xj , Uj) + zT
j b) + µΘ̃(Θ)− VΘ̃(Θ̃, Θ) +

1

2
VΘ̃(Θ, Θ) +

1

2n
bT Σb +

λ

2
J(η), (S4)

where VΘ̃(Θ̃, Θ) = VΘ̃(η̃+zT b̃, η+zT b), and VΘ̃(Θ, Θ) = VΘ̃(η+zT b, η+zT b), with VΘ̃ defined

in Section 2.2.

Set Θ̃ = ΘΛ in (S4). Denote the resulting minimizer by Θ
[i]

Λ,Θ̃
. Let a = (bT , cT ,dT )T . Then

a straightforward calculation using the delete-one version of (5) for (S4) yields the coefficient

for Θ
[i]

Λ,Θ̃
:

a
[i]
Λ = aΛ +

H−1K1

n(n− 1)
− δi

H−1ψ(Xi, Ui)

n− 1
,

where H is the hessian matrix on the left hand side of (5), K is a (p + q + m)× n matrix with

columns ψ(Xi, Ui) = (zT
i , ξ(Xi, Ui)

T , φ(Xi, Ui)
T )T , and 1 is a (p + q + m)-vector of all 1’s.

Hence

η
[i]

Λ,Θ̃
(Xi, Ui) + zT

i b
[i]

Λ,Θ̃
= ψ(Xi, Ui)

T a
[i]
Λ

= [ηΛ(Xi, Ui) + zT
i bΛ]− 1

n− 1
ψ(Xi, Ui)

T H−1(δiψ(Xi, Ui)−K1/n) (S5)

Substituting ηΛ(Xi, Ui) + zT
i bΛ in (S3) by (S5) and then plugging the resulting estimate

into (S1) yields the cross-validation score (7).

S2. Approximate Posterior Mean and Variance

In this part, we will illustrate the Bayes model for the penalized likelihood (1), and use it to

derive the approximate posterior mean and variance of η(x) + zT b for any given (x, z).

Since η0 = φT d and η1 = ξT c, the priors on η0 and η1 give a diffuse prior on d and a

Gaussian prior N(0, Q+/(nλ)) on c. The frailty b ∼ N(0, Σ−1). Let a = (bT , cT ,dT )T . The

posterior likelihood of a given data X = {(Zi, Xi, δi, Ui, zi), i = 1, . . . , n} is proportional to the

joint likelihood, which is of the form

p(X|a)q(a) ∝ exp

{ n∑
i=1

{
δi(φ

T
i d+ ξT

i c+ zT
i b)−

∫ Xi

Zi

exp(φ(t, Ui)
T d+ ξ(t, Ui)

T c+ zT
i b)dt

}

− 1

2
bT Σb− nλ

2
cT Qc

}
, (S6)

with the exponent on the right hand side simply being the penalized likelihood (1) and (4)

multiplied by n. Through a second-order Taylor expansion of the integral term at aΛ, the
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exponent in (S6) can be approximated by

−1

2
(a− aΛ)T (nH)(a− aΛ) + C, (S7)

where H is the hessian matrix in (5) and C is a constant with respect to b. Hence the approx-

imate posterior distribution through (S7) is Gaussian with mean aΛ and covariance H−1/n. It

follows that the approximate posterior mean of η(x)+zT b is ηΛ(x)+zT bΛ = ψ(x)T aΛ and the

approximate posterior variance is ψT (x)H−1ψ(x)/n.

S3. Proof of Theorem 1

We will first prove identifiability of the model with any fixed p. Let D = (Z, X, δ, U, z) be a

representative observation and f(D;b, η) be the probability function of D with parameter value

(b, η). Then the proposed model is identifiable if and only if

∫
(
√

f(D;b, η)−
√

f(D;b∗, η∗))2dµ(D) = 0 (S8)

implies (b, η) = (b∗, η∗). We note that equation (S8) leads to

δ(η + zT b)−
∫ X

Z

exp(η + zT b)dt = δ(η∗ + zT b∗)−
∫ X

Z

exp(η∗ + zT b∗)dt.

Taking partial derivatives with respect to z, Z, and X sequentially leads to

(eη∗(X,U) − eη∗(Z,U))ezT b∗b∗ = (eη(X,U) − eη(Z,U))ezT bb,

which implies (eη∗(X,U) − eη∗(Z,U)) = M2(e
η(X,U) − eη(Z,U)) with a constant M2. Simple calcu-

lations show that this leads to η = η∗ and b = b∗. In this above proof, we have further assumed

that U is not a deterministic function of z, which can be easily satisfied.

Next, let’s look at the consistency of the estimates in the simple case when the covariance

matrix Σ = σ−2I. Assumption A4 indicates that σ−2 = Op(n
1

2s0+1 ). We have assumed that

(bT , ηT ) is bounded. The first term in the likelihood function is linear, and the second term is

exponential. So if a component of (b̂, η̂) is unbounded, then the second term of the likelihood,

which is negative, will dominate. The penalty term is always negative. We can thus conclude

that (b̂, η̂) is asymptotically bounded. We note that, in the above arguments, the boundedness

of b̂ and bT should be interpreted as component-wise.

Let N[](ε,G, || · ||) denote the bracketing number of ε-brackets covering a subset G of a real

function space with norm || · ||. van de Geer (2000) shows that for the class H = {h : [0, 1] →
[0, 1],

∫
(h(s0)(x))2dx < 1}, we have log N[](ε,H, L2) ≤ M5ε

− 1
s0 for fixed s0 ≥ 1 and all ε, where

M5 is a fixed constant.

First, we note that, if p is bounded, then the following proof can be modified to establish

that b̂ is
√

n consistent for bT . Particularly, in what follows, we can first establish the ns0/(2s0+1)

convergence rate for b̂ and η̂. Then we can employ the general theorem presented in Huang
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(1996) to establish the
√

n consistency of b̂. With a diverging number of p, beyond assumptions

A1-A5, we will also assume that miniP (z=i)
maxiP (z=i)

is uniformly bounded away from 0, as n → ∞.

Intuitively, we assume that, as n → ∞, the number of observations with different z values

increases with asymptotically the same rate. This helps avoid the possible “partial consistency”

situation, that is, as n → ∞ the number of observations with certain z values remains small.

Under this assumption, when p →∞ as n →∞, we can first carry out the proposed estimation

with a fixed number of p. Denote the estimate so obtained as b̃. Using results with fixed p,

we can establish that component-wise b̃ − bT ∼ O(
√

p/n), or b̃ = bT ± u
√

p/n, where u is

component-wise bounded. Thus, in the asymptotic study that follows, we are able to restrict

our b̂ to be within b̃±u
√

p/n. We note that, although we will localize our estimate, we do not

assume we know the local region a priori. Rather, the local region is obtained via estimation.

Since (b̂, η̂) minimizes (1), we have

Pnl(b̂, η̂)− 1

2nσ2
b̂T b̂− λ

2
J(η̂) ≥ Pnl(bT , ηT )− 1

2nσ2
bT

T bT − λ

2
J(ηT ), (S9)

which is equivalent to

1

2nσ2
b̂T b̂ +

λ

2
J(η̂) + P[l(bT , ηT )− l(b̂, η̂)]

≤ 1

2nσ2
bT

T bT +
λ

2
J(ηT )− (Pn − P)[l(bT , ηT )− l(b̂, η̂)] (S10)

Applying the entropy result for l(b, η), we have

(Pn − P)[l(bT , ηT )− l(b̂, η̂)] = (1 + J1/2(η̂) + J1/2(ηT ))op(n−1/2 + ||b̂− bT ||). (S11)

Simple calculations after combining the above two inequalities shows λJ(η̂) = op(1). Equa-

tions (S10), (S11) and assumption A3 then imply that

d2
∧ ≤ op(1) + (1 + J1/2(η̂) + J1/2(ηT ))op(n−1/2 + ||b̂− bT ||),

where d∧ = d((b̂, η̂), (bT , ηT )). Consistency of the estimate thus holds.

To establish the rate of convergence, we use the following result.

Theorem (van de Geer 2000, Page 79). Consider a uniformly bounded class of functions Γ,

with supγ∈Γ |γ − γ0| < ∞ with a fixed γ0 ∈ Γ, and log N[](ε, Γ, P ) ≤ M7ε
−b for all ε > 0,

where b ∈ (0, 2) and M7 a fixed constant. Then for δn = n−1/(2+b), supγ∈Γ
|(Pn−P)(γ−γ0)|

||γ−γ0||1−b/2
2 ∨√nδ2

n

=

Op(n−1/2), where x ∨ y = max(x, y).

Combining assumption A3, (S10) and the above theorem with b = 1
s0

yields

1

2nσ2
b̂T b̂ +

λ

2
J(η̂) + M3d

2
∧ ≤ 1

2nσ2
bT

T bT +
λ

2
J(ηT )

+ (1 + J1/2(η̂) + J1/2(ηT ))×Op(n−1/2)× (||η̂ − ηT ||1−
1

2s0 + ||b̂− bT ||1−
1

2s0 + n
1
2−

2s0
2s0+1 ).
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From the above equation, we can get that

λ

2
J(η̂) ≤ 1

2nσ2
bT

T bT +
λ

2
J(ηT )

+(1 + J1/2(η̂) + J1/2(ηT ))×Op(n−1/2)× (||η̂ − ηT ||1−
1

2s0 + ||b̂− bT ||1−
1

2s0 + n
1
2−

2s0
2s0+1 )

M3d
2
∧ ≤ 1

2nσ2
bT

T bT +
λ

2
J(ηT )

+(1 + J1/2(η̂) + J1/2(ηT ))×Op(n−1/2)× (||η̂ − ηT ||1−
1

2s0 + ||b̂− bT ||1−
1

2s0 + n
1
2−

2s0
2s0+1 ).

Simple calculations yield that J(η̂) = Op(1) and d((b̂, η̂), (bT , ηT )) = d∧ = Op(n
− s0

2s0+1 ).

Note that the above proof of consistency and convergence rate relies only on the fact that

the order of σ−2 is in control. For a general Σ, the proof can thus be easily modified using the

eigendecomposition of Σ.


