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Abstract: We establish a general asymptotic theory for nonparametric maximum

likelihood estimation in semiparametric regression models with right censored data.

We identify a set of regularity conditions under which the nonparametric maximum

likelihood estimators are consistent, asymptotically normal, and asymptotically ef-

ficient with a covariance matrix that can be consistently estimated by the inverse

information matrix or the profile likelihood method. The general theory allows one

to obtain the desired asymptotic properties of the nonparametric maximum likeli-

hood estimators for any specific problem by verifying a set of conditions rather than

by proving technical results from first principles. We demonstrate the usefulness of

this powerful theory through a variety of examples.
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1. Introduction

Semiparametric regression models are highly useful in investigating the ef-
fects of covariates on potentially censored responses (e.g., failure times and re-
peated measures) in longitudinal studies. It is desirable to analyze such mod-
els by the nonparametric maximum likelihood approach, which generally yields
consistent, asymptotically normal, and asymptotically efficient estimators. It
is technically difficult to prove the asymptotic properties of the nonparametric
maximum likelihood estimators (NPMLEs). Thus far, rigorous proofs exist only
in some special cases.

In this paper, we develop a general asymptotic theory for the NPMLEs with
right censored data. The theory is very encompassing in that it pertains to a
generic form of likelihood rather than specific models. We prove that, under
a set of mild regularity conditions, the NPMLEs are consistent, asymptotically
normal, and asymptotically efficient with a limiting covariance matrix that can be
consistently estimated by the inverse information matrix or the profile likelihood
method.
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This paper is the technical companion to Zeng and Lin (2007), in which sev-
eral classes of models were proposed to unify and extend existing semiparametric
regression models. The likelihoods for those models can all be written in the
general form considered in this paper. For each class of models in Zeng and Lin
(2007), we identify a set of conditions under which the regularity conditions for
the general theory hold so that desired asymptotic properties are ensured.

2. Some Semiparametric Models

We describe briefly the three kinds of models considered in Zeng and Lin
(2007). We assume that the censoring mechanism satisfies coarsening at random
(Heitjan and Rubin (1991)).

2.1. Transformation models for counting processes

Let N∗(t) record the number of events that the subject has experienced by
time t, and let Z(·) denote the corresponding covariate processes. Zeng and Lin
(2007) proposed the following class of transformation models for the cumulative
intensity function of N∗(t)

Λ(t|Z) = G

[{
1 +

∫ t

0
R∗(s)eβT Z(s)dΛ(s)

}eγT
eZ
]
− G(1),

where G is a continuously differentiable and strictly increasing function with
G′(1) > 0 and G(∞) = ∞, R∗(·) is an indicator process, Z̃ is a subset of Z, β
and γ are regression parameters, and Λ(·) is an unspecified increasing function.
The data consist of {Ni(t), Ri(t), Zi(t); t ∈ [0, τ ]} (i = 1, . . . , n), where Ri(t) =
I(Ci ≥ t)R∗

i (t), Ni(t) = N∗
i (t ∧ Ci), Ci is the censoring time, and τ is a finite

constant. The likelihood is
n∏

i=1

∏
t≤τ

{Ri(t)dΛ(t|Zi)}dNi(t) exp
{
−

∫ τ

0
Ri(t)dΛ(t|Zi)

}
,

where dNi(t) = Ni(t) − Ni(t−).

2.2. Transformation models with random effects for dependent failure
times

For i = 1, . . . , n, k = 1, . . . ,K and l = 1, . . . , nik, let N∗
ikl(·) denote the

number of the kth type of event experienced by the lth individual in the ith
cluster, and Zikl(·) the corresponding covariate processes. Zeng and Lin (2007)
assumed that the cumulative intensity for N∗

ikl(t) takes the form

Λk(t|Zikl; bi) = Gk

{ ∫ t

0
R∗

ikl(s)e
βT Zikl(s)+bT

i
eZikl(s)dΛk(s)

}
,
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where Gk, Λk, and R∗
ikl are analogous to G, Λ, and R∗ of Section 2.1, Z̃ikl is a

subset of Zikl plus the unit component, and bi is a vector of random effects with
density f(b; γ). Let Cikl, Nikl, and Rikl be defined analogously to Ci, Ni, and Ri

of Section 2.1. The likelihood is
n∏

i=1

∫
b

K∏
k=1

nik∏
l=1

∏
t≤τ

[
Rikl(t)eβT Zikl(t)+bT

eZikl(t)dΛk(t)

×G′
k

{ ∫ t

0
Rikl(s)eβT Zikl(s)+bT

eZikl(s)dΛk(s)
}]dNikl(t)

× exp
[
− Gk

{ ∫ τ

0
Rikl(t)eβT Zikl(t)+bT

eZikl(t)dΛk(t)
}]

f(b; γ)db.

2.3. Joint models for repeated measures and failure times

For i = 1, . . . , n and j = 1, . . . , ni, let Yij be the response variable at time
tij for the ith subject, and Xij the corresponding covariates. We assume that
(Yi1, . . . , Yini) follows a generalized linear mixed model with density fy(y|Xij ; bi),
where bi is a set of random effects with density f(b; γ). We define N∗

i and Zi as
in Section 2.1, and assume that

Λ(t|Zi; bi) = G

{ ∫ t

0
R∗

i (s)e
βT Zi(s)+(ψ◦bi)

T
eZi(s)dΛ(s)

}
,

where Z̃i is a subset of Zi plus the unit component, ψ is a vector of unknown
constants, and v1 ◦ v2 is the component-wise product of two vectors v1 and v2.
The likelihood is

n∏
i=1

∫
b

∏
t≤τ

{
Ri(t)dΛ(t|Zi; b)

}dNi(t)
exp

{
−

∫ τ

0
Ri(t)dΛ(t|Zi; b)

}

×
ni∏

j=1

fy(Yij |Xij ; b)f(b; γ)db.

For continuous measures, Zeng and Lin (2007) proposed the semiparametric
linear mixed model

H̃(Yij) = αT Xij + bT
i X̃ij + εij ,

where H̃ is an unknown increasing function with H̃(−∞) = −∞, H̃(∞) = ∞,
and H̃(0) = 0, α is a set of regression parameters, X̃ij is typically a subset of
Xij , and εij (i = 1, . . . , n; j = 1, . . . , nij) are independent with density fε. Write
Λ̃(y) = e

eH(y). The likelihood is
n∏

i=1

∫
b

∏
t≤τ

{
Ri(t)dΛ(t|Zi; b)

}dNi(t)
exp

{
−

∫ τ

0
Ri(t)dΛ(t|Zi; b)

}
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×
ni∏

j=1

fε

(
log(Λ̃(Yij)) − αT Xij − bT

i X̃ij

){
d log Λ̃(Yij)

dy

}
f(b; γ)db.

3. Nonparametric Maximum Likelihood Estimation

All the likelihood functions given in Section 2 can be expressed as

n∏
i=1

K∏
k=1

nik∏
l=1

∏
t≤τ

λk(t)Rikl(t)dN∗
ikl(t)Ψ(Oi; θ,A),

where λk(t) = Λ′
k(t), θ is a d-vector of regression parameters and variance com-

ponents, A = (Λ1, . . . , ΛK), Oi pertains to the observation on the ith cluster,
and Ψ is a functional of Oi, θ, and A. For nonparametric maximum likelihood
estimation, we allow A to be discontinuous with jumps at the observed failure
times and maximize the modified likelihood function

n∏
i=1

K∏
k=1

nik∏
l=1

∏
t≤τ

Λk{t}Rikl(t)dN∗
ikl(t)Ψ(Oi; θ,A),

where Λk{t} denotes the jump size of the monotone function Λk at t. Equiva-
lently, we maximize the logarithm of the above function

Ln(θ,A) =
n∑

i=1

[ K∑
k=1

nik∑
l=1

∫ τ

0
Rikl(t) log Λk{t}dN∗

ikl(t) + log Ψ(Oi; θ,A)
]
. (3.1)

We wish to establish an asymptotic theory for the resulting NPMLEs θ̂ and Â.

4. Regularity Conditions

We impose the following conditions on the model and data structures.
(C1) The true value θ0 lies in the interior of a compact set Θ, and the true
functions Λ0k are continuously differentiable in [0, τ ] with Λ′

0k(t) > 0, k =
1, . . . ,K.

(C2) With probability one, P (infs∈[0,t] Rik·(s) ≥ 1|Zikl, l = 1, . . . , nik) > δ0 > 0
for all t ∈ [0, τ ], where Rik·(t) =

∑nik
l=1 Rikl(t).

(C3) There exist a constant c1 > 0 and a random variable r1(Oi) > 0 such that
E[log r1(Oi)] < ∞ and, for any θ ∈ Θ and any finite Λ1, . . . , ΛK ,

Ψ(Oi; θ,A) ≤ r1(Oi)
K∏

k=1

∏
t≤τ

{
1 +

∫ t

0
Rik·(t)dΛk(t)

}−dN∗
ik·(t)
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×
{

1 +
∫ τ

0
Rik·(t)dΛk(t)

}−c1

almost surely, where N∗
ik·(t) =

∑nik
l=1 N∗

ikl(t). In addition, for any constant c2,

inf
{

Ψ(Oi; θ,A) : ‖Λ1‖V [0,τ ] ≤ c2, . . . , ‖ΛK‖V [0,τ ] ≤ c2, θ ∈ Θ
}

> r2(Oi) > 0,

where ‖h‖V [0,τ ] is the total variation of h(·) in [0, τ ], and r2(Oi), which may
depend on c2, is a finite random variable with E[| log r2(Oi)|] < ∞.

We require certain smoothness of Ψ. Let Ψ̇θ denote the derivative of Ψ(Oi; θ,
A) with respect to θ, and let Ψ̇k[Hk] denote the derivative of Ψ(Oi; θ,A) along
the path (Λk + εHk), where Hk belongs to the set of functions in which Λk + εHk

is increasing with bounded total variation.

(C4) For any (θ(1), θ(2)) ∈ Θ, and (Λ(1)
1 , Λ(2)

1 ), . . . , (Λ(1)
K ,Λ(2)

K ), (H(1)
1 ,H

(2)
1 ), . . . ,

(H(1)
K ,H

(2)
K ) with uniformly bounded total variations, there exist a random vari-

able F(Oi) ∈ L4(P ) and K stochastic processes µik(t;Oi) ∈ L6(P ), k = 1, . . . ,K,
such that∣∣∣∣Ψ(

Oi; θ(1),A(1)
)
−Ψ

(
Oi; θ(2),A(2)

)∣∣∣∣+∣∣∣∣Ψ̇θ

(
Oi; θ(1),A(1)

)
−Ψ̇θ

(
Oi; θ(2),A(2)

)∣∣∣∣
+

K∑
k=1

∣∣∣∣Ψ̇k

(
Oi; θ(1),A(1)

)[
H

(1)
k

]
− Ψ̇k

(
Oi; θ(2),A(2)

)[
H

(2)
k

]∣∣∣∣
+

K∑
k=1

∣∣∣∣Ψ̇k(Oi; θ(1),A(1))[H(1)
k ]

Ψ(Oi; θ(1),A(1))
−

Ψ̇k(Oi; θ(2),A(2))[H(2)
k ]

Ψ(Oi; θ(2),A(2))

∣∣∣∣
≤ F(Oi)

[∣∣∣θ(1) − θ(2)
∣∣∣ +

K∑
k=1

{ ∫ τ

0

∣∣∣Λ(1)
k (s) − Λ(2)

k (s)
∣∣∣dµik(s;Oi)

+
∫ τ

0

∣∣∣H(1)
k (s) − H

(2)
k (s)

∣∣∣dµik(s;Oi)
}]

.

In addition, µik(s;Oi) is non-decreasing, and E[F(Oi)µik(s;Oi)] is left-
continuous with uniformly bounded left- and right-derivatives for any s ∈ [0, τ ].
Here, the right-derivative for a function f(x) is defined as limh→0+(f(x + h) −
f(x+))/h.

The following condition ensures identifiability of parameters.

(C5) (First Identifiability Condition) If[
K∏

k=1

nik∏
l=1

∏
t≤τ

λ∗
k(t)

Rikl(t)dN∗
ikl(t)

]
Ψ(Oi; θ∗,A∗)
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=

[
K∏

k=1

nik∏
l=1

∏
t≤τ

λ0k(t)Rikl(t)dN∗
ikl(t)

]
Ψ(Oi; θ0,A0)

almost surely, then θ∗ = θ0 and Λ∗
k(t) = Λ0k(t) for t ∈ [0, τ ], k = 1, . . . ,K.

The next assumption is more technical and will be used in proving the weak
convergence of the NPMLEs. For any fixed (θ,A) in a small neighborhood of
(θ0,A0) in Rd×{BV [0, τ ]}K , where BV [0, τ ] denotes the space of functions with
bounded total variations in [0, τ ], (C4) implies that the linear functional

Hk 7→ E

[
Ψ̇k(Oi; θ,A)[Hk]

Ψ(Oi; θ,A)

]
is continuous from BV [0, τ ] to R. Thus, there exists a bounded function η0k(s; θ,
A) such that

E

[
Ψ̇k(Oi; θ,A)[Hk]

Ψ(Oi; θ,A)

]
=

∫ τ

0
η0k(s; θ,A)dHk(s).

(C6) There exist functions ζ0k(s; θ0,A0) ∈ BV [0, τ ], k = 1, . . . ,K, and a matrix
ζ0θ(θ0,A0) such that∣∣∣∣∣E

[
Ψ̇θ(Oi; θ,A)
Ψ(Oi; θ,A)

− Ψ̇θ(Oi; θ0,A0)
Ψ(Oi; θ0,A0)

]
− ζ0θ(θ0,A0)(θ − θ0)

−
K∑

k=1

∫ τ

0
ζ0k(s; θ0,A0)d(Λk − Λ0k)

∣∣∣∣∣
= o

(
|θ − θ0| +

K∑
k=1

‖Λk − Λ0k‖V [0,τ ]

)
.

In addition, for k = 1, . . . ,K,

K∑
k=1

sup
s∈[0,τ ]

∣∣∣∣{η0k(s; θ,A) − η0k(s; θ0,A0)
}
− η0kθ(s; θ0,A0)(θ − θ0)

−
∫ τ

0

K∑
m=1

η0km(s, t; θ0,A0)d(Λm − Λ0m)(t)
∣∣∣

= o

(
|θ − θ0| +

K∑
k=1

‖Λk − Λ0k‖V [0,τ ]

)
,

where η0km is a bounded bivariate function and η0kθ is a d-dimensional bounded
function. Furthermore, there exists a constant c3 such that |η0km(s, t1; θ0,A0) −
η0km(s, t2; θ0,A0)| ≤ c3|t1 − t2| for any s ∈ [0, τ ] and any t1, t2 ∈ [0, τ ].
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The final assumption ensures that the Fisher information matrix along any
finite-dimensional submodel is non-singular.

(C7) (Second Identifiability Condition) If with probability one,

K∑
k=1

nik∑
l=1

∫
hk(t)Rikl(t)dN∗

ikl(t)

+
Ψ̇θ(Oi; θ0,A0)T v +

∑K
k=1 Ψ̇k(Oi; θ0,A0)[

∫
hkdΛ0k]

Ψ(Oi; θ0,A0)
= 0

for some constant vector v ∈ Rd and hk ∈ BV [0, τ ], k = 1, . . . ,K, then v = 0
and hk = 0 for k = 1, . . . ,K.

Remark 1. (C1)−(C2) are standard assumptions in any analysis of censored
data. (C3) pertains to the model structure, and (C4) and (C6) essentially impose
the smoothness of this structure. Although they appear technical, these condi-
tions are easy to verify in practice. (C5) and (C7) usually require some work to
verify, but can be translated to simple conditions in specific cases.

5. Some Useful Lemmas

Lemma 1. For any constant c, the following classes of functions are P -Donsker:

F1 =
{

log Ψ(Oi; θ,A) : ‖Λk‖V [0,τ ] ≤ c, k = 1, . . . ,K, θ ∈ Θ
}

,

F2 =
{

Ψ̇θ(Oi; θ,A)
Ψ(Oi; θ,A)

: ‖Λk‖V [0,τ ] ≤ c, k = 1, . . . ,K, θ ∈ Θ
}

,

F3k =
{

Ψ̇k(Oi; θ,A)[H]
Ψ(Oi; θ,A)

: ‖Λm‖V [0,τ ] ≤ c, m=1, . . . ,K, θ∈Θ, ‖H‖V [0,τ ]≤c

}
,

k = 1, . . . ,K.

Proof. We only prove that F3k is P -Donsker, the proofs for the other two classes
are similar. For k = 1, . . . ,K, we define a measure µ̃k in [0, τ ] such that, for any
Borel set A ⊂ [0, τ ],

µ̃k(A) =
∫ τ

0
I(t ∈ A)E

[
F(Oi)2

(
µik(τ ;Oi) − µik(0;Oi)

)2
dµik(t;Oi)

]
.

Condition (C4) implies that µ̃k([0, τ ]) ≤ ‖F(Oi)‖L4(P )‖µik(τ ;Oi) − µik(0;
Oi)‖L6(P ). Thus, µ̃k is a finite measure. According to Theorem 2.7.5 of Van
der Vaart and Wellner (1996), the bracket covering number for any bounded set
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in BV [0, τ ] is of order exp{O(1/ε)} in L2(µ̃k), k = 1, . . . ,K. Thus, we can con-
struct Nε ≡ (1/ε)d×exp{O(K/ε)}×exp{O(1/ε)} brackets for the set of (θ,A,H)
in F3k, denoted by[

θL
p , θU

p

]
×

[
ΛL

1p, Λ
U
1p

]
× · · · ×

[
ΛL

Kp, Λ
U
Kp

]
×

[
HL

p ,HU
p

]
, p = 1, . . . , Nε,

such that |θU
p − θL

p | < ε and∫ ∣∣∣ΛU
kp − ΛL

kp

∣∣∣2dµ̃k < ε2,

∫ ∣∣∣HU
p − HL

p

∣∣∣2dµ̃k < ε2, k = 1, . . . ,K.

Any (θ,A,H) must belong to one of these brackets. Obviously, the bracket
functions

Ψ̇k(Oi; θL
p ,AL

p )[HL]
Ψ(Oi; θL

p ,AL
p )

±F(Oi)
{∣∣∣θU

p − θL
p

∣∣∣ +
K∑

m=1

∫ ∣∣∣ΛU
mp(s) − ΛL

mp(s)
∣∣∣

×dµim(s;Oi) +
∫ ∣∣∣HU

p (s) − HL
p (s)

∣∣∣dµim(s;Oi)
}

, p = 1, . . . , Nε,

cover all the functions in F3k. Since∥∥∥∥∥F(Oi)
{∣∣∣θU

p − θL
p

∣∣∣ +
K∑

m=1

∫ ∣∣∣ΛU
mp(s) − ΛL

mp(s)
∣∣∣dµim(s;Oi)

+
K∑

m=1

∫ ∣∣∣HU
p (s) − HL

p (s)
∣∣∣dµim(s;Oi)

}∥∥∥∥∥
L2(P )

≤ c

[∣∣∣θU
p − θL

p

∣∣∣ +
K∑

m=1

{
E

(∫ ∣∣∣ΛU
mp(s) − ΛL

mp(s)
∣∣∣dµ̃imF(Oi)

)2}1/2

+
K∑

m=1

{ ∫ τ

0

∣∣∣HU
p (s) − HL

p (s)
∣∣∣2dµ̃m

}1/2
]

≤ c

[∣∣∣θU
p − θL

p

∣∣∣ +
K∑

m=1

{ ∫ ∣∣∣ΛU
mp(s) − ΛL

mp(s)
∣∣∣2dµ̃m

}1/2

+
K∑

m=1

{ ∫ τ

0

∣∣∣HU
p (s) − HL

p (s)
∣∣∣2dµ̃m

}1/2
]
,

where c is a constant depending on K, the L2(P )-distance within each bracket
pair is O(ε). Hence, the bracket entropy integral of F3k is finite, so that F3k is
P -Donsker.
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Lemma 2. For any bounded random variable (θ, Λ) in Θ×BV [0, τ ], the function
g(s) ≡ |E[Ψ̇k(Oi; θ,A)[I(· ≥ s)]/Ψ(Oi; θ,A)]| is left-continuous and satisfies that,
for any s ∈ [0, τ ], there exist δs, cs > 0 such that |g(s̃) − g(s)| ≤ cs|s̃ − s| for
s̃ ∈ (s − δs, s) and |g(s̃) − g(s+)| ≤ cs|s̃ − s| for s̃ ∈ (s, s + δs).

Proof. Since µik(t;Oi) is non-decreasing in t, it follows from (C4) that for any
s1 and s2,

|g(s1) − g(s2)| ≤ E

[
F(Oi)

{ ∫ ∣∣∣I(t ≥ s1) − I(t ≥ s2)
∣∣∣dµik(t;Oi)

}]

≤
∣∣∣∣E[

F(Oi)µik(s1;Oi)
]
− E

[
F(Oi)µik(s2;Oi)

]∣∣∣∣.
Thus, g(s) is in BV [0, τ ] and is left-continuous. In addition, the left- and right-
differentiability of E[F(Oi)µik(s;Oi)] in (C4) implies that the second part of the
lemma holds.

Lemma 3. For any h(s) ∈ BV [0, τ ], the linear map h 7→
∫ τ
0 h(t)η0km(t, s; θ0,

A0)dΛ0k(t) is a bounded compact operator from BV [0, τ ] to BV [0, τ ].

Proof. It is clear from (C6) that this function maps any bounded set in BV [0, τ ]
into a bounded set consisting of Lipschitz-continuous functions. The result thus
follows since any bounded and Lipschitz-continuous functions consist of a totally
bounded set in BV [0, τ ] and the linear map is continuous.

6. Consistency

The following theorem states the consistency of θ̂ and Λ̂k, k = 1, . . . ,K.

Theorem 1. Under (C1)−(C5), |θ̂−θ0|+
∑K

k=1 supt∈[0,τ ] |Λ̂k(t)−Λ0k(t)| →a.s. 0.

Proof. We fix a random sample in the probability space and assume that
(C1)−(C5) hold for this sample. The set of such samples has probability one.
We prove the result for this fixed sample. The entire proof consists of three steps.

Step 1. We show that the NPMLEs exist or, equivalently, Λ̂k(τ) < ∞
(k = 1, . . . ,K) for large n. By (C3), the likelihood function is bounded by

n∏
i=1

r1(Oi)
K∏

k=1

∏
t≤τ

[
Λk{t}Rik·(t)

{
1 +

∫ t

0
Rik·(s)dΛk(s)

}−1
]dN∗

ik·(t)

×
{

1 +
∫ τ

0
Rik·(s)dΛk(s)

}−c1
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≤
n∏

i=1

r1(Oi)
K∏

k=1

{
1 +

∫ τ

0
Rik·(s)dΛk(s)

}−c1

.

If Λk(τ) = ∞ for some k, then (C2) implies that, with probability one, inft∈[0,τ ]

Rik·(t) ≥ 1 for some i, so that the above function is equal to zero. Thus, the
maximum of the likelihood function can only be attained for Λ̂k(τ) < ∞.

Step 2. We show that lim supn Λ̂k(τ) < ∞ almost surely, i.e., Λ̂k(τ) is
bounded uniformly for all large n. By differentiating the objective function (3.1)
with respect to Λk{Yikl} for which dN∗

ikl(Yikl) = 1 and Rikl(Yikl) = 1, we note
that Λ̂k{Yikl} satisfies

1

Λ̂k{Yikl}
= −

n∑
j=1

Ψ̇k(Oj ; θ̂, Â)[I(· ≥ Yikl)]

Ψ(Oj ; θ̂, Â)
.

In other words,

Λ̂k(t) = −
n∑

i=1

nik∑
m=1

∫ t

0

{ n∑
j=1

Ψ̇k(Oj ; θ̂, Â)[I(· ≥ s)]

Ψ(Oj ; θ̂, Â)

}−1

Rikm(s)dN∗
ikm(s).

To prove the boundedness of Λ̂k(τ), we construct another step function Λ̃k with
jumps only at the Yikl for which dN∗

ikl(Yikl) = 1 and Rikl(Yikl) = 1,

1

Λ̃k{Yikl}
= −

n∑
j=1

Ψ̇k(Oj ; θ0,A0)[I(· ≥ Yikl)]
Ψ(Oj ; θ0,A0)

,

that is,

Λ̃k(t) = −
n∑

i=1

nik∑
m=1

∫ t

0

{ n∑
j=1

Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]
Ψ(Oj ; θ0,A0)

}−1

Rikm(s)dN∗
ikm(s).

We show that Λ̃k uniformly converges to Λ0k. By Lemma 1,

n−1

{ n∑
j=1

Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]
Ψ(Oj ; θ0,A0)

}
→ E

[
Ψ̇k(Oi; θ0,A0)[I(· ≥ s)]

Ψ(Oi; θ0,A0)

]
(6.1)

uniformly in s ∈ [0, τ ]. Since the score function, along the path Λk = Λ0k +εI(· ≥
s) with the other parameters fixed at their true values, has zero expectation,

0 = E

[ nik∑
l=1

∫
δ(t = s)
λ0k(t)

Rikl(t)dN∗
ikl(t)

]
+ E

[
Ψ̇k(Oi; θ0,A0)[I(· ≥ s)]

Ψ(Oi; θ0,A0)

]
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=
E[

∑nik
l=1 Rikl(s)dN∗

ikl(s)/ds]
λ0k(s)

+ E

[
Ψ̇k(Oi; θ0,A0)[I(· ≥ s)]

Ψ(Oi; θ0,A0)

]
, (6.2)

where δ(t = s) is the Dirac function. The submodel is not in the parameter
space; however, we can always choose a sequence of submodels in the parameter
space which approximates this submodel. Thus, the uniform limit of Λ̃k(t) is

E

[
nik∑

m=1

∫ t

0

{
E[

∑nik
l=1 Rikl(s)dN∗

ikl(s)/ds]
λ0k(s)

}−1

Rikm(s)dN∗
ikm(s)

]
= Λ0k(t).

That is, Λ̃k(t) uniformly converges to Λ0k(t).
We next show that the difference between the log-likelihood functions eval-

uated at (θ̂, Â) and (θ0, Ã), where Ã = (Λ̃1, . . . , Λ̃K), is negative eventually if
some Λ̂k(τ) diverges, which will induce a contradiction. The key arguments are
based on (C3). Clearly, n−1Ln(θ̂, Â) ≥ n−1Ln(θ0, Ã). It follows from (6.1) and
(6.2) that nΛ̃k{t} converges to λ0k(t)/E[

∑nik
l=1 Rikl(t)dN∗

ikl(t)/dt], and is thus
uniformly bounded away from zero, where t is an observed failure time. There-
fore,

n−1Ln(θ0, Ã) + n−1
n∑

i=1

K∑
k=1

nik∑
l=1

∫
Rikl(t)dN∗

ikl(t) log n

= n−1
n∑

i=1

K∑
k=1

nik∑
l=1

∫
log(nΛ̃k{t})Rikl(t)dN∗

ikl(t) + n−1
n∑

i=1

log Ψ(Oi; θ0,A0),

which is bounded away from −∞ when n is large. That is,

n−1Ln(θ0, Ã) + n−1
n∑

i=1

K∑
k=1

nik∑
l=1

∫
Rikl(t)dN∗

ikl(t) log n = O(1),

where O(1) denotes a finite constant. On the other hand, (C3) implies that

n−1Ln(θ̂, Â) ≤ n−1
n∑

i=1

K∑
k=1

nik∑
l=1

∫
Rikl(t) log Λ̂k{t}dN∗

ikl(t)

+n−1
n∑

i=1

log Ψ(Oi; θ̂, Â)

≤ n−1
n∑

i=1

log r1(Oi) + n−1
n∑

i=1

K∑
k=1

∫
I(Rik·(t) > 0)

× log Λ̂k{t}dNik·(t)
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−n−1
n∑

i=1

K∑
k=1

∫
log

{
1 +

∫ t

0
Rik·(s)dΛ̂k(s)

}
dNik·(t)

−n−1
n∑

i=1

K∑
k=1

c1 log
{

1 +
∫ τ

0
Rik·(s)dΛ̂k(s)

}
,

where dNik·(t) =
∑nik

l=1 Rikl(t)dN∗
ikl(t). Thus,

O(1) ≤ n−1
n∑

i=1

K∑
k=1

∫
I(Rik·(t) > 0) log(nΛ̂k{t})dNik·(t)

−n−1
n∑

i=1

K∑
k=1

∫
log

{
1 +

∫ t

0
Rik·(s)dΛ̂k(s)

}
dNik·(t)

−n−1
n∑

i=1

K∑
k=1

c1 log
{

1 +
∫ τ

0
Rik·(s)dΛ̂k(s)

}
. (6.3)

We now show that the right-hand side diverges to −∞ if Λ̂k(τ) diverges
for some k. The proof is based on the partitioning idea of Murphy (1994).
Specifically, we construct a sequence t0k = τ > t1k > t2k > . . . in the following
manner. First, we define

t1k = argmin
{

t ∈ [0, t0k) :
c1

2
E[I(Rik·(τ) > 0)]

≥ E

[
I(Rik·(t) > 0, Rik·(τ) = 0)

∫ t0k

t
dNik·(t)

]}
,

where Rik·(t) = infs∈[0,t] Rik·(s). Clearly, such a t1k exists, and the above in-
equality becomes an equality if t1k > 0. If t1k > 0, we choose a small constant
ε0 such that

ε0
1 − ε0

<
c1E[I(Rik·(τ) = 0, Rik·(t1k) > 0)

E[I(Rik·(t1k) = 0, Rik·(0) > 0)
∫ τ
0 dNik·(t)]

,

and define

t2k = argmin

{
t ∈ [0, t1k) : (1 − ε0)E

[{
c1 +

∫ t0k

t1k

dNik·(t)
}

×I
(
Rik·(t0k) = 0, Rik·(t1k) > 0

)]
≥ E

[
I
(
Rik·(t1k) = 0, Rik·(t) > 0

) ∫ t1k

t
dNik·(t)

]}
.
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Such a t2k exists. If t2k > 0, the inequality is an equality, and we define

t3k = argmin

{
t ∈ [0, t1k) : (1 − ε0)E

[{
c1 +

∫ t1k

t2k

dNik·(t)
}

×I
(
Rik·(t1k) = 0, Rik·(t2k) > 0

)]
≥ E

[
I
(
Rik·(t2k) = 0, Rik·(t) > 0

) ∫ t2k

t
dNik·(t)

]}
.

We continue this process. The sequence eventually stops at some tNk,k = 0. If
this is not true, then the sequence is infinite and strictly decreases to some t∗ ≥ 0.
Since all the inequalities are equalities, we sum all the equations except the first
one to obtain

(1 − ε0)E

[{
c1 +

∫ t0k

t∗
dNik·(t)

}
I
(
Rik·(t∗) > 0, Rik·(τ) = 0

)]

= E

[
I
(
Rik·(t1k) = 0, Rik·(t∗) > 0

) ∫ t1k

t∗
dNik·(t)

]
,

which implies that

c1(1 − ε0)E
[
I(Rik·(τ) = 0, Rik·(t1k) > 0)

]
≤ ε0E

[
I
(
Rik·(t1k) = 0, Rik·(0) > 0

) ∫ τ

0
dNik·(t)

]
.

This contradicts the choice of ε0. Thus, the sequence stops at some tNkk = 0.
If we write Iqk = [tq+1,k, tqk), then the right-hand side of (6.3) can be bounded

by

K∑
k=1

[
n−1

n∑
i=1

Nk−1∑
q=0

I
(
Rik·(tqk) = 0, Rik·(tq+1,k) > 0

)
×

∫
t∈Iqk

log
(
nΛ̂k{t}

)
dNik·

−n−1
n∑

i=1

Nk−1∑
q=0

I
(
Rik·(tqk) = 0, Rik·(tq+1,k) > 0

)
×

∫
t∈Iqk

dNik· log
{

1 + Λ̂k(tq+1,k)
}

−n−1
n∑

i=1

Nk−1∑
q=0

I
(
Rik·(tqk)=0, Rik·(tq+1,k)>0

)
c1 log

{
1 + Λ̂k(tq+1,k)

}
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−n−1
n∑

i=1

I
(
Rik·(t0k) > 0

)
log

{
1 + Λ̂k(τ)

}]
. (6.4)

Since log x is a concave function,

n∑
i=1

I
(
Rik·(tqk) = 0, Rik·(tq+1,k) > 0

) ∫
t∈Iqk

log
(
nΛ̂k{t}

)
dNik·(t)

≤
{ n∑

i=1

I
(
Rik·(tqk) = 0, Rik·(tq+1,k) > 0

) ∫
t∈Iqk

dNik·

}

× log
[∑n

i=1 I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫
t∈Iqk

nΛ̂k{t}dNik·(t)∑n
i=1 I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)

∫
t∈Iqk

dNik·(t)

]

≤
{ n∑

i=1

I
(
Rik·(tqk) = 0, Rik·(tq+1,k) > 0

) ∫
t∈Iqk

dNik·

}

× log
[

nΛ̂k(tqk)∑n
i=1 I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)

∫
t∈Iqk

dNik·(t)

]
.

Therefore, (6.4) can be further bounded by

O(1) ≤
K∑

k=1

[
Nk−1∑
q=0

n−1
n∑

i=1

I
(
Rik·(tqk) = 0, Rik·(tq+1,k) > 0

) ∫
t∈Iqk

dNik·

× log
{

n∑n
i=1 I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)

∫
t∈Iqk

dNik·

}

+
Nk−1∑
q=0

log Λ̂k(tqk)
{

n−1
n∑

i=1

I
(
Rik·(tqk)=0, Rik·(tq+1,k)>0

) ∫
t∈Iqk

dNik·

}

−n−1
n∑

i=1

Nk−1∑
q=0

I
(
Rik·(tqk) = 0, Rik·(tq+1,k) > 0

)
×

∫
t∈Iqk

dNik· log
{

1 + Λ̂k(tq+1,k

)}

−
Nk−1∑
q=0

n−1
n∑

i=1

I
(
Rik·(tqk)=0, Rik·(tq+1,k)>0

)
c1 log

{
1 + Λ̂k(tq+1,k

)}

−n−1
n∑

i=1

I
(
Rik·(t0k) > 0

)
log

{
1 + Λ̂k(τ)

}]
.
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By (C2),
n∑n

i=1 I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫
t∈Iqk

dNik·

→a.s.

(
E

[
I
(
Rik·(tqk) = 0, Rik·(tq+1,k) > 0

) ∫
t∈Iqk

dNik·

])−1

< ∞,

so that

O(1) ≤
K∑

k=1

(
− n−1

n∑
i=1

c1

2
I
(
Rik·(t0k) > 0

)
log

{
1 + Λ̂k(τ)

}
−

{
n−1

n∑
i=1

c1

2
I
(
Rik·(t0k) > 0

)
− n−1

n∑
i=1

I
(
Rik·(t0k) = 0, Rik·(t1k) > 0

)
×

∫
t∈I0k

dNik·

}
log

{
1 + Λ̂k(t0k)

}
−

Nk−1∑
q=1

[
n−1

n∑
i=1

I
(
Rik·(tq−1,k) = 0, Rik·(tqk) > 0

){
c1 +

∫
t∈Iqk

dNik·

}

−n−1
n∑

i=1

I
(
Rik·(tqk) = 0, Rik·(tq+1,k) > 0

) ∫
t∈Iqk

dNik·

]

×
{

1 + log Λ̂k(tqk)
})

.

According to the construction of the tqk’s, the coefficients in front of log Λ̂k(tqk)
are all negative when n is large enough. Therefore, the corresponding terms
cannot diverge to ∞. However, if Λ̂k(τ) → ∞, the first term in the summation
goes to −∞. We conclude that for all n large enough, Λ̂k(τ) < ∞. Thus,
lim supn Λ̂k(τ) < ∞.

Step 3. We obtain the consistency result from (C5). Since Λ̂k is bounded
and monotone, Λ̂k is weakly compact. Helly’s Selection Theorem implies that,
for any subsequence, we can always choose a further subsequence such that Λ̂k

point-wise converges to some monotone function Λ∗
k. Without loss of generality,

we also assume that θ̂ converges to some θ∗. The consistency will hold if we can
show that Λ∗

k = Λ0k and θ∗ = θ0. Since Λ0k is continuous, the weak convergence
of Λ̂k to Λ0k can be strengthened to the uniform convergence of Λ̂k to Λ0k in
[0, τ ].

Note that

Λ̂k(t) =
∫ t

0

|n−1
∑n

j=1 Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]/Ψ(Oj ; θ0,A0)|
|n−1

∑n
j=1 Ψ̇k(Oj ; θ̂, Â)[I(· ≥ s)]/Ψ(Oj ; θ̂, Â)|

dΛ̃k(s). (6.5)
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Clearly, Λ̂k is absolutely continuous with respect to Λ̃k. By condition (C3),

sup
s∈[0,τ ]

∣∣∣∣∣n−1
n∑

j=1

Ψ̇k(Oj ; θ̂, Â)[I(· ≥ s)]

Ψ(Oj ; θ̂, Â)
− n−1

n∑
j=1

Ψ̇k(Oj ; θ∗,A∗)[I(· ≥ s)]
Ψ(Oj ; θ∗,A∗)

∣∣∣∣∣
≤ n−1

n∑
j=1

F(Oj)
{
|θ̂ − θ∗| +

K∑
k=1

∫
|Λ̂k(t) − Λ∗

k(t)|dµjk(t;Oj)
}

→ 0,

since Λ̂k converges to Λ∗
k and is bounded and {F(Oj)µjk(t;Oj) : t ∈ [0, τ ]} is a

P -Glivenko-Cantelli class. By Lemma 1 and the Glivenko-Cantelli Theorem,

n−1
n∑

j=1

Ψ̇k(Oj ; θ∗,A∗)[I(· ≥ s)]
Ψ(Oj ; θ∗,A∗)

→ E

[
Ψ̇k(Oj ; θ∗,A∗)[I(· ≥ s)]

Ψ(Oj ; θ∗,A∗)

]
uniformly in s ∈ [0, τ ],

n−1
n∑

j=1

Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]
Ψ(Oj ; θ0,A0)

→ E

[
Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]

Ψ(Oj ; θ0,A0)

]
uniformly in s ∈ [0, τ ].

The numerator and denominator in the integrand of (6.5) converge uniformly
to deterministic functions, denoted by g1k(s) and g2k(s), respectively. It follows
from (6.2) that g1k(s) ≡ E[

∑nik
l=1 Rikl(s)dNikl∗(s)/ds]/λik(s) is bounded away

from zero. We claim that infs∈[0,τ ] g2k(s) > 0. If this is not true, then there
exists some s∗ ∈ [0, τ ] such that g2k(s∗+) = 0 or g2k(s∗) = 0. By Lemma 2, there
exist δ∗ and c∗ such that |g2k(s)| ≤ c∗|s−s∗| for s ∈ (s∗, s∗+δ∗) or s ∈ (s∗−δ∗, s∗].
On the other hand, for any ε > 0,

Λ̂k(τ) ≥
∫ τ

0

|n−1
∑n

j=1 Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]/Ψ(Oj ; θ0,A0)|
ε + |n−1

∑n
j=1 Ψ̇k(Oj ; θ̂, Â)[I(· ≥ s)]/Ψ(Oj ; θ̂, Â)|

dΛ̃k(s).

Taking limits on both sides, we obtain O(1) ≥
∫ τ
0 {ε + g2k(s)}−1g1k(s)dΛ0k(s).

Let ε → 0. By the Monotone Convergence Theorem, O(1) ≥
∫ s∗+δ∗

s∗ {c∗|s −
s∗|}−1g1k(s)λ0k(s)ds, or O(1) ≥

∫ s∗

s∗−δ∗{c
∗|s − s∗|}−1g1k(s)λ0k(s)ds. This is a

contradiction since the right-hand side is infinite. The contradiction implies that
the limit g2k(s) is uniformly positive. We can take limits on both sides of (6.5)
to obtain Λ∗

k(t) =
∫ t
0 g−1

2k (s)g1k(s)dΛ0k(s). Thus, Λ∗
k is also absolutely continuous

with respect to Λ0k and dΛ∗
k/dΛ0k = g1k/g2k. Since Λ0k(t) is differentiable with
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respect to t, so is Λ∗
k(t). We write {Λ∗

k}′(t) = λ∗
k(t). The forgoing arguments

show that dΛ̂k(t)/dΛ̃k(t) uniformly converges to λ∗
k(t)/λ0k(t), which is uniformly

positive in [0, τ ].
It follows from the inequality n−1Ln(θ̂, Â) ≥ n−1Ln(θ0, Ã) that

n−1
n∑

i=1

K∑
k=1

nik∑
l=1

∫
log

dΛ̂k(t)

dΛ̃k(t)
Rikl(t)dN∗

ikl(t) + n−1
n∑

i=1

log
Ψ(Oi; θ̂, Â)

Ψ(Oi; θ0, Ã)
≥ 0.

In view of Lemma 1, the Glivenko-Cantelli Theorem and the uniform convergence
of dΛ̂k/dΛ̃k, taking limits on both sides of the above inequality yields

E

[
log

∏K
k=1

∏nik
l=1

∏
t≤τ{λ∗

k(t)}Rikl(t)dN∗
ikl(t)Ψ(Oi; θ∗,A∗)∏K

k=1

∏nik
l=1

∏
t≤τ{λ0(t)}Rikl(t)dN∗

ikl(t)Ψ(Oi; θ0,A0)

]
≥ 0.

The left-hand side is the negative Kullback-Leibler distance of the density indexed
by (θ∗,A∗). Thus, (C5) entails that θ∗ = θ0 and Λ∗ = Λ0.

7. Weak Convergence and Asymptotic Efficiency

Define V = {v ∈ Rd, |v| ≤ 1}, and Q = {h(t) : ‖h(t)‖V [0,τ ] ≤ 1}. We identify
(θ̂ − θ0, Â − A0) as a random element in l∞(V × QK) through the definition
(θ̂ − θ0)T v +

∑K
k=1

∫ τ
0 hk(s)d(Λ̂k − Λ0k)(s).

Theorem 2. Under (C1)−(C7), n1/2(θ̂ − θ0, Â − A0) →d G in l∞(V × QK),
where G is a continuous zero-mean Gaussian process. Furthermore, the limiting
covariance matrix of n1/2(θ̂ − θ0) attains the semiparametric efficiency bound.

Proof. The proof is based on the likelihood equation and follows the ar-
guments of Van der Vaart (1998, pp.419-424). Let L(θ,A) be the log-likelihood
function from a single cluster, L̇θ(θ,A) be the derivative of L(θ,A) with respect
to θ, and L̇k(θ,A)[Hk] be the path-wise derivative along the path Λk + εHk. We
sometimes omit the arguments in these derivatives when θ = θ0 and A = A0.
Let Pn be the empirical measure based on n i.i.d. observations, and P be its
expectation.

Let W = (h1, . . . , hK) ∈ QK . The likelihood equation for (θ̂, Â) along the
path (θ̂ + εv, Â + ε

∫
WdÂ), where v ∈ Rd and hk ∈ BV [0, τ ], is given by

0 = Pn

[
vT L̇θ(θ,A) +

K∑
k=1

L̇k(θ,A)
[ ∫

hkdΛk

]]
.

To be specific,

0 = Pn

[
vT Ψ̇θ(Oi; θ,A)

Ψ(Oi; θ,A)

]
+

K∑
k=1

Pn

[
nik∑
l=1

∫
hk(t)Rikl(t)dN∗

ikl(t)
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+Ψ̇k(Oi; θ,A)
[ ∫

hkdΛk

]]
.

Since (θ0,A0) maximizes P[L(θ,A)],

0 = P
[
vT L̇θ(θ0,A0)

]
, 0 = P

[
L̇k(θ0,A0)

[ ∫
hkdΛ0k

]]
, hk ∈ Q, k = 1, . . . ,K.

These equations, combined with the likelihood equation for (θ̂, Â), yield

n1/2(Pn − P)
[
vT L̇θ(θ̂, Â) +

K∑
k=1

Lk(θ̂, Â)
[ ∫

hkdΛ̂k

]]

= −n1/2P
[
vT Ψ̇θ(Oi; θ̂, Â)

Ψ(Oi; θ̂, Â)
− vT Ψ̇θ(Oi; θ0,A0)

Ψ(Oi; θ0,A0)

]

−
K∑

k=1

n1/2P
[
Ψ̇k(Oi; θ̂, Â)[

∫
hkdΛ̂k]

Ψ(Oi; θ̂, Â)
−

Ψ̇k(Oi; θ0,A0)[
∫

hkdΛ0k]
Ψ(Oi; θ0,A0)

]
.

Define N0 = {(θ,A) : |θ − θ0| +
∑K

k=1 ‖Λk − Λ0k‖V [0,τ ] < δ0}, where δ0 is
a small positive constant. When n is large enough, (θ̂, Â) belongs to N0 with
probability one. By Lemma 1 and the Donsker Theorem,

op(1) + n1/2(Pn −P)
[
vT L̇θ(θ0,A0) +

K∑
k=1

Lk(θ0,A0)
[ ∫

hkdΛ0k

]]

= −n1/2P
[
vT Ψ̇θ(Oi; θ̂, Â)

Ψ(Oi; θ̂, Â)
− vT Ψ̇θ(Oi; θ0,A0)

Ψ(Oi; θ0,A0)

]

−
K∑

k=1

n1/2P
[
Ψ̇k(Oi; θ̂, Â)[

∫
hkdΛ̂k]

Ψ(Oi; θ̂, Â)
−

Ψ̇k(Oi; θ0,A0)[
∫

hkdΛ0k]
Ψ(Oi; θ0,A0)

]
, (7.1)

where op(1) represents some random element converging in probability to zero in
l∞(V ×QK).

Under (C6), the first term on the right-hand side of (7.1) is

−n1/2

{ K∑
k=1

∫ τ

0
vT ζ0k(s)d(Λ̂k − Λ0k) + vT ζ0θ(θ̂ − θ0)

}

+o

(
n1/2|θ̂ − θ0| + n1/2

K∑
k=1

‖Λ̂k − Λ0k‖V [0,τ ]

)
.
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The second term is −
∑K

k=1 n1/2{
∫ τ
0 hk(t)η0k(t; θ̂, Â)dΛ̂k(t) −

∫ τ
0 hk(y)η0k(t; θ0,

A0)dΛ0k(t)}. It follows from (C6) that the above expression is

−
K∑

k=1

n1/2

[∫ τ

0
hk(t)

{
η0kθ(t; θ0,A0)(θ̂ − θ0)

+
K∑

m=1

∫ τ

0
η0km(s, t; θ0,A0)d(Λ̂m − Λ0m)(s)

}
dΛ0k(t)

+
∫ τ

0
hk(t)η0k(t; θ0,A0)d(Λ̂k(t) − Λ0k(t))

]

+o

(
n1/2|θ̂ − θ0| + n1/2

K∑
k=1

‖Λ̂k − Λ0k‖V [0,τ ]

)

= −
K∑

k=1

n1/2

[
(θ̂ − θ0)T

∫ τ

0
hk(t)η0kθ(t; θ0,A0)dΛ0k(t)

+
K∑

m=1

∫ τ

0

{
I(m = k)hm(t)η0m(t; θ0,A0)

+
∫ τ

0
η0km(s, t; θ0,A0)hk(s)dΛ0k(s)

}
d(Λ̂m(t) − Λ0m(t))

]

+o

(
n1/2|θ̂ − θ0| + n1/2

K∑
k=1

‖Λ̂k − Λ0k‖V [0,τ ]

)
.

Thus, the right-hand side of (7.1) can be written as

−n1/2

{
B1[v,W]T (θ̂ − θ0) +

K∑
k=1

∫
B2k[v,W]d(Λ̂k − Λ0k)

}

+o

(
n1/2|θ̂ − θ0| + n1/2

K∑
k=1

‖Λ̂k − Λ0k‖V [0,bτ ]

)
,

where (B1, B21, . . . , B2K) are linear operators in Rd × {BV [0, τ ]}K , and

B1[v,W] = vT ζ0θ(θ0,A0) +
K∑

k=1

∫ τ

0
hk(t)η0kθ(t; θ0,A0)dΛ0k(t), (7.2)

B2k[v,W] = vT ζ0k(s; θ0,A0) + hk(t)η0k(t; θ0,A0)

+
K∑

m=1

∫ τ

0
η0mk(s, t; θ0,A0)hm(s)dΛ0k(s), k = 1, . . . ,K. (7.3)
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It follows from the above derivation that

B1[v,W]T ṽ +
K∑

k=1

∫
B2k[v,W]W̃kdΛ0k

=
d

dε

∣∣∣
ε=0

P
[
vTLθ

(
θ0 + εṽ,A0 + ε

∫
W̃dA0

)
+

K∑
k=1

Lk

(
θ0 + εṽ,A0 + ε

∫
W̃dA0

)[ ∫
hkdΛ0k

]]
. (7.4)

We can write (B1, B21, . . . , B2K)[v,W] as
0

B

B

B

@

v
η01(t; θ0,A0) × h1(t)

...
η0K(t; θ0,A0) × hK(t)

1

C

C

C

A

+

0

B

B

B

@

vT ζ0θ(θ0,A0) +
PK

k=1

R τ

0
hk(t)η0kθ(t; θ0,A0)dΛ0k(t) − v

vT ζ01(t; θ0,A0) +
PK

m=1

R τ

0
η0m1(s, t; θ0,A0)hm(s)dΛ0m(s)
...

vT ζ0K(t; θ0,A0) +
PK

m=1

R τ

0
η0mK(s, t; θ0,A0)hm(s)dΛ0m(s)

1

C

C

C

A

.

We wish to prove that (B1, B21, . . . , B2K) is invertible. As shown at the end of
this section, η0k(t; θ0,A0) < 0, so that the first term of (B1, B21, . . . , B2K) is an
invertible operator. It follows from Lemma 3 that the second term is a compact
operator. Thus, (B1, B21, . . . , B2K) is a Fredholm operator, and the invertibility
of (B1, . . . , B2K) is equivalent to the operator being one-to-one (Rudin (1973,
pp.99-103)). Suppose that B1[v,W] = 0, . . . , and B2K [v,W] = 0. It is easy to
see from (7.4) that the derivative of P[vTLθ(θ0,A0)+

∑K
k=1 Lk(θ0,A0)[

∫
hkdΛ0k]]

along the path (θ0+εv,A0+ε
∫
WdA0) is zero. That is, the information along this

path is zero, or vTLθ(θ0,A0)+
∑K

k=1 Lk(θ0,A0)[
∫

hkdΛ0k] = 0 almost surely. By
(C7), v = 0 and W = 0, so that (B1, B21, . . . , B2K) is one-to-one and invertible.

It follows from (7.1) that, for any (v,W) ∈ V ×QK ,

n1/2

{
vT (θ̂ − θ0) +

K∑
k=1

∫ τ

0
hk(t)d(Λ̂k(t) − Λ0k(t))

}

= −n1/2(Pn − P)

[
ṽT L̇θ(θ0,A0) +

K∑
k=1

L̇k(θ0,A0)
[ ∫

h̃kdΛ0k

]]

+o

(
n1/2|θ̂ − θ0| + n1/2

K∑
k=1

‖Λ̂k − Λ0k‖V [0,τ ]

)
,

where (ṽ, h̃1, . . . , h̃K) = (B1, B21, . . . , B2K)−1(v, h1, . . . , hK). Since

|θ̂ − θ0| +
K∑

k=1

‖Λ̂k − Λ0k‖V [0,τ ]
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= sup
(v,h1,...,hK)∈V×QK

∣∣∣∣vT (θ̂ − θ0) +
K∑

k=1

∫ τ

0
hk(t)d(Λ̂k(t) − Λ0k(t))

∣∣∣∣,
n1/2

{
|θ̂ − θ0| +

K∑
k=1

‖Λ̂k − Λ0k‖V [0,τ ]

}

= Op(1) + o

(
n1/2|θ̂ − θ0| + n1/2

K∑
k=1

‖Λ̂k − Λ0k‖V [0,τ ]

)
.

Thus, n1/2{|θ̂ − θ0| +
∑K

k=1 ‖Λ̂k − Λ0k‖V [0,τ ]} = Op(1). Consequently,

n1/2

{
vT (θ̂ − θ0) +

K∑
k=1

∫ τ

0
hk(t)d(Λ̂k(t) − Λ0k(t))

}

= −n1/2(Pn − P)

[
ṽT L̇θ(θ0,A0) +

K∑
k=1

L̇k(θ0,A0)
[ ∫

h̃kdΛ0k

]]
+ op(1).

We have proved that n1/2(θ̂−θ0, Â−A0) converges weakly to a Gaussian process
in l∞(V × QK). By choosing hk = 0 for k = 1, . . . ,K, we see that vT θ̂ is an
asymptotically linear estimator of vT θ0 with influence function ṽT L̇θ(θ0,A0) +∑K

k=1 L̇k(θ0,A0)[
∫

h̃kdΛ0k]. Since the influence function lies in the space spanned
by the score functions, θ̂ is an efficient estimator for θ0.

It remains to verify that η0k(t; θ0,A0) < 0. Under (C6), P[Ψ̇k(Oi; θ0,A0)[Hk]
/Ψ(Oi; θ0,A0)] =

∫ τ
0 η0k(s; θ0,A0)dHk(s). The choice of Hk(s) = I(s ≥ t) yields

P[Ψ̇k(Oi; θ0,A0)[I(· ≥ t)]/Ψ(Oi; θ0,A0)] = η0k(t; θ0,A0). On the other hand, the
score function along the path Λ0k + εI(· ≥ t), with the other parameters fixed at
their true values, has zero expectation. We expand this expectation to obtain

P
[
Ψ̇k(Oi; θ0,A0)[I(· ≥ t)]

Ψ(Oi; θ0,A0)

]
= −

λ−1
k (t)dE[I(Rik·(t) > 0)N∗

ik·(t)]
dt

< 0.

Thus, η0k(t; θ0,A0) < 0.

8. Information Matrix

Theorem 2 implies that the functional parameter A can be estimated at
the same rate as the Euclidean parameter θ. Thus, we may treat (3.1) as a
parametric log-likelihood with θ and the jump sizes of Λk, k = 1, . . . ,K, at the
observed failure times as the parameters and estimate the asymptotic covariance
matrix of the NPMLEs for these parameters by inverting the information matrix.
This result is formally stated in Theorem 3. We impose an additional assumption.
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(C8) There exists a neighborhood of (θ0,A0) such that for (θ,A) in this neigh-
borhood, the first and second derivatives of log Ψ(Oi; θ,A) with respect to θ and
along the path Λk + εHk with respect to ε satisfy the inequality in (C4).

For any v ∈ V and h1, . . . , hK ∈ Q, we consider the vector (vT ,~hT
1 , . . . ,~hT

K)T ,
where ~hk is the vector consisting of the values of hk(·) at the observed failure
times. Let In be the negative Hessian matrix of (3.1) with respect to θ̂ and the
jump sizes of (Λ̂1, . . . , Λ̂K).

Theorem 3. Assume (C1)−(C8). Then In is invertible for large n, and

sup
v∈V,h1,...,hK∈Q

∣∣∣∣n(
vT ,~hT

1 , . . . ,~hT
K

)
I−1

n (vT ,~hT
1 , . . . ,~hT

K)T

−AVar
[
n1/2

{
vT (θ̂ − θ0) +

K∑
k=1

∫
hkd(Λ̂k − Λ0k)

}]∣∣∣∣ → 0

in probability, where AVar denotes the asymptotic variance.

Proof. The proof is similar to that of Theorem 3 in Parner (1998); see also
Van der Vaart (1998, pp.419-424). First, (7.4) implies that, for any v ∈ V and
h1, . . . , hK ∈ Q,

−P


 L̈θθ L̈θ1 . . . L̈θK

...
...

. . .
...

L̈Kθ LK1 . . . LKK





v∫

h1dΛ01
...∫

hKdΛ0K

 ,


v∫

h1dΛ01
...∫

hKdΛ0K





= vT B1(v, h1, . . . , hK) +

K∑
k=1

∫
B2k(v, h1, . . . , hK)hkdΛ0k, (8.1)

where L̈ pertains to the second-order derivative of the log-likelihood function.
On the right-hand side of (7.4), we replace P by Pn to obtain two new linear

operators Bn1 and Bn2k. It is easy to show that Bn1 and Bn2k converge uniformly
to B1 and B2k, respectively. Under (C8), the results of Lemma 1 apply to the
second-order derivatives L̈ and the operators (B1, B21, . . . , B2K). By replacing
θ0, Λ0k and P on both sides of (8.1) with θ̂, Λ̂0k and Pn, we obtain

(vT ,~hT
1 , . . . ,~hT

K)In(vT ,~hT
1 , . . . ,~hT

K)T

= vT Bn1(ṽ, h̃1, . . . , h̃K) +
K∑

k=1

∫
Bn2k(ṽ, h̃1, . . . , h̃K)hkdΛ̂k + op(1).

According to the proof of Theorem 2, (B1, B21, . . . , B2K) is invertible, and so is
(Bn1, . . . , Bn2k) for large n. Note that vT Bn1(ṽ, h̃1, . . . , h̃K)+

∑K
k=1

∫
Bn2k(ṽ, h̃1,
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. . . , h̃K)hkdΛ̂k can be written as (vT ,~hT
1 , . . . ,~hT

K) ×Bn(vT ,~hT
1 , . . . ,~hT

K)T for some
matrix Bn. Therefore Bn is invertible, and so is In. Furthermore,

sup
v∈V,h1,...,hK∈Q

∣∣∣(vT ,~hT
1 , . . . ,~hT

K)In(vT ,~hT
1 , . . . ,~hT

K)T

−(vT ,~hT
1 , . . . ,~hT

K)Bn(vT ,~hT
1 , . . . ,~hT

k )T
∣∣∣ → 0.

According to Theorem 2, the asymptotic variance of n1/2{vT (θ̂ − θ0) +∑K
k=1

∫
hkd(Λ̂k − Λ0k)} is

P

[{
L̇T

θ ṽ +
K∑

k=1

L̇k

[ ∫
h̃kdΛ0k

]}2
]

= −P


 L̈θθ L̈θ1 . . . L̈θK

...
...

. . .
...

L̈Kθ LK1 . . . LKK





ṽ∫

h̃1dΛ01
...∫

h̃KdΛ0K

 ,


ṽ∫

h̃1dΛ01
...∫

h̃KdΛ0K




 ,

where (ṽ, h̃1, . . . , h̃K) is (B1, B21, . . . , B2K)−1(v, h1, . . . , hK), which can be ap-
proximated by (Bn1, Bn21, . . . , Bn2K)−1(v, h1, . . . , hK). Hence, the asymptotic
variance can be approximated uniformly in v and hk’s by its empirical counterpart

(vT ,~hT
1 , . . . ,~hT

K)B−1
n InB−1

n (ṽT ,
~̃
h

T

1 , . . . ,
~̃
h

T

K)T , which is further approximately by
(vT ,~hT

1 , . . . ,~hT
K)I−1

n (vT ,~hT
1 , . . . ,~hT

K)T .

9. Profile Likelihood

Theorem 4. Let pln(θ) be the profile log-likelihood function for θ, and assume
(C1)−(C8). For any εn = Op(n−1/2) and any vector v,

−pln(θ̂ + εnv) − 2pln(θ̂) + pln(θ̂ − εnv)
nε2n

→p vT Σ−1v,

where Σ is the limiting covariance matrix of n1/2(θ̂−θ0). Furthermore, 2{pln(θ̂)−
pln(θ0)} →d χ2

d.

Proof. We appeal to Theorem 1 of Murphy and van der Vaart (2000). Specifi-
cally, we construct the least favorable submodel for θ0 and verify all the condi-
tions in their Theorem 1. For notational simplicity, we assume that K = 1. It is
straightforward to extend to K > 1.

It follows from the proof of Theorem 2 that∫ τ

0
B2(0, h)h∗dΛ0 = −E

[
L̈ΛΛ

[ ∫
h∗dΛ0,

∫
hdΛ0

]]
,
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where B2 stands for the operator (B21, . . . , B2K), and L̈ΛΛ[H1, H2] denotes the
second-order derivative of L(θ,A) with respect to Λ along the bi-directions H1

and H2. On the other hand,

E

[
L̇Λ

[ ∫
h∗dΛ0

]
L̇θ

]
= −

∫ τ

0
h∗(s)L̇∗

ΛL̇θdΛ0(s),

where L∗
Λ is the dual operator of LΛ in L2[0, τ ]. Thus, if we choose h such that

B2(0, h) = −L̇∗
ΛL̇θ, then

E

[
L̇Λ

[ ∫
h∗dΛ0

]
L̇θ

]
= −E

[
L̈ΛΛ

[ ∫
h∗dΛ0,

∫
hdΛ0

]]
.

By definition,
∫

hdΛ0 is the least favorable direction for θ0 and L̇θ − L̇Λ[
∫

hdΛ0]
is the efficient score function. Such an h exists since B2(0, ·) is invertible. In
addition, h ∈ BV [0, τ ]. Hence, we can construct the least favorable submodel at
(θ, Λ) by ε 7→ (ε,Λε) with dΛε(θ, Λ) = {1 + (ε − θ) · h}dΛ. Clearly, Λθ(θ, Λ) = Λ
and

∂L(ε,Λε)
∂ε

∣∣∣
ε=θ0,θ=θ0,Λ=Λ0

= L̇θ − L̇Λ

[ ∫
hdΛ0

]
.

If θ̃ →p θ0 and Λ̂
eθ

maximizes the objective function with θ̂ replaced by θ̃, we
can use the arguments in the proof of Theorem 1 to show that Λ̂

eθ
is consistent.

In the likelihood equation for Λ̂
eθ
, we can use the arguments for the linearization

of (7.1) to show that, uniformly in h ∈ Q,

op(1) + n1/2(Pn − P)

[
L̇Λ(θ0, Λ0)

[ ∫
hdΛ0

]]

= −n1/2

∫ τ

0
B2(0, h)d(Λ̂

eθ
− Λ0) + Op(n1/2|θ̃ − θ0|) + op(n1/2‖Λ̂

eθ
− Λ0‖V [0,τ ]).

The arguments for proving the invertibility of (B1, B2) show that h 7→ B2(0, h)
is invertible. Thus,

‖Λ̂
eθ
− Λ0‖V [0,τ ] = Op

(
|θ̃ − θ0| + n−1/2

)
.

By condition (C6), we obtain the no-bias condition, i.e.,

E

[
∂L(ε,Λε)

∂ε

∣∣∣
ε=θ0,θ=eθ,Λ=bΛ

eθ

]
= Op

(
|θ̃ − θ0| + n−1/2

)
.

We have verified conditions (8)−(11) of Murphy and van der Vaart (2000).
Condition (C4), together with Lemma 1, implies that the class{

∂L(ε,Λε)
∂ε

: |ε − θ0| < δ0, (θ,Λ) ∈ N0

}
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is P -Donsker and that the functions in the class are continuous at (θ0,Λ0) almost
surely, while condition (C8) implies that the class{

∂2L(ε,Λε)
∂ε2

: |ε − θ0| < δ0, (θ, Λ) ∈ N0

}
is P -Glivenko-Cantelli and is bounded in L2(P ). Therefore, all the conditions in
Murphy and van der Vaart (2000) hold, so that the desired results follows from
their Theorem 1.

10. Applications

In this section, we apply the general results to the problems described in
Section 2. We identify a set of conditions for each problem under which regularity
conditions (C1)−(C8) are satisfied so that the desired asymptotic properties hold.
These applications not only provide the theoretical justifications for the work of
Zeng and Lin (2007), but also illustrate how the general theory can be applied
to specific problems.

10.1. Transformation models with random effects for dependent failure
times

We assume the following.

(D1) The parameter value (βT
0 , γT

0 )T belongs to the interior of a compact set Θ
in Rd, and Λ′

0k(t) > 0 for all t ∈ [0, τ ], k = 1, . . . ,K.

(D2) With probability one, Zikl(·) and Z̃ikl(·) are in BV [0, τ ] and are left-
continuous with bounded left- and right-derivatives in [0, τ ].

(D3) With probability one, P (Cikl ≥ τ |Zikl) > δ0 > 0 for some constant δ0.

(D4) With probability one, nik is bounded by some integer n0. In addition,
E[Nik·(τ)] < ∞.

(D5) For k = 1, . . . ,K, Gk(x) is four-times differentiable such that Gk(0) =
0, G′

k(x) > 0, and for any integer m ≥ 0 and any sequence 0 < x1 < . . . < xm ≤ y,

m∏
l=1

{(1 + xl)G′
k(xl)} exp{−Gk(y)} ≤ µm

0k(1 + y)−κ0k

for some constants µ0k and κ0k > 0. In addition, there exists a constant ρ0k such
that

sup
x

{
|G′′

k(x)| + |G(3)(x)| + |G(4)(x)|
G′(x)(1 + x)ρ0k

}
< ∞.
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(D6) For any constant a1 > 0,

sup
γ

E

[ ∫
b
exp{a1(N∗

ik·(τ) + 1)|b|}f(b; γ)db

]
< ∞,

and there exists a constant a2 > 0 such that for any γ,∣∣∣∣ ḟγ(b; γ)
f(b; γ)

∣∣∣∣ +
∣∣∣∣ f̈γ(b; γ)
f(b; γ)

∣∣∣∣ +
∣∣∣∣f (3)

γ (b; γ)
f(b; γ)

∣∣∣∣ ≤ O(1) exp{a2(1 + |b|)}.

(D7) Consider two types of events: k ∈ K1 indicates that event k is recurrent
and k ∈ K2 indicates that event k is survival time. For k ∈ K1 ∪ K2, if there
exist ck(t) and v such that with probability 1, ck(t) + vT Zikl(t) = 0 for k ∈ K1

and ck(0) + vT Zikl(0) = 0 for k ∈ K2, then v = 0.

(D8) If there exist constants αk and α0k such that for any subset Lk ⊂ {1, . . . , nik}
and for any ωkl and tkl,∫

b

∏
k∈K1

nik∏
l=1

exp{iωklb
T Z̃ikl(tkl)}

∏
k∈K2

∏
l∈Lk

exp{αk + bT Z̃ikl(0)}f(b; γ)db

=
∫

b

∏
k∈K1

nik∏
l=1

exp{iωklb
T Z̃ikl(tkl)}

∏
k∈K2

∏
l∈Lk

exp{α0k + bT Z̃ikl(0)}f(b; γ0)db,

then γ = γ0. In addition, if for k ∈ K2 and for any t,∫
b
exp

{
− Gk

(∫ t

0
ebT

eZikl(s)dΛ1(s)
)}

f(b; γ0)db

=
∫

b
exp

{
− Gk

(∫ t

0
ebT

eZikl(s)dΛ2(s)
)}

f(b; γ0)db,

then Λ1 = Λ2. Furthermore, if for some vector v and constant αk,

I(k ∈ K1)
∫

b
e2bT

eZikl(0)f ′(b; γ0)T vdb + I(k ∈ K2)
∫

b
ebT

eZikl(0)(αkf(b; γ0)

−f ′(b; γ0)T v)db = 0,

then v = 0.

(D1)−(D4) are standard conditions for this type of problem. We show that
(D5) holds for all commonly used transformations. We first consider the class of
logarithmic transformations G(x) = ρ log(1 + rx) (ρ > 0, r > 0). Clearly,

m∏
k=1

{
(1 + xk)G′(y)

}
exp{−G(y)} ≤

m∏
k=1

{
ρr(1 + xk)

1 + rxk

}
(1 + ry)−ρ
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≤
{

ρr
(
1 +

1
r

)}m

min(1, r)−ρ(1 + y)−ρ.

Thus, in (D5), we can set µ0 to ρr(1 + 1/r)min(1, r)−ρ and κ0 to ρ. We can
verify the polynomial bounds for G′′(x)/G(x), G(3)(x)/G(x) and G(4)(x)/G(x)
by direct calculations. We next consider the class of Box-Cox transformations
G(x) = {(1 + x)ρ − 1}/ρ. Clearly,

m∏
k=1

{
(1 + xk)G′(xk)

}
exp{−G(y)}

≤
m∏

k=1

(1 + xk)ρ exp
[
− (1 + y)ρ − 1

ρ

]
≤ (1 + y)mρ exp

{
− (1 + y)ρ

2ρ

}
exp

{
− (1 + y)ρ

2ρ

}
exp

(
1
ρ

)
≤

{
4ρ + exp

(1
ρ

)}m

(1 + y)−ρ.

Thus, we can set µ0 to 4ρ + exp(1/ρ) and κ0 to ρ. The polynomial bounds for
G′′(x)/G(x), G(3)(x)/G(x) and G(4)(x)/G(x) hold naturally. Finally, we consider
the linear transformation model: H(T ) = βT Z+ε, where ε is standard normal. In
this case, G(x) = − log{1−Φ(log x)}, where Φ is the standard normal distribution
function. We claim that there exists a constant ν0 > 0 such that φ(x) ≤ ν0{1 −
Φ(x)}(1 + |x|). If x < 0, then φ(x) ≤ (2π)−1/2 ≤ 2(2π)−1/2{1 − Φ(x)}(1 + |x|).
If x ≥ 0,

lim
x→0

φ(x)
{1 − Φ(x)}(1 + x)

= 2(2π)−1/2.

By the L’Hospital rule,

lim
x→∞

1 − Φ(x)
φ(x)

= lim
x→∞

φ(x)
φ(x)x

= 0,

lim
x→∞

φ(x)
{1 − Φ(x)}(1 + x)

= lim
x→∞

−φ(x)x
−φ(x)(1 + x) + {1 − Φ(x)}

= lim
x→∞

1
(1 + x)/x − {1 − Φ(x)}/xφ(x)

= 1.

Therefore, φ(x)/[{1 − Φ(x)}(1 + x)] is bounded for x ≥ 0. Without loss of
generality, assume that y > 1. Clearly,

m∏
k=1

{
(1+xk)G′(xk)

}
exp{−G(y)} =

m∏
k=1

{
(1+xk)φ(log(xk))/xk

1 − Φ(log(xk))

}{
1−Φ(log y)

}
.
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Since (1+x)φ(log(x))/[x{1−Φ(log x)}] is bounded when x is close to zero and it is
bounded by a multiplier of (1+log x) when x is close to ∞, (1+x)φ(log(x))/x{1−
Φ(log x)} ≤ ν01 + ν02 log(1 + x) for two constants ν01 and ν02. Therefore,

m∏
k=1

{
(1 + xk)G′(xk)

}
exp{−G(y)} ≤

{
ν01 + ν02 log(1 + y)

}m
{1 − Φ(log y)}.

Since 1 − Φ(x) ≤ 21/2 exp(−x2/4) when x > 0, the above expression is bounded
by

21/2
{

ν01 + ν02 log(1 + y)
}m

exp{−(log y)2/4}

≤ ν03

{
ν01 + ν02 log(1 + y)

}m
exp{−ν04(log(1 + y))2}

≤ νm
05(1 + y)−ν04/2,

where all the ν’s are positive constants. The polynomial bounds for G′′(x)/G(x),
G(3)(x)/G(x) and G(4)(x)/G(x) follow from the fact that φ(x)/{1 − Φ(x)} ≤
O(1 + |x|).

Condition (D6) pertains to the tail property of the density function for the
random effects f(b; γ). For survival data, N∗

ik·(τ) ≤ 1, so that the first half
of condition (D6) is tantamount to that the moment generating function of b

exists everywhere. This condition holds naturally when b has a compact support
or a Gaussian density tail. The second half of condition (D6) clearly holds for
Gaussian density functions.

(D7) and (D8) are sufficient conditions to ensure parameter identifiability
and non-singularity of the Fisher information matrix. In most applications, these
conditions are tantamount to the linear independence of covariates and the unique
parametrization of the random-effects distribution. Specifically, if Z̃ikl is time-
independent, then the second condition in (D8) is not necessary; if Z̃ikl does
not depend on k and l, and b has a normal distribution, then the other two
conditions in (D8) hold as well provided that Z̃ikl is linearly independent with
positive probability; if Z̃ikl is time-independent and K1 is non-empty (i.e., at least
one event is recurrent), then (D8) can be replaced by the linear independence of
Z̃ikl for some k ∈ K1 and the unique parametrization of f(b; γ).

We wish to show that (D1)−(D8) imply (C1)−(C8), so that the desired
asymptotic properties hold. Conditions (C1) and (C2) follow naturally from
(D1)−(D4). To verify (C3), we note that

Ψ(Oi; θ,A) =
∫

b

K∏
k=1

nik∏
l=1

Ωikl(b; β,Λk)f(b; γ)db,
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where

Ωikl(b; β,Λk) =
∏
t≤τ

{
Rikl(t)eβT Zikl(t)+bT

eZikl(t)G′
k(qikl(t))

}dN∗
ikl(t)

× exp
{
− Gk(qikl(τ))

}
,

and qikl(t) =
∫ t
0 Rikl(s) exp{βT Zikl(s) + bT Z̃ikl(s)}dΛk(s).

If ‖Λk‖V [0,τ ] are bounded, then Ωikl(b; β,Λk) ≥ exp{O(1)N∗
ikl(τ)}I(|b| ≤ B0)

for any fixed constant B0 such that P (|b| ≤ B0) > 0. Thus, Ψ(Oi; θ,A) is
bounded from below by exp{O(1)N∗

ikl(τ)}, so that the second half of (C3) holds.
It follows from (D5) that

Ωikl(b; β,Λk) ≤ O(1)
∏
t≤τ

{
Rikl(t)ebT

eZikl(t)
}dN∗

ikl(t)

×µ
N∗

ikl(τ)

0k

∏
t≤τ

{
1 + qikl(t)

}−dN∗
ikl(t)

{
1 + qikl(τ)

}−κ0k

.

Since exp{βT Zikl(s) + bT Z̃ikl(s)} ≥ exp{−O(1 + |b|)}, we have 1 + qikl(t) ≥
e−O(1+|b|){1 +

∫ t
0 Rik·(s)dΛk(s)}, so that

Ωikl(b; β,Λk) ≤ O(1)µN∗
ikl(τ)

0k eO(1+N∗
ikl(τ))|b|

∏
t≤τ

{
1 +

∫ t

0
Rik·(s)dΛk(s)

}−dN∗
ikl(t)

×
{

1 +
∫ τ

0
Rikl(s)dΛk(s)

}−κ0k

.

Thus, the first half of (C3) holds as well.
We now verify (C4). Under (D5),∣∣∣Ωikl(b; β,Λk)

∣∣∣ ≤ exp
{

O(1 + N∗
ikl(τ))|b|

}
,

∣∣∣∣ ∂

∂β
Ωikl(b;β,Λk)

∣∣∣∣
=

∣∣∣∣∣Ωikl(b;β,Λk)

[{ ∫
Rikl(t)Zikl(t)dN∗

ikl(t)

+
∫

Rikl(t)
G′′

k(qikl(t))
∫ t
0 Rikl(s)eβT Zikl(s)+bT

eZikl(s)Zikl(s)dΛk(s)
G′

k(qikl(t))
dN∗

ikl(t)
}

−G′
k(qikl(τ))

{ ∫ τ

0
Rikl(s)eβT Zikl(s)+bT

eZikl(s)Zikl(s)dΛk(s)
}]∣∣∣∣∣
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≤ exp
{

O(1 + N∗
ikl(τ))(1 + |b|)

}
,

∣∣∣∣ ∂

∂Λk
Ωikl(b; β,Λk)[Hk]

∣∣∣∣
=

∣∣∣∣∣Ωikl(b; β,Λk)

×

[{ ∫
Rikl(t)

G′′
k(qikl(t))

∫ t
0 Rikl(s)eβT Zikl(s)+bT

eZikl(s)dHk(s)
G′

k(qikl(t))
dN∗

ikl(t)
}

−G′
k(qikl(τ))

{ ∫ τ

0
Rikl(s)eβT Zikl(s)+bT

eZikl(s)dHk(s)
}]∣∣∣∣∣

≤ exp
{

O(1 + N∗
ikl(τ))(1 + |b|)

}
.

Thus, it follows from the Mean-Value Theorem that∣∣∣∣Ωikl(b; β(1), Λk) − Ωikl(b; β(2), Λk)
∣∣∣∣ =

∣∣∣∣ ∂

∂β
Ωikl(b;β∗, Λk)

∣∣∣∣∣∣∣β(1) − β(2)
∣∣∣

≤ exp
{

O(1 + N∗
ikl(τ))|b|

}∣∣∣β(1) − β(2)
∣∣∣,

∣∣∣Ωikl(b;β,Λ(1)
k ) − Ωikl(b; β,Λ(2)

k )
∣∣

=
∣∣∣∣ ∂

∂Λk
Ωikl(b; β,Λ∗

k)
[
Λ(1)

k − Λ(2)
k

]∣∣∣∣
≤ exp

{
O(1 + N∗

ikl(τ))|b|
}

×
{ ∫

Rikl(t)
∣∣∣∣ ∫ t

0
eβ∗T Zikl(s)+bT

eZikl(s)d(Λ(1)
k − Λ(2)

k )(s)
∣∣∣∣dN∗

ikl(t)

+
∣∣∣∣ ∫ τ

0
Rikl(t)eβ∗T Zikl(s)+bT

eZikl(s)d(Λ(1)
k − Λ(2)

k )(s)
∣∣∣∣}

≤ exp
{

O(1 + N∗
ikl(τ))(1 + |b|)

}
×

{ ∫
Rikl(t)|Λ

(1)
k (t) − Λ(2)

k (t)|dN∗
ikl(t) +

∫ τ

0
|Λ(1)

k (s) − Λ(2)
k (s)|ds

}
,

where the last inequality follows from integration by parts and the fact that
Zikl(t) and Z̃ikl(t) have bounded variations. It then follows from (D6) that
|Ψ(Oi; θ(1),A(1)) − Ψ(Oi; θ(2),A(2))| is bounded by the right-hand side of the
inequality in (C4). By the same arguments, we can verify the bounds for the
other three terms in (C4).
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To verify (C6), we calculate that

η0k(s; θ,A)

= E

[∫
b

∏K
m=1

∏nim
l=1 Ωiml(b; β,Λm)f(b; γ)∫

b

∏K
m=1

∏nim
l=1 Ωiml(b; β,Λm)f(b; γ)db

×
{ ∫

t≥s

G′′
k(qikl(t))

G′
k(qikl(t))

dN∗
ikl(t) − G′

k(qikl(τ))
}

Rikl(s)eβT Zikl(s)+bT
eZikl(s)db

]
.

For (θ,A) in a neighborhood of (θ0,A0),∣∣∣∣η0k(s; θ,A) − η0k(s; θ0,A0) −
∂

∂θ
η0k(s; θ0,A0)T (θ − θ0)

−
K∑

m=1

∂η0k

∂Λm
(s; θ0,A0)[Λm − Λ0m]

∣∣∣∣ = o

(
|θ − θ0| +

K∑
m=1

‖Λm − Λ0m‖V [0,τ ]

)
.

Thus, for the second equation in (C6), η0km(s, t; θ0,A0) is obtained from the
derivative of η0k with respect to Λm along the direction Λm − Λ0m, and η0kθ is
the derivative of η0k with respect to θ. Likewise, we can obtain the first equation
in (C6). It is straightforward to verify the Lipschitz continuity of η0km.

The verification of (C8) is similar to that of (C4), relying on the explicit
expressions of Ψ̈θθ(Oi; θ,A) and the first and second derivatives of Ψ(Oi; θ,A0 +
εH) with respect to ε.

It remains to verify the two identifiability conditions under (D7) and (D8).
To verify (C5), suppose that (β, γ,Λ1, . . . , Λk) yields the same likelihood as
(β0, γ0, Λ10, . . . , Λk0). That is,∫

b

K∏
k=1

nik∏
l=1

λk(t)dN∗
ikl(t)Ωikl(b; β,Λk)f(b; γ)db

=
∫

b

K∏
k=1

nik∏
l=1

λk0(t)dN∗
ikl(t)Ωikl(b; β0, Λk0)f(b; γ0)db.

We perform the following operations on both sides sequentially for k = 1, . . . ,K

and l = 1, . . . , nik.

(a) If the kth type of event pertains to survival time, for the lth subject of this
type of event, the first equation is obtained with Rikl(t) = 1 and dN∗

ikl(t) = 0
for any t ≤ τ , i.e., the subject does not experience any event in [0, τ ]. The
second equation is obtained by integrating t from tkl to τ on both sides un-
der the scenario that Rikl(t) = 1 and N∗

ikl(t) has a jump at t, i.e, the subject
experiences the event at time tkl. We then take the difference between these
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two equations. In the resulting equation, the terms λk(t)dN∗
ikl(t)Ωikl(b; β,Λk)

and λk0(t)dN∗
ikl(t)Ωikl(b; β0, Λk0) are replaced by exp{−Gk(

∫ tkl

0 exp{βT Zikl(s) +
bT Z̃ikl(s)}dΛk)} and exp{−Gk(

∫ tkl

0 exp{βT
0 Zikl(s) + bT Z̃ikl(s)}dΛk0)}, respec-

tively.

(b) If the kth type of event is recurrent, for the lth subject of this type of event,
we let Rikl(t) = 1 and let N∗

ikl(t) have jumps at s1, . . . , sm and s′1, . . . , s
′
m′ for any

arbitrary (m+m′) times in [0, τ ]. We integrate s1, . . . , sm from 0 to tkl and inte-
grate s′1, . . . , s

′
m′ from 0 to τ . In the obtained equation, λk(t)dN∗

ikl(t)Ωikl(b; β,Λk)
is replaced by {Gk(qikl(tkl))}m{Gk(qikl(τ))}m′

on both sides. Note that m and
m′ are arbitrary. We then multiple both sides by {(iωkl)m/m!}/m′! and sum over
m,m′ = 0, 1, . . .. On both sides of the resulting equation, the terms associated
with k and l are replaced by exp{iωklGk(qikl(tkl))}.

After these sequential operations, we obtain∫
b

∏
k∈K1

nik∏
l=1

exp
{

iωklGk(qikl(tkl))
}

×
∏

k∈K2

nik∏
l=1

exp
{
− Gk(qikl(tkl))

}
f(b;γ)db

=
∫

b

∏
k∈K1

nik∏
l=1

exp
{

iωklGk(qikl0(tkl))
}

×
∏

k∈K2

nik∏
l=1

exp
{
− Gk(qikl0(tkl))

}
f(b; γ0)db.

For survival time, we can let any subject from the nik subjects have tkl = 0,
which results in∫

b

∏
k∈K1

nik∏
l=1

exp
{

iωklGk(qikl(tkl))
}

×
∏

k∈K2

nik∏
l=1

[
1
ξkl

+ exp
{
− Gk(qikl(tkl))

}]
f(b; γ)db

=
∫

b

∏
k∈K1

nik∏
l=1

exp
{

iωklGk(qikl0(tkl))
}

×
∏

k∈K2

nik∏
l=1

[
1
ξkl

+ exp
{
− Gk(qikl0(tkl))

}]
f(b; γ0)db,

where ξkl is any positive variable.
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The above expression implies that {Gk(qikl(t)), k ∈ K1} as a function of

b1 ∼
∏

k∈K2

nik∏
l=1

[
1
ξkl

+ exp
{
− Gk(qikl(tkl))

}]
f(b; γ)

has the same distribution as {Gk(qikl0(t)), k ∈ K1} as a function of

b2 ∼
∏

k∈K2

nik∏
l=1

[
1
ξkl

+ exp
{
− Gk(qikl0(tkl))

}]
f(b; γ0);

so this is true between {qikl(t)} and {qikl0(t)} because of the one-to-one mapping.
Thus, the distributions of {log q′ikl(t)} and {log q′ikl0(t)} should also agree and
they have the same expectation. Now let tkl = 0 for k ∈ K2. Since E[b1] =
E[b2] = 0, we obtain log λk(t) + βT Zikl(t) = log λk0(t) + βT

0 Zikl(t) for k ∈ K1.
The above arguments also yield∫

b

∏
k∈K1

nik∏
l=1

exp
{

bT Z̃ikl(tkl)
}

×
∏

k∈K2

nik∏
l=1

[
1
ξkl

+ exp
{
− Gk(qikl(tkl))

}]
f(b; γ)db

=
∫

b

∏
k∈K1

nik∏
l=1

exp
{

bT Z̃ikl(tkl)
}

×
∏

k∈K2

nik∏
l=1

[
1
ξkl

+ exp
{
− Gk(qikl0(tkl))

}]
f(b; γ0)db.

We compare the coefficients of ξkl for k ∈ K2. This yields that for any subset
Lk ⊂ {1, . . . , nik},∫

b

∏
k∈K1

nik∏
l=1

exp
{

iωklb
T Z̃ikl(tkl)

}
×

∏
k∈K2

∏
l∈Lk

exp
{
− Gk(qikl(t))

}
f(b; γ)db

=
∫

b

∏
k∈K1

nik∏
l=1

exp
{

iωklb
T Z̃ikl(tkl)

}
×

∏
k∈K2

∏
l∈Lk

exp
{
− Gk(qikl0(t))

}
f(b; γ0)db.

We differentiate the above expression with respect to tkl at 0 for k ∈ K2. It
then follows from (D8) that log λk(0) − log λ0k(0) + (β − β0)T Zikl(0) = 0 and
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γ = γ0. Thus, (D7) implies that β = β0 and λk(t) = λ0k(t) for k ∈ K1. On
the other hand, for any fixed k ∈ K2, we let tk′l′ = 0 if k′ 6= k or l′ 6= l. Thus,∫
b exp{−Gk(qikl(tkl))}f(b; γ0)db =

∫
b exp{−Gk(q0ikl(tkl))}f(b; γ0)db. Therefore,

Λk = Λ0k for k ∈ K2 according to (D8).
To verify (C7), we write v = (vβ, vγ). We perform operations (a) and (b)

on the score equation in (C7). The arguments used in proving the identifiability
yield ∫

b

[ ∑
k∈K1

nik∑
l=1

iωklAikl(tkl)Gk(qikl0(tkl)) −
∑
k∈K2

∑
l∈Lk

Aikl(tkl)

+
f ′(b; γ0)T vγ

f(b; γ0)

]
exp

{ ∑
k∈K1

nikl∑
l=1

iωklGk(qikl0(tkl))

−
∑
k∈K2

∑
l∈Lk

Gk(qikl0(tkl))
}

f(b; γ0)db = 0, (10.1)

where Aikl(t) =
∫ t
0 (hk(s) + Zikl(s)T vβ)eβT

0 Zikl(s)+bT
eZikl(s)dΛk0(s)G′

k(qikl0(t)). We
differentiate (10.1) with respect to tkl twice at 0 for k ∈ K1. Comparison of
the coefficients for ωkl yields

∫
b e2bT

eZikl(0)f ′(b; γ0)T vγdb = 0. We also differentiate
(10.1) with respect to tkl at 0 for k ∈ K2. Thus, for each k ∈ K2 and l = 1, . . . , nik,∫
b(hk(0) + Zikl(0)T vβ)ebT

eZikl(0)f(b; γ0)db = −G′
k(0)

∫
b ebT

eZikl(0)f ′(b; γ0)T vγdb. It
then follows from (D8) that vγ = 0. For fixed k0 and l0, with the fact of vγ = 0,
the score equation under operations (a) and (b), where in (a) we let dN∗

ikl(t) = 0
for any t ≤ τ and in (b) we let m = 0 whenever k 6= k0 or l 6= l0, becomes
a homogeneous integral equation for hk0(t) + Zik0l0(t)

T vβ . The equation has a
trivial solution, so hk0(t) + Zik0l0(t)

T vβ = 0. Since k0 and l0 are arbitrary, (D7)
implies that hk = 0 and vβ = 0.

Remark 2. For survival time, (D5) is required to hold only for m = 0 and
m = 1.

Remark 3. The above results do not apply directly to the proportional hazards
model with gamma frailty because (D6) does not hold when b has a gamma
distribution. It is mathematically convenient to handle this model because the
marginal hazard function has an explicit form. The likelihood is a special case
of ours with

Ψ(Oi; θ, Λ) =
ni∏

j=1

∏
t≤τ

Yij(t; β)dNij(t)
∏
t≤τ

{
1 + θNi·(u−)

}dNi·(t)

×
{

1 + θ

∫ τ

0
Yi·(u; β)dΛ(u)

}−(1/θ+Ni·(τ))
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in the notation of Parner (1998). Clearly, Ψ satisfies (C3) when θ > 0. The other
conditions can be verified in the same manner as before.

Remark 4. Our theory does not cover the case in which the true parameter
values lie on the boundary of Θ. It is delicate to deal with the boundary problem.
One possible solution is to follow the idea of Parner (1998) by extending the
definition of the likelihood function outside Θ and verifying (C2)−(C8) for the
extended likelihood function.

Remark 5. We have assumed known transformations. We may allow Gk to
belong to a parametric family of distributions, say Gk(·; ψ), where ψ is a param-
eter in a compact set. Then θ contains ψ. Our results and proofs apply to this
situation if (D5) holds uniformly in ψ and the two identifiability conditions are
satisfied.

10.2. Joint models for repeated measures and failure times

For the (parametric) generalized linear mixed model, the likelihood can be
viewed as a special case of that of Section 10.1 except that there is an additional
parameter α in f(y|x; b). We assume that (D1)−(D8) hold but with (D6) replaced
by the following.

(D6’) For any constant a1 > 0,

sup
α,γ

E

[ ∫
b
exp

{
a1(N∗

i (τ) + 1)|b|
} ni∏

j=1

f(Yij |Xij ; b)f(b; γ)db

]
< ∞,

and there exists a constant a2 > 0 such that for any γ and α,

3∑
k=1

∣∣∣∣f (k)
α (Yij |Xij , b)
f(Yij |Xij , b)

∣∣∣∣ +
∣∣∣∣f (k)

γ (b; γ)
f(b; γ)

∣∣∣∣ ≤ r3(Oi) exp
{

a2(1 + |b|)
}

almost surely, where r3(Oi) is a random variable in L2(P ).

Under these conditions, the desired asymptotic properties follow from the argu-
ments of Section 10.1.

Under the semiparametric linear transformation model for continuous re-
peated measures, the likelihood is in the form of that of Section 2.2 with K = 2
and ni2 = ni, where the time to the second type of failure is defined by Yij

(assuming without loss of generality that Yij ≥ 0). Thus, if we regard Yij as a
right-censored observation when it is greater than a very large value (i.e., the
upper limit of detection), then the asymptotic results given in Section 10.1 hold.
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When such an upper limit does not exist, the estimator for Λ̃ can be unbounded
when sample size goes to infinity. Then our proof of Theorem 1 does not apply.

10.3. Transformation models for counting processes

We verify (C1)−(C8) under the following conditions.

(E1) The parameter value (βT
0 , γT

0 )T belongs to the interior of a compact set Θ
in Rd, and Λ′

0(t) > 0 for all t ∈ [0, τ ].

(E2) With probability one, P (C ≥ τ |Z) > δ0 > 0 for some constant δ0.

(E3) Condition (D5) holds.

(E4) With probability one, Z(·) and Z̃ are in BV [0, τ ] and are left-continuous
with bounded left- and right-derivatives in [0, τ ].

(E5) If γT Z̃ is equal to a constant with probability one, then γ = 0. In addition, if
βT Z(t) = c(t) for a deterministic function c(t) with probability one, then β = 0.

In this case,

Ψ(Oi; θ, Λ) =
∏
t≤τ

(
Ri(t)eβT Zi(t)+γT

eZi

{
1 +

∫ t

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT
eZi−1

×G′

[{
1 +

∫ t

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT
eZi

])dN∗
i (t)

× exp

(
− G

[{
1 +

∫ τ

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT
eZi

])
.

By (D5),

∏
t≤τ

(
Ri(t)eβT Zi(t)+γT

eZi

{
1 +

∫ t

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT
eZi−1

×G′

[{
1 +

∫ t

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT
eZi

])dN∗
i (t)

× exp

(
− G

[{
1 +

∫ τ

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT
eZi

])

≤ µ
N∗

i (τ)
1

∏
t≤τ

{
1 +

∫ t

0
Ri(s)eβT Zi(s)dΛ(s)

}−dN∗
i (t)

×
{

1 +
∫ τ

0
Ri(s)eβT Zi(s)dΛ(s)

}−κeγT
eZi
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for some constant µ1. Thus, (C3) follows from the boundedness of γT Z̃i. We can
verify the other conditions by using the arguments of Section 10.1.

To verify the first identifiability condition, we assume that N∗
i (t) has jumps

at x, x1, . . . , xm for some integer m. After integrating both sides of the equation
in (C5) over x1, . . . , xm from 0 to τ and integrating x from x to τ , we obtain(

G

[{
1+

∫ τ

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi

]
−G

[{
1+

∫ x

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi

])

×

(
G

[{
1 +

∫ τ

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi

]
− G(1)

)m

× exp

(
− G

[{
1 +

∫ τ

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi

]
+ G(1)

)

=

(
G

[{
1+

∫ τ

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T
eZi

]
−G

[{
1+

∫ x

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T
eZi

])

×

(
G

[{
1 +

∫ τ

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T
eZi

]
− G(1)

)m

× exp

(
− G

[{
1 +

∫ τ

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T
eZi

]
+ G(1)

)
.

Multiplying both sides of this equation by 1/m! and summing over m ≥ 0, we
obtain

G

[{
1+

∫ τ

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi

]
−G

[{
1+

∫ x

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi

]

=G

[{
1+

∫ τ

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T
eZi

]
−G

[{
1+

∫ x

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T
eZi

]
.

Setting N∗
i (τ) = 0 in the likelihood function yields

G

[{
1 +

∫ τ

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi

]
= G

[{
1 +

∫ τ

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T
eZi

]
.

Thus {
1 +

∫ x

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi

=
{

1 +
∫ x

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T
eZi

.
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Then Λ∗(t) is absolutely continuous with respect to t. Differentiating both sides
with respect to x and letting x = 0 yield λ∗(0) > 0. When x converges to zero,

the left-hand side is [exp{βT
0 Zi(0)}λ0(0)x]e

γT
0

eZi +o(xeγT
0

eZi ) while the right-hand

side is t[exp{β∗T Zi(0)}λ∗(0)x]e
γ∗T

eZi +o(xeγ∗T
eZi ). Thus, γT

0 Z̃i = γ∗T Z̃i. By (E5),
γ0 = γ∗. Furthermore, eβT

0 Zi(t)dΛ0(t)/dt = eβ∗T Zi(t)dΛ∗(t)/dt. It follows from
(E5) that β0 = β∗ and Λ0 = Λ∗.

To verify (C7), we assume that the score function along (β0 + εhβ , γ0 +
εhγ , dΛ0 + εhdΛ0) is zero. Equivalently, if we let g0(t) = {1 +

∫ t
0 eβT

0 Zi(s)

dΛ0(s)}γT
0

eZi , then we obtain

0 =
∫

h(t)Ri(t)dN∗
i (t) +

∫
Ri(t)

{
hT

β Zi(t) + hT
γ Z̃i

}
dN∗

i (t)

+
∫

Ri(t)(eγT
eZi − 1)

1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)

[ ∫ t

0
eβT

0 Zi(s)
{

hT
β Zi(s) + h(s)

}
dΛ0(s)

]
dN∗

i (t)

+
∫

Ri(t)hT
γ Z̃ie

γT
eZi log

{
1 +

∫ t

0
eβT

0 Zi(s)dΛ0(s)
}

dN∗
i (t)

+
∫

Ri(t)
G′′(g0(t))
G′(g0(t))

g0(t)hT
γ Z̃ie

γT
eZi log

{
1 +

∫ t

0
eβT

0 Zi(s)dΛ0(s)
}

dN∗
i (t)

+
∫

Ri(t)
G′′(g0(t))
G′(g0(t))

g0(t)

[
eγT

0
eZi

∫ t
0 eβT

0 Zi(s){hT
β Zi(s) + h(s)}dΛ0(s)

1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)

]
dN∗

i (t)

−G′(g0(τ))g0(τ)hT
γ Z̃ie

γT
eZi log

{
1 +

∫ τ

0
eβT

0 Zi(s)dΛ0(s)
}

−G′(g0(τ))g0(τ)
eγT

0
eZi

1 +
∫ τ
0 eβT

0 Zi(s)dΛ0(s)

∫ τ

0
eβT

0 Zi(s)
{

hT
β Zi(s) + h(s)

}
dΛ0(s).

We multiply both sides by the likelihood function and let N∗
i (t) have jumps at

times t1, . . . , tm. We integrate t1 from 0 to t and tl, 1 < l ≤ m from 0 to τ . By
multiplying the resulting equation by 1/(m − k)! and summing over m = 1, . . .,
we obtain

hT
γ Z̃i log

{
1 +

∫ t

0
eβT

0 Zi(s)dΛ0(s)
}

+

∫ t
0 eβT

0 Zi(s){hT
β Zi(s) + h(s)}dΛ0(s)

1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)
= 0.

Differentiation with respect to t then yields

hT
γ Z̃i +

{
hT

β Zi(t) + h(t)
}
−

∫ t
0 eβT

0 Zi(s){hT
β Zi(s) + h(s)}dΛ0(s)

1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)
= 0.
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Combining the above two equations, we have

{
hT

β Zi(t) + h(t)
}
−

∫ t
0 eβT

0 Zi(s){hT
β Zi(s) + h(s)}dΛ0(s)

1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)

×
[
1 +

1

log{1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)}

]
= 0.

This is a homogeneous integral equation for hT
β Zi(t)+h(t) and has zero solution.

That is, hT
β Zi(t)+h(t) = 0. It follows from (E5) that h(t) = 0 and hβ = 0. Thus,

hγ = 0.

11. Concluding Remarks

We have developed a general asymptotic theory for the NPMLEs with right
censored data and shown that this theory applies to the models considered by
Zeng and Lin (2007). This theory can also be used to establish the desired
asymptotic properties for other existing semiparametric models, particularly the
models mentioned in Sections 7.1−7.4 of Zeng and Lin (2007), as well as those
that may be invented in the future. It is much simpler to verify the set of
sufficient conditions identified in this paper than to prove the asymptotic results
from scratch. Conditions (C1) and (C2) are standard conditions required in all
censored-data regression; (C3), (C4) and (C6) are certain smoothness conditions
that can be verified directly, as demonstrated in Section 10; (C5) and (C7) are
two minimal identifiability conditions that need to be verified for any specific
problem.

Although the basic structures of our proofs mimic those of Murphy (1994,
1995) and Parner (1998), our technical arguments are innovative and substan-
tially more difficult because we deal with a very general form of likelihood func-
tion rather than specific problems. In all previous work, verification of the
Donsker property relies on the specific expressions of the functions, whereas our
Lemma 1 provides a universal way to verify this property. In verifying the in-
vertibility of the information operator, all previous work requires an explicit
expression of the information operator that is identified as the sum of an invert-
ible operator and a compact operator, whereas we allow a very generic form of
information operator obtained from the likelihood function (3.1). Murphy and
van der Vaart (2001) stated that the consistency of NPMLEs needs to be proved
on a case-by-case basis; however, we were able to prove the consistency for a
very general likelihood function. Although we borrowed the partitioning idea of
Murphy (1994), our technical arguments are very different because of the generic
form of the likelihood.
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In some applications, the failure times are subject to left truncation in addi-
tion to right censoring. To accommodate general censoring/truncation patterns,
we define N(t) as the number of events observed by time t and R(t) as the at-risk
indicator at time t, reflecting both left truncation and right censoring. Assume
that the truncation time has positive mass at time 0, so that (C2) is satisfied.
Then all the results continue to hold.

This paper is concerned with the theoretical aspect of the NPMLEs and com-
plements the work of Zeng and Lin (2007). The interested readers are referred to
the latter for the calculations of the NPMLEs and for the use of the semiparamet-
ric regression models and NPMLEs in practice. The latter also provides rationale
for the kind of model considered in Sections 2 and 10 of this paper. Although the
latter contains some theoretical elements, this paper presents the theory (espe-
cially the regularity conditions) in a more rigorous manner and provides all the
proofs.
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