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Abstract: Analyzing high-throughput genomic, proteomic, and metabolomic data
usually involves estimating high-dimensional location parameters. Thresholding es-
timators can significantly improve such estimation when many parameters are zero,
i.e., parameters are sparse. Several such estimators have been constructed to be
adaptive to parameter sparsity. However, they assume that the underlying param-
eter spaces are symmetric. Since many applications present asymmetry parameter
spaces, we introduce a class of generalized thresholding estimators. A construc-
tion of these estimators is developed using a Bayes approach, where an important
constraint on the hyperparameters is identified. A generalized empirical Bayes im-
plementation is presented for estimating high-dimensional yet sparse normal means.
This implementation provides generalized thresholding estimators which are adap-
tive to both sparsity and asymmetry of high-dimensional parameters.

Key words and phrases: Asymmetric parameter space, Bayes construction, empiri-
cal Bayes, sparse parameter space, thresholding.

1. Introduction

Availability of high-throughput biotechniques poses a fundamental but chal-
lenging issue for estimating high-dimensional yet sparse parameters. For ex-
ample, spotted microarrays with a two-color competitive hybridization process
provide a genome-wide comparison of gene expression levels under different con-
ditions (Schena, Shalon, Davis and Brown (1995); Brown and Botstein (1999)).
Such genomic studies are usually provided with the logarithmic fold changes of
thousands of genes. In proteomic (and metabolomic) study, mass spectrometry
has been widely used to quantitatively profile proteins (and metabolites), where
abundances of a large number of underlying compounds are recorded (Feng, Liu,
Lou and Liu (2008)). With appropriate preprocessing and normalization, these
genome-, proteome-, and metabolome-wide measures are taken to estimate the
underlying true parameters, and identify the limited number of non-zero compo-
nents.

In general, we consider estimating a high-dimensional location parameter
µ = (µ1, µ2, · · · , µp) from the noisy data Yp = (y1, y2, · · · , yp), where

yi − µi
i.i.d.∼ ϕ(·), ϕ(·) is a symmetric log-concave density function. (1.1)
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In the case that ϕ(·) has zero mean and standardized variance, the “oracle” es-
timator µ̂i = yi1{|µi|>1} yields the risk E[

∑p
i=1(µ̂i − µi)2] =

∑p
i=1 min(1, µ2

i ),
where 1A(x) equals to one if x ∈ A, and zero otherwise. When many com-
ponents in µ are smaller than one, the “oracle” estimator can dominate the
original one. Motivated by such observation, Donoho and Johnstone (1994)
proposed to estimate the i-th parameter component µi with a hard threshold
δh(yi, τ) = yi1(−∞,−τ)∪(τ,∞)(yi), and a soft threshold δs(yi, τ) = sign(yi)(|yi| −
τ)1(−∞,−τ)∪(τ,∞)(yi), where τ is a thresholding parameter.

When a large number of the components in µ are zero, both hard and soft
thresholds can dramatically reduce the risk with properly chosen τ . However, it
is challenging to construct this thresholding parameter. On the basis of Stein’s
unbiased risk estimator (SURE) in estimating a multivariate normal mean (Stein
(1981)), Donoho and Johnstone (1995) proposed the SURE method which per-
forms well when non-zero parameters are of small sizes. However, it does not
perform as well when non-zero parameters are of large sizes. Abramovich, Ben-
jamini, Donoho and Johnstone (2006) proposed a method based on Benjamini
and Hochberg’s (1995) idea of controlling the false discovery rate (FDR) in mul-
tiple tests, and Fan and Li (2001) proposed a penalized least squares estimator
with the smoothly clipped absolute deviation (SCAD) penalty. Both estimators
are adaptive to sparse parameter space but also rely on properly pre-specified
parameters.

Johnstone and Silverman (2004) proposed an empirical Bayes method that
does not require pre-specification of the thresholding parameter. Its data-driven
threshold is adaptive to sparsity of the high-dimensional parameters. However,
their thresholding estimator inherently assumes that the underlying parameter
space is symmetric, and the probabilities to observe negative and positive val-
ues are equal, many data settings violate this assumption. For example, van
de Peppel, Kemmeren, van Bakel, Radonjic, van Leenen and Holstege (2003)
presented a microarray dataset with only 4,936 negative values out of a total of
16,734 endogenous genes. That is, the probability of observing a negative value
is estimated to be 0.295 with standard error 0.0035. In extremal cases, all pa-
rameters are non-negative as observed in removing background noise for mass
spectrometry data (shown in Section 4.2).

In Section 2 we introduce a class of generalized thresholding estimators that
extend the traditional ones. The construction of the estimators employs a Bayes
approach, where an important constraint on the hyperparameters is identified.
In Section 3, we extend the empirical Bayes (EB) implementation of Johnstone
and Silverman (2005) to a generalized empirical Bayes (GEB) implementation
for estimating high-dimensional, asymmetric, and sparse normal means. Anal-
yses of two datasets are presented in Section 4 to compare the EB and GEB



GENERALIZED THRESHOLDING ESTIMATORS 913

estimators. In Section 5, a simulation study is conducted to further compare the
GEB estimator with other estimator, including those based on SURE, FDR and
SCAD.

2. Generalized Thresholding Estimators

2.1. Definitions

Existing thresholding estimators are antisymmetric, which assumes that the
parameter space of interest is symmetric. Here we introduce a class of generalized
thresholding estimators that include the traditional thresholding estimators as
special cases. As demonstrated in later sections, appropriately constructed gen-
eralized thresholding estimators can be adaptive to both sparsity and asymmetry
of the underlying parameter spaces.

Definition 2.1. For τ− ≤ 0 and τ+ ≥ 0, δ(y, τ−, τ+) is a generalized threshold-
ing estimator if (i) δ(y, τ−, τ+) is increasing in y ∈ R; (ii) −|y| ≤ δ(y, τ−, τ+) ≤
|y|,∀y ∈ R; (iii) δ(y, τ) = δ(y,−τ, τ) is antisymmetric for any τ ≥ 0; (iv)
δ(y, τ−, τ+) = 0 if and only if τ− ≤ y ≤ τ+.

Here τ− and τ+ are the lower and upper thresholds, respectively, which were
bounded by the universal threshold

√
2 log p in Donoho and Johnstone (1994).

When τ− = −τ+, δ(y, τ−, τ+) reduces to a thresholding estimator that works well
for symmetric data. If, on the other hand, the non-zero parameters can only
be positive (or negative), it is preferable to construct a generalized thresholding
estimator δ(y,−∞, τ+) (or δ(y, τ−,∞)). In practice, testing the symmetry of Yp

could be done before such a generalized thresholding estimator is employed.
Corresponding to the hard and soft thresholding estimators, we can define,

with the thresholds (τ−, τ+), two types of generalized thresholding estimators:
generalized hard threshold refers to estimating the i-th parameter µi with

µ̂i = δhard(yi, τ−, τ+) = yi1(−∞,τ−)∪(τ+,∞)(yi);

generalized soft threshold refers to estimating the i-th parameter µi with

µ̂i = δsoft(yi, τ−, τ+) = (yi − τ−)1(−∞,τ−)(yi) + (yi − τ+)1(τ+,∞)(yi).

2.2. A Bayes construction

Here we construct generalized thresholding estimators for µ in model (1.1)
using a Bayes approach. Let γ+(µ)=2γ(µ)1[0,∞)(µ) and γ−(µ)=2γ(µ)1(−∞,0](µ),
where γ(·) is a unimodal and symmetric distribution function. Consider a Bayes
estimator of µ by assuming that the components of µ have the prior

µi
i.i.d.∼ (1 − w− − w+)δ0(µ) + w−γ−(µ) + w+γ+(µ), (2.1)
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where δ0(·) is Dirac’s delta function. Here w− and w+ are the weights for the
negative and positive parts with density distributions γ−(µ) and γ+(µ), respec-
tively.

The posterior distribution of the parameter µi consists of a positive part, a
negative part, and a mass at zero, which make it possible to derive a generalized
thresholding estimator. Indeed, with properly prespecified w− and w+, such
estimators can be constructed with the posterior median of µi

µ̂(yi;w−, w+) = median(µi|yi; w−, w+). (2.2)

The performance of the estimator µ̂(yi; w−, w+) depends on the choices of
the hyperparameters (w−, w+), the density distribution of the noise, and (γ−, γ+)
specified in the prior (2.1). Here (w−, w+) describe not only the sparsity but also
the asymmetry of the parameter µ. Intuitively, an optimal (w−, w+) can be
elicited by maximizing the marginal likelihood function. As shown later, the
estimator µ̂(yi; w−, w+) is a generalized thresholding estimator when (w−, w+)
lies in a region determined by the constant

a =
ϕ(0)

g+(0) + ϕ(0)
∈ (0, 1), (2.3)

where g+(0) =
∫ ∞
0 ϕ(µ)γ+(µ)dµ. This constant specifies the flatness of the priors

γ+(·) and γ−(·) relative to the density of the noise.

Theorem 2.1. With the simplex

S(a) = {(w−, w+) ∈ [0, 1]2 : (2a− 1)w− + w+ ≤ a,w− + (2a− 1)w+ ≤ a}, (2.4)

µ̂(y; w−, w+) is a generalized thresholding estimator if and only if (w−, w+) ∈
S(a).

As mixing weights, (w−, w+) can be any point in S(1) which corresponds
to the grey area in Figure 2.1. Theorem 2.1 says that, in order for the Bayes
estimator µ̂(y;w−, w+) to have the same sign as the observed data y, (w−, w+)
needs to be chosen from the shaded area, i.e., the intersection area under the two
solid lines that defines S(a). However, the estimator developed by Johnstone and
Silverman (2004) essentially requires (w−, w+) ∈ S(0), i.e., the lower part of the
dashed line lies completely in the shaded area (see Figure 2.1). The proposed
Bayes estimator gains more flexibility by offering a much larger set of admissible
values for (w−, w+).

When γ+(0) → 0 and γ−(0) → 0, a essentially goes to one, which puts
less constraint for the above Bayes estimator to be a generalized thresholding
estimator. However, as shown in the following theorem, the tails of the priors
cannot be too heavy in order for this estimator to have the bounded shrinkage
property, the proof of which follows Johnstone and Silverman (2004).
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Figure 2.1. Conditions on (w−, w+) to construct generalized thresholding
estimators. The proposed Bayes estimator µ̂(y;w−, w+) is a generalized
thresholding estimator when (2a−1)w−+w+ ≤ a and w−+(2a−1)w+ ≤ a;
the estimator of Johnstone and Silverman (2004) has w− = w+ ∈ [0, 0.5].

Theorem 2.2. Assume (i) there exists ρ > 0 such that ϕ(y) exp{ρy} is decreas-
ing for sufficiently large y, and (ii) there exist Λ > 0 and M > 0 such that

sup
u>M

∣∣∣∣ d

du
log γ+(u)

∣∣∣∣ ≤ Λ < ρ. (2.5)

Then for (w−, w+) ∈ S(a), there exists a constant c such that, for all w−, w+, and
y, the generalized thresholding estimator µ̂(y;w−, w+) has the bounded shrinkage
property {

y − µ̂(y; w−, w+) ≤ τ+(w−, w+) + c for y ≥ 0

µ̂(y; w−, w+) − y ≤ −τ−(w−, w+) + c for y ≤ 0,

where the thresholds τ−(w−, w+) and τ+(w−, w+) are determined by (w−, w+).

3. Estimating High-Dimensional Normal Means

When ϕ(·) in model (1.1) is the standard normal density, i.e., ϕ(·) = φ(·), ρ

in (2.5) can be chosen arbitrarily large, so the two assumptions in Theorem 2.2
essentially place no extra constraint on γ+(·) (or on γ−(·)). Johnstone and Silver-
man (2004) developed an empirical Bayes thresholding estimator (EB hereafter)
based on a quasi-Cauchy prior for µ, and compared this estimator with others in
the literature. The EB estimator showed superior performance. Here we adopt
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this quasi-Cauchy prior to construct a generalized thresholding estimator (GEB
hereafter).

Specifically, we can construct the generalized thresholding estimators with a
quasi-Cauchy prior, i.e., taking{

γ+(µ|θ+) = 2( 1
θ+

− 1)−1/2φ( µ
1/θ+−1)1[0,∞)(µ), θ+ ∼ Beta(0.5, 1),

γ−(µ|θ−) = 2( 1
θ−

− 1)−1/2φ( µ
1/θ−−1)1(−∞,0](µ), θ− ∼ Beta(0.5, 1),

(3.1)

or, equivalently, γ+(µ) =
√

2
π

(
1 − µ(1−Φ(µ))

φ(µ)

)
1[0,∞)(µ),

γ−(µ) =
√

2
π

(
1 + µΦ(µ)

φ(µ)

)
1(−∞,0](µ),

which has tails similar to those of Cauchy densities, i.e., much heavier than
Gaussian distribution as desired.

Assuming that ϕ(·) = φ(·) in model (1.1), we then haveg−(yi) =
∫ 0
−∞ ϕ(yi − µ)γ−(µ)dµ = 2Φ(yi)−

√
2πφ(yi)−2yiφ(yi)

y2
i

√
2π

,

g+(yi) =
∫ ∞
0 ϕ(yi − µ)γ+(µ)dµ = 2[1−Φ(yi)]−

√
2πφ(yi)+2yiφ(yi)

y2
i

√
2π

.

Since φ(0) = 1/
√

2π and g+(0) = limy↓0 g+(y) = 1/
√

8π, a = 2/3 from (2.3), and
S(a) is given by {

w+ + 3w− ≤ 2

3w+ + w− ≤ 2.

Maximizing the marginal distribution of Yp for (w−, w+) ∈ S(2/3), we then
construct a generalized thresholding estimator with the posterior median, which
is essentially an empirical Bayes estimator.

4. Data Analyses Examples

4.1. Microarray data analysis

A common issue in genomic study with microarray data is to identify genes
differentially expressed under different conditions. For example, van de Peppel et
al. (2003) designed a microarray experiment to examine, in comparison to non-
heat-shock cells, the heat-shock response of primarily cultured human umbilical
vein endothelial cells (HUVECs). The datasets are available from ArrayExpress
(http://www.ebi.ac.uk/aerep/) with accession number E-UMCU-2. For illus-
tration, we only use the dataset collected three hours after heat shock (van de
Peppel et al. (2003)), in which the differential expression levels of a total of 16,734

http://www.ebi.ac.uk/aerep/
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Figure 4.2. Identified up-regulated genes (left) and down-regulated genes
(right) using the EB and GEB estimators, respectively.

endogenous genes are normalized using the 960 external control genes (Zhang,
Zhang and Wells (2006)).

Figure 4.2 shows the results from the EB and GEB estimators, respectively.
The estimated µi for any gene with yi ∈ (−0.3, 0.3) is zero, and therefore is not
shown here. A positive (or negative) µi means that the i-th gene is up-regulated
(or down-regulated), and a zero µi means that it is not differentially expressed.
With the GEB estimator, 3,275 genes were identified to be up-regulated and 139
genes were identified to be down-regulated. In contrast, the EB estimator identi-
fied 53 more genes to be down-regulated and 1,947 less genes to be up-regulated,
as the symmetry assumption forces the upper and lower thresholds to be the
same (shown in Figure 4.2). While for small and large scale yi, whether positive
or negative, the two estimates coincide with each other, their performances on
medium scale yi are quite different due to the asymmetric data.

4.2. Mass spectrometry data analysis

Mass spectrometry (MS) plays an important role in discovering clinically
relevant peptides/proteins and eventually understanding biological cancer pro-
cesses. After preprocessing, experimental MS data present many peaks residing
on certain mass-to-charge ratios (m/z), that are due to either chemical back-
ground noise or peptide fragments. A critical step in identifying proteins using
experimental MS data is to remove the peaks caused by chemical background
noise while keeping those corresponding to peptide fragments in order to match
them with proteins in databases.
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Shown in the top panel of Figure 4.3 is an experimental MS dataset from
Keller, Purvine, Nesvizhskii, Stolyar, Goodlett and Koler (2002). The log-
intensity values, after preprocessing and normalization, are shown in the cental
panel of Figure 4.3, in which each point corresponds to a peak observed in the
top panel. The EB estimator identified 14 peaks with estimated hyperparameters
ŵ− = ŵ+ = 0.0639; the GEB estimator identified 33 peaks with the estimated
hyperparameters ŵ− = 0 and ŵ+ = 0.2767 (see Figure 4.3). All peaks identified
here observed positive log-transformed intensities. Apparently, forcing w− = w+

in the EB estimator has significantly reduced the number of identified peaks,
which affects the efficiency of searching for proteins in databases.

5. A Simulation Study

We conducted a simulation study to compare the GEB estimator with the
EB estimator and other approaches based on SURE, FDR and SCAD. Assuming
ϕ(·) = φ(·) in model (1.1), we simulated 1,000 datasets in each setting of µ =
(µ1, . . . , µp) with p = 1, 000, and used each method to estimate all parameters.
The risk R(q) =

∑p
i=1 E[|µ̂i−µi|q] was computed for different values of q ∈ (0, 2],

and the number of false positives (NFP) and the number of false negatives (NFN)
were summarized for comparison.

Let k+ = #{i : µi > 0} and k− = #{i : µi < 0}. We uniformly took all
positive parameters with values at µ+, and all negative parameters with values at
µ−. With sparse non-zero parameters, we considered three cases of asymmetric
parameter spaces: (i) |µ−| = µ+ but k− 6= k+ (see Table 5.1); (ii) |k−| = k+

but µ− 6= µ+ (see Table 5.2); and (iii) |µ−| 6= µ+ and k− 6= k+ (see Table 5.2).
With α = 3.7 and λ equal to the universal threshold (Fan and Li (2001)), the
SCAD estimator reported the largest risk R(2) in most of the parameter settings.
When instead setting λ equal to the threshold suggested by the SURE approach,
it performed similarly to the SURE approach (results are not shown). We report
R(2), NFP, and NFN for other estimators in Table 5.1 and Table 5.2 where, in
each case, the largest values of R(2), NFP and NFN are in bold type.

In terms of the risk R(2), the comparisons between EB, SURE and FDR
agree with the observations of Johnstone and Silverman (2004). Thus SURE
is competitive to EB when most of the signals are small, but it may perform
poorly otherwise; an appropriately chosen false discovery rate q can make FDR
outperform others, but an inappropriate choice can result in very large risk R(2)
of FDR. FDR can control the NFPs very well but may report large NFNs for an
inappropriate choice of q, while SURE tends to report a larger number of false
positives, and thus a smaller number of false negatives than others.

In general, GEB performed competitively with EB in terms of R(q), and
it was more stable than EB and the other methods. In cases with many small
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Figure 4.3. An experimental MS dataset (top), normalized peaks (central)
and identified peaks (bottom).

signals, GEB gained more over EB in terms of the risk R(q) for large q. Note that
this gain was smaller when q decreased in (0, 2], and essentially disappeared when
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Table 5.1. Comparing the GEB estimator with others when |µ−| = µ+.
R(2), NFP, and NFN are recorded for each estimator with the largest values
in bold type. The corresponding standard errors are bracketed.

k−
‹

k+ µ−
‹

µ+ Criterion GEB EB SURE FDR
(q = 0.01)

FDR
(q = 0.1)

FDR
(q = 0.4)

R(2) 37.13 (0.30) 39.29 (0.25) 63.70 (1.42) 79.78 (1.17) 160.36 (5.88) 115.20 (6.72)
−3

‹

3 NFP 0.20 (0.02) 0.10 (0.01) 103 (3.31) 6.55 (0.16) 30.32 (1.44) 31.93 (3.26)
NFN 3.84 (0.04) 4.15 (0.03) 0.86 (0.04) 2.45 (0.04) 2.44 (0.05) 2.28 (0.04)
R(2) 30.98 (0.55) 36.50 (0.58) 66.24 (1.39) 51.04 (0.75) 41.00 (1.69) 53.34 (0.98)

−4
‹

4 NFP 0.51 (0.03) 0.26 (0.02) 107 (3.25) 1.11 (0.10) 2.05 (0.39) 3.86 (0.11)
0

‹

5 NFN 1.53 (0.04) 1.97 (0.04) 0.14 (0.01) 2.42 (0.04) 1.52 (0.03) 0.72 (0.03)
R(2) 18.05 (0.43) 18.46 (0.52) 66.51 (1.38) 25.40 (0.70) 19.94 (0.54) 48.19 (1.03)

−5
‹

5 NFP 2.73 (0.13) 0.38 (0.02) 107 (3.24) 0.06 (0.01) 0.68 (0.03) 4.21 (0.11)
NFN 0.19 (0.01) 0.41 (0.02) 0.01 (0.00) 0.86 (0.03) 0.28 (0.02) 0.08 (0.01)
R(2) 25.86 (0.46) 8.35 (0.21) 66.52 (1.38) 6.18 (0.21) 14.45 (0.42) 47.13 (1.02)

−7
‹

7 NFP 14.15 (0.45) 0.42 (0.02) 107 (3.24) 0.06 (0.01) 0.72 (0.03) 4.27 (0.11)
NFN 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)
R(2) 219 (1.01) 267 (1.09) 215 (0.87) 386 (0.98) 276 (1.14) 295 (1.56)

−3
‹

3 NFP 4.02 (0.12) 2.57 (0.06) 211 (2.19) 0.16 (0.02) 2.79 (0.06) 25.07 (0.28)
NFN 18.42 (0.13) 25.22 (0.14) 2.21 (0.06) 40.35 (0.14) 24.59 (0.14) 11.09 (0.11)
R(2) 142 (1.03) 174 (1.25) 221 (0.89) 302 (1.86) 172 (1.32) 262 (1.67)

−4
‹

4 NFP 6.46 (0.10) 5.24 (0.08) 219 (2.00) 0.34 (0.02) 4.71 (0.08) 30.71 (0.29)
0

‹

50 NFN 3.19 (0.06) 5.57 (0.08) 0.16 (0.01) 16.98 (0.12) 5.87 (0.08) 1.62 (0.04)
R(2) 92.40 (0.69) 103 (0.83) 221 (0.90) 125 (1.45) 112 (0.99) 250 (1.67)

−5
‹

5 NFP 7.55 (0.10) 6.44 (0.09) 220 (1.99) 0.46 (0.02) 5.27 (0.08) 31.65 (0.28)
NFN 0.23 (0.01) 0.52 (0.02) 0.01 (0.00) 3.29 (0.06) 0.65 (0.03) 0.11 (0.01)
R(2) 73.87 (0.48) 76.90 (0.51) 221 (0.90) 57.22 (0.49) 100.50 (0.81) 249 (1.67)

−7
‹

7 NFP 7.77 (0.10) 6.77 (0.09) 220 (1.99) 0.51 (0.02) 5.34 (0.08) 31.73 (0.28)
NFN 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)
R(2) 255 (1.06) 286 (1.14) 228 (0.87) 422 (1.03) 296 (1.20) 313 (1.57)

−3
‹

3 NFP 3.97 (0.09) 3.00 (0.06) 219 (2.04) 0.15 (0.02) 3.13 (0.06) 27.52 (0.03)
NFN 22.18 (0.14) 26.66 (0.15) 2.23 (0.06) 43.98 (0.14) 26.26 (0.15) 11.53 (0.11)
R(2) 170 (1.17) 185 (1.26) 233 (0.89) 323 (1.96) 183 (1.35) 279 (1.70)

−4
‹

4 NFP 6.96 (0.10) 6.01 (0.09) 228 (1.85) 0.38 (0.02) 5.20 (0.08) 33.48 (0.30)
5

‹

50 NFN 4.55 (0.07) 5.64 (0.08) 0.15 (0.01) 18.10 (0.13) 6.11 (0.08) 1.64 (0.04)
R(2) 107 (0.81) 111 (0.84) 234 (0.89) 135 (1.50) 121 (1.01) 267 (1.69)

−5
‹

5 NFP 8.34 (0.11) 7.43 (0.10) 228 (1.84) 0.53 (0.02) 5.76 (0.08) 34.48 (0.30)
NFN 0.45 (0.02) 0.53 (0.02) 0.01 (0.00) 3.46 (0.06) 0.07 (0.03) 0.10 (0.01)
R(2) 82.66 (0.52) 84.50 (0.54) 234 (0.89) 62.86 (0.50) 109 (0.84) 266 (1.69)

−7
‹

7 NFP 8.69 (0.11) 7.79 (0.10) 228 (1.84) 0.57 (0.02) 5.81 (0.08) 3.45 (0.30)
NFN 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)
R(2) 972 (1.66) 924 (1.40) 830 (1.36) 2565 (3.91) 1156 (2.73) 923 (1.78)

−3
‹

3 NFP 259 (0.47) 500 (0.00) 323 (0.85) 1.24 (0.04) 22.20 (0.16) 121 (0.39)
NFN 10.58 (0.12) 0.00 (0.00) 2.59 (0.05) 256 (0.47) 81.09 (0.31) 16.81 (0.13)
R(2) 865 (1.67) 899 (1.53) 835 (1.38) 1339 (3.94) 743 (1.99) 868 (1.61)

−4
‹

4 NFP 263 (0.40) 500 (0.00) 326 (0.83) 2.22 (0.05) 25.95 (0.17) 125 (0.39)
50

‹

450 NFN 1.04 (0.03) 0.00 (0.00) 0.10 (0.01) 62.42 (0.25) 9.97 (0.10) 1.07 (0.03)
R(2) 760 (1.48) 830 (1.47) 835 (1.38) 656 (2.32) 653 (1.49) 862 (1.59)

−5
‹

5 NFP 265 (0.33) 500 (0.00) 326 (0.83) 2.47 (0.05) 26.43 (0.17) 125 (0.39)
NFN 0.05 (0.01) 0.00 (0.00) 0.00 (0.00) 7.15 (0.09) 0.57 (0.02) 0.03 (0.01)
R(2) 667 (1.28) 744 (1.31) 835 (1.39) 524 (1.15) 645 (1.41) 862 (1.59)

−7
‹

7 NFP 265 (0.36) 500 (0.00) 326 (0.83) 2.51 (0.05) 26.45 (0.17) 12.53 (0.39)
NFN 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)

q approached zero (see Figure 5.4.b). GEB also showed gains over EB for large
signals, see Table 5.1, Table 5.2 and Figure 5.4.c. The case with |µ−| = µ+ = 7
and (k−, k+) = (0, 5) was exceptional, with the risk R(2) of GEB much larger
than that of EB due to the much larger number of NFP from GEB. In most cases,
the GEB estimator reported slightly larger NFP than EB. However, when the
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Table 5.2. Comparing the GEB estimator with others when |µ−| 6= µ+.
R(2), NFP, and NFN are recorded for each estimator with the largest values
in bold type. The corresponding standard errors are bracketed.

k−
‹

k+ µ−
‹

µ+ Criterion GEB EB SURE FDR
(q = 0.01)

FDR
(q = 0.1)

FDR
(q = 0.4)

R(2) 219 (1.15) 246 (1.05) 215 (0.88) 358 (1.06) 256 (1.12) 289 (1.58)
−5

‹

3 NFP 3.74 (0.07) 2.95 (0.06) 212 (2.18) 0.15 (0.01) 3.11 (0.06) 25.82 (0.28)
NFN 17.71 (0.13) 21.99 (0.13) 1.96 (0.06) 35.85 (0.12) 21.62 (0.13) 9.79 (0.10)
R(2) 212 (1.01) 241 (1.00) 215 (0.88) 343 (0.84) 253 (1.07) 289 (1.58)

5
‹

45 −7
‹

3 NFP 4.35 (0.11) 2.99 (0.06) 212 (2.18) 0.15 (0.01) 3.12 (0.06) 2.58 (0.28)
NFN 17.29 (0.13) 21.78 (0.13) 1.96 (0.06) 35.09 (0.11) 21.48 (0.13) 9.77 (0.10)
R(2) 92.62 (0.70) 99.83 (0.79) 221 (0.90) 118 (1.36) 111 (0.98) 250 (1.67)

−7
‹

5 NFP 7.25 (0.10) 6.47 (0.09) 220 (1.99) 0.47 (0.02) 5.28 (0.08) 31.68 (0.28)
NFN 0.24 (0.01) 0.47 (0.02) 0.01 (0.00) 2.93 (0.05) 0.58 (0.02) 0.09 (0.01)
R(2) 121 (0.73) 116 (0.85) 220 (0.90) 149 (1.43) 125 (0.98) 254 (1.68)

−5
‹

3 NFP 6.79 (0.09) 6.07 (0.09) 220 (2.01) 0.44 (0.02) 5.07 (0.08) 31.07 (0.29)
NFN 3.94 (0.04) 2.46 (0.04) 0.18 (0.01) 6.50 (0.06) 2.64 (0.04) 1.03 (0.03)
R(2) 103 (0.54) 91.80 (0.56) 220 (0.90) 84.98 (0.52) 115 (0.83) 253 (1.67)

45
‹

5 −7
‹

3 NFP 7.01 (0.10) 6.35 (0.09) 220 (2.00) 0.47 (0.02) 5.14 (0.08) 31.11 (0.29)
NFN 3.68 (0.04) 1.93 (0.03) 0.18 (0.01) 3.45 (0.03) 2.05 (0.03) 0.95 (0.03)
R(2) 81.62 (0.60) 79.15 (0.54) 221 (0.90) 63.11 (0.61) 101 (0.83) 249 (1.67)

−7
‹

5 NFP 7.61 (0.10) 6.75 (0.91) 220 (1.99) 0.51 (0.02) 5.33 (0.01) 31.72 (0.28)
NFN 0.21 (0.01) 0.04 (0.01) 0.00 (0.00) 0.30 (0.02) 0.06 (0.01) 0.01 (0.00)
R(2) 888 (1.51) 913 (1.42) 830 (1.39) 2324 (3.57) 1094 (2.52) 916 (1.78)

−5
‹

3 NFP 263 (0.37) 500 (0.00) 323 (0.85) 1.4 (0.04) 22.68 (0.16) 122 (0.39)
NFN 0.67 (0.03) 0.00 (0.00) 2.35 (0.05) 225 (0.41) 71.54 (0.27) 15.00 (0.13)
R(2) 875 (1.46) 905 (1.40) 830 (1.39) 2299 (3.44) 1093 (2.51) 916 (1.78)

50
‹

450 −7
‹

3 NFP 263 (0.34) 500 (0.00) 323 (0.85) 1.41 (0.04) 22.69 (0.16) 122 (0.39)
NFN 0.60 (0.02) 0.00 (0.00) 2.35 (0.05) 223 (0.41) 71.45 (0.27) 15.0 (0.13)
R(2) 747 (1.50) 820 (1.49) 835 (1.42) 640 (2.20) 652 (1.50) 862 (1.59)

−7
‹

5 NFP 265 (0.34) 500 (0.00) 326 (0.83) 2.48 (0.05) 26.44 (0.17) 125 (0.39)
NFN 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 6.32 (0.08) 0.50 (0.02) 0.03 (0.01)
R(2) 835 (1.62) 839 (1.46) 835 (1.38) 815 (2.41) 696 (1.60) 868 (1.61)

−5
‹

3 NFP 260 (0.47) 500 (0.00) 326 (0.83) 2.37 (0.05) 26.05 (0.17) 125 (0.39)
NFN 9.29 (0.11) 0.00 (0.00) 0.25 (0.02) 28.15 (0.14) 7.72 (0.08) 1.64 (0.04)
R(2) 754 (1.46) 762 (1.32) 835 (1.38) 691 (1.41) 689 (1.54) 868 (1.61)

450
‹

50 −7
‹

3 NFP 260 (0.46) 500 (0.00) 326 (8.30) 2.40 (0.05) 26.07 (0.17) 125 (0.39)
NFN 9.26 (0.11) 0.00 (0.00) 0.25 (0.02) 21.39 (0.11) 7.21 (0.08) 1.62 (0.04)
R(2) 679 (1.32) 752 (1.33) 835 (1.39) 537 (1.30) 646 (1.42) 862 (1.59)

−7
‹

5 NFP 265 (0.33) 500 (0.00) 326 (0.83) 2.50 (0.05) 26.45 (0.17) 125 (0.39)
NFN 0.05 (0.01) 0.00 (0.00) 0.00 (0.00) 0.70 (0.03) 0.06 (0.01) 0.01 (0.00)
R(2) 299 (1.18) 287 (1.12) 330 (0.91) 437 (1.63) 310 (1.30) 424 (1.80)

−5
‹

3 NFP 12.71 (0.14) 13.94 (0.14) 25.19 (1.27) 0.62 (0.03) 8.15 (0.10) 53.46 (0.36)
NFN 16.42 (0.13) 14.44 (0.11) 1.41 (0.04) 35.67 (0.13) 17.85 (0.12) 6.67 (0.08)
R(2) 281 (1.07) 268 (0.97) 330 (0.91) 377 (1.02) 302 (1.21) 423 (1.80)

50
‹

50 −7
‹

3 NFP 14.03 (0.14) 14.29 (0.14) 252 (1.27) 0.64 (0.03) 8.20 (0.10) 53.50 (0.36)
NFN 16.14 (0.13) 14.00 (0.11) 1.41 (0.04) 32.66 (0.12) 17.40 (0.11) 6.61 (0.08)
R(2) 169 (0.81) 169 (0.81) 333 (0.94) 156 (1.28) 187 (1.08) 395 (1.80)

−7
‹

5 NFP 20.54 (0.18) 20.34 (0.18) 255 (1.22) 0.95 (0.03) 9.90 (0.11) 57.11 (0.36)
NFN 0.16 (0.01) 0.15 (0.01) 0.00 (0.00) 2.19 (0.05) 0.34 (0.02) 0.05 (0.01)

signals were relatively dense, i.e., (k−, k+) = (450, 50) or (50, 450), GEB reported
much smaller NFPs than EB which essentially reported each one as a signal.
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a. (µ−, µ+)=(−3, 3), (k−, k+)=(0, 5) b. (µ−, µ+)=(−5, 3), (k−, k+)=(5, 45)

c. (µ−, µ+)=(−7, 5), (k−, k+)=(450, 50) d. (µ−, µ+)=(−7, 3), (k−, k+)=(50, 50)

Figure 5.4. Comparing GEB with others in terms of the risks R(q).

Appendix. Proof of Theorem 2.1

We first show some preliminary results on related functions, and then proceed
to prove Theorem 2.1 by integrating these results.

Lemma A.3. If ϕ(·) is symmetric and log-concave, and γ(·) = [γ−(·)+ γ+(·)]/2
is unimodal and symmetric, then (i) g+(y) = g−(−y), y ∈ R; (ii) g+(y)/ϕ(y) is
increasing on R; (iii) g−(y)/ϕ(y) is decreasing on R.

Proof.
(i) This statement follows directly.
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(ii) Since ϕ(·) is log-concave, it is PF2. That is, for all v ≥ 0 and y1 ≤ y2,
ϕ(y1)ϕ(y2−v) ≥ ϕ(y2)ϕ(y1−v), which implies that ϕ(y−v)/ϕ(y) is increasing
in y for all v ≥ 0. Hence, g+(y)/ϕ(y) is increasing on y ∈ R since

g+(y)
ϕ(y)

=
∫ ∞

0

ϕ(y − v)
ϕ(y)

γ+(v)dv.

(iii) Similarly, for all u ≤ 0 and y1 ≤ y2, we have ϕ(y1−u)ϕ(y2) ≥ ϕ(y1)ϕ(y2−u),
which implies that ϕ(y − u)/ϕ(y) is decreasing in y for all u ≤ 0. The
conclusion follows the fact that

g−(y)
ϕ(y)

=
∫ 0

−∞

ϕ(y − u)
ϕ(y)

γ−(u)du.

Let w̃− and w̃+ denote the posterior probabilities of µ being positive and
negative, respectively. Then it follows that

w̃+(y; w−, w+)=
w+

w++(1−w−−w+)/(g+(y)/ϕ(y))+w−g−(y)/ϕ(y)/(g+(y)/ϕ(y))
,

w̃−(y; w−, w+)=
w−

w−+(1−w−−w+)/(g−(y)/ϕ(y))+w+g+(y)/ϕ(y)/(g−(y)/ϕ(y))
.

Therefore, Lemma A.3 leads to the following.

Lemma A.4. Assume (w−, w+) ∈ S(1). With the same ϕ(·) and γ(·) as in
Lemma A.3, (i) w̃+(y; w−, w+) is increasing in y ∈ R; (ii) w̃−(y; w−, w+) is
decreasing in y ∈ R.

Now we use Lemma A.4 to identify the conditions for the proposed estimator
to have the same sign as the observed data.

Proposition A.5. With the same ϕ(·) and γ(·) as in Lemma A.3, the Bayes
estimator µ̂(y;w−, w+) satisfies: (i) µ̂(y; w−, w+) ≥ 0, ∀y ≥ 0, if and only if
w− + (2a− 1)w+ ≤ a; (ii) µ̂(y; w−, w+) ≤ 0, ∀y ≤ 0, if and only if (2a− 1)w− +
w+ ≤ a.

Proof. Note that g+(0) = g−(0). The proposition follows from Lemma A.4
and
(i) µ̂(y; w−, w+) ≥ 0, ∀y ≥ 0, if and only if w̃−(0;w−, w+) ≤ 1/2;

(ii) µ̂(y; w−, w+) ≤ 0, ∀y ≤ 0, if and only if w̃+(0;w−, w+) ≤ 1/2.

Proposition A.6. Assume (w−, w+) ∈ S(a). With the same ϕ(·) and γ(·) as
in Lemma A.3, we have |µ̂(y; w−, w+)| ≤ |y|, ∀y ∈ R.
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Proof. With Proposition A.5, it suffices to prove that, for any y>0, µ̂(y; w−, w+)
≤ y or, equivalently, p(µ > y|Y = y; w−, w+) ≤ 1/2, ∀y > 0. Note that, for y > 0,

p(µ > y|Y = y; w−, w+) =
w+

∫ ∞
y ϕ(y − µ)γ+(µ)dµ

(1 − w− − w+)ϕ(y) + w+g+(y) + w−g−(y)
.

By Lemma A.3, we have, for y > 0,

g−(y)
ϕ(y)

≤ g−(0)
ϕ(0)

⇒ ϕ(y) ≥ ϕ(0)
g−(0)

g−(y).

Therefore,

p(µ>y|Y =y;w−, w+) ≤
w+

∫ ∞
y ϕ(y − µ)γ+(µ)dµ

(1−w− − w+)(ϕ(0)g−(y)/g−(0))+w+g+(y)+w−g−(y)

=

∫ ∞
y ϕ(y − µ)γ+(µ)dµ

g+(y)+g−(y)+(g−(y)/((1−a)w+))
[
a−w+−(2a−1)w−

]
≤

∫ ∞
y ϕ(y − µ)γ+(µ)dµ

g+(y) + g−(y)
,

where the last inequality holds because w+ + (2a − 1)w− ≤ a ≤ 1.
We conclude the proof of the proposition by proving that,∫ ∞

y ϕ(y − µ)γ+(µ)dµ

g+(y) + g−(y)
≤ 1

2
,∀y > 0. (A.1)

Since γ(µ) = (1/2)[γ+(µ) + γ−(µ)] is unimodal and symmetric, for y > 0,
t ≥ 0,

γ+(y − t) + γ−(y − t) ≥ γ+(y + t) + γ−(y + t)

⇒
∫ ∞

0
ϕ(t)[γ+(y − t) + γ−(y − t)]dt ≥

∫ ∞

0
ϕ(t)[γ+(y + t) + γ−(y + t)]dt.

Note that∫ ∞

0
ϕ(t)[γ+(y − t) + γ−(y − t)]dt =

∫ y

−∞
ϕ(y − u)[γ+(u) + γ−(u)]du,∫ ∞

0
ϕ(t)[γ−(y + t) + γ+(y + t)]dt =

∫ ∞

y
ϕ(y − u)[γ+(u) + γ−(u)]du,

g+(y) + g−(y) =
∫ ∞

−∞
ϕ(y − u)[γ+(u) + γ−(u)]du.

Therefore,

g+(y) + g−(y) ≥ 2
∫ ∞

y
ϕ(y − u)[γ+(u) + γ−(u)]du

= 2
∫ ∞

y
ϕ(y − u)γ+(u)du.
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Hence, we have the inequality (A.1).

With the proof by Johnstone and Silverman (2004, p.1619), we can easily
establish the following proposition.

Proposition A.7. If ϕ(·) is symmetric and log-concave, then µ̂(y; w−, w+) is
increasing in y ∈ R.

Theorem 2.1 can be proved with the following proposition, which follows
directly from Propositions A.5 and A.7.

Proposition A.8. Assume (w−, w+) ∈ S(a). With the same ϕ(·) and γ(·)
as in Lemma A.3, there exist τ+(w−, w+) ≥ 0 and τ−(w−, w+) ≤ 0 such that
µ̂(y; w−, w+) = 0 if and only if τ−(w−, w+) ≤ y ≤ τ+(w−, w+). Further-
more, if w+ = w−, then τ+(w−, w+) = −τ−(w−, w+) and µ̂(−y; w−, w+) =
−µ̂(y;w−, w+).
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