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A GENERAL ASYMPTOTIC THEORY FOR MAXIMUM
LIKELTHOOD ESTIMATION IN SEMIPARAMETRIC
REGRESSION MODELS WITH CENSORED DATA
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Abstract: We establish a general asymptotic theory for nonparametric maximum
likelihood estimation in semiparametric regression models with right censored data.
We identify a set of regularity conditions under which the nonparametric maximum
likelihood estimators are consistent, asymptotically normal, and asymptotically ef-
ficient with a covariance matrix that can be consistently estimated by the inverse
information matrix or the profile likelihood method. The general theory allows one
to obtain the desired asymptotic properties of the nonparametric maximum likeli-
hood estimators for any specific problem by verifying a set of conditions rather than
by proving technical results from first principles. We demonstrate the usefulness of
this powerful theory through a variety of examples.
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1. Introduction

Semiparametric regression models are highly useful in investigating the ef-
fects of covariates on potentially censored responses (e.g., failure times and re-
peated measures) in longitudinal studies. It is desirable to analyze such mod-
els by the nonparametric maximum likelihood approach, which generally yields
consistent, asymptotically normal, and asymptotically efficient estimators. It
is technically difficult to prove the asymptotic properties of the nonparametric
maximum likelihood estimators (NPMLESs). Thus far, rigorous proofs exist only
in some special cases.

In this paper, we develop a general asymptotic theory for the NPMLEs with
right censored data. The theory is very encompassing in that it pertains to a
generic form of likelihood rather than specific models. We prove that, under
a set of mild regularity conditions, the NPMLEs are consistent, asymptotically
normal, and asymptotically efficient with a limiting covariance matrix that can be
consistently estimated by the inverse information matrix or the profile likelihood
method.
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This paper is the technical companion to|Zeng and Lin| (2007)), in which sev-
eral classes of models were proposed to unify and extend existing semiparametric
regression models. The likelihoods for those models can all be written in the
general form considered in this paper. For each class of models in [Zeng and Lin
(2007), we identify a set of conditions under which the regularity conditions for
the general theory hold so that desired asymptotic properties are ensured.

2. Some Semiparametric Models

We describe briefly the three kinds of models considered in Zeng and Lin
(2007). We assume that the censoring mechanism satisfies coarsening at random
(Heitjan and Rubin| (19971))).

2.1. Transformation models for counting processes

Let N*(t) record the number of events that the subject has experienced by
time t, and let Z(-) denote the corresponding covariate processes. [Zeng and Lin
(2007) proposed the following class of transformation models for the cumulative
intensity function of N*(t)

{1 + /0 t R*(s)e/BTZ(S)dA(s)}ev

where G is a continuously differentiable and strictly increasing function with
/(1) > 0 and G(c0) = oo, R*(-) is an indicator process, Z is a subset of Z,
and vy are regression parameters, and A(-) is an unspecified increasing function.
The data consist of {N;(t), Ri(t), Zi(t);t € [0,7]} (i = 1,...,n), where R;(t) =
I(C; > t)R;(t), Ni(t) = N¥(t A C;), C; is the censoring time, and 7 is a finite
constant. The likelihood is

TRz O e { - [ riireizo

i=1t<1

where dN;(t) = N;(t) — N;(t—).

Tz

AtZ) =G — G(1),

2.2. Transformation models with random effects for dependent failure
times

Fori=1,...,n, k =1,...,K and | = 1,...,n4, let Nj,(-) denote the
number of the kth type of event experienced by the /th individual in the ¢th

cluster, and Z; () the corresponding covariate processes. |Zeng and Lin| (2007)
assumed that the cumulative intensity for N7, (t) takes the form

t -
A (t| Zogy; bs) = Gk{ / Rzzl(s)eﬂTZW)*"?ZW<s>dAk<s>}7
0



MAXIMUM LIKELIHOOD ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS 873

where Gy, Ay, and R}, are analogous to G, A, and R* of Section 2.1, zkl is a
subset of Z;;; plus the unit component, and b; is a vector of random effects with
density f(b;7). Let Cirr, Niki, and R;; be defined analogously to Cj, NV;, and R;
of Section 2.1. The likelihood is

K n;g

H/ [T1111 [ i (t)e?” DO+ 2O a1
b

k=11=1t<rt

t ~
X G%,{ /0 Riri (5)€ﬁTZ¢kz($)+bTZikl(5)dAk(3) }]

X exp |: — Gk{ / Rikl(t)eﬂTZikl(t)erTZikl(t)dAk(t) }:| f(b, ’Y)db'
0

AN (t)

2.3. Joint models for repeated measures and failure times

Forv=1,...,nand j = 1,...,n4, let Y;; be the response variable at time
t;; for the ith subject, and X;; the corresponding covariates. We assume that
(Yi1, ..., Yip,) follows a generalized linear mixed model with density f,(y|Xi;; b;),
where b; is a set of random effects with density f(b;y). We define N and Z; as
in Section 2.1, and assume that

t .
At Zi; b;) = G{/ R;,k(5)65TZZ'(5)+('¢’obi)TZi(S)dA(S)}’
0

where Z is a subset of Z; plus the unit component, 1 is a vector of unknown
constants, and v; o vy is the component-wise product of two vectors v; and wve.
The likelihood is

11111

£)dA t\ZZ,b)} Mo exp{ —/OT Ri(t)dA(tZi;b)}

t<t

X H Fy(Yij| Xij3 ) £ (b; ) db.
j=1

For continuous measures, |Zeng and Lin| (2007) proposed the semiparametric

linear mixed model B B
H(Y;j) = OéTXzJ + bTng + €ij>s

where H is an unknown increasing function with H (—00) = —o0, H(c0) = oo,
and H(0 (0) = 0, v is a set of regression parameters, X;; is typically a subset of
Xij,and €; (i =1,...,n;5 =1,...,n4;) are independent with density f.. Write
A(y) = e® . The likelihood is

I [T {r

t<rt

DA t|Z1,b)} i(t)exp{—/OTRi(t)dA(ﬂZi;b)}
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X H fE(log(K(Y;j)) —al Xy — bZTsz]> {W}ﬂb; 7)db.
j=1

3. Nonparametric Maximum Likelihood Estimation

All the likelihood functions given in Section 2 can be expressed as

n K ng

HHHHM R OING (w030, A),

1=1k=11=1t<7

where A (t) = A} (), 0 is a d-vector of regression parameters and variance com-
ponents, A = (Aqy,...,Ax), O; pertains to the observation on the ith cluster,
and V¥ is a functional of O;, 0, and A. For nonparametric maximum likelihood
estimation, we allow A to be discontinuous with jumps at the observed failure
times and maximize the modified likelihood function

n K ng

TTITTIIT Ax(y OO w(05:0,.4),

i=1k=11=1t<7

where Ap{t} denotes the jump size of the monotone function Ay at t. Equiva-
lently, we maximize the logarithm of the above function

n K nig
[ZZ/ ikt (t) log Ar{t}d N7y, (t) +1og W(O;; 0, A)| . (3.1)
i=1

k=11=1

We wish to establish an asymptotic theory for the resulting NPMLEs 9 and A.

4. Regularity Conditions

We impose the following conditions on the model and data structures.
(C1) The true value 6y lies in the interior of a compact set ©, and the true
functions Aoy are continuously differentiable in [0,7] with A{,(t) > 0, k =
1,..., K.

(02) With probability one, P(infse[()’t} Rzk(s) > l‘Zikla l=1,... ,Tlik) >0y >0
for all t € [0, 7], where Ry.(t) = > R (t).

(C3) There exist a constant ¢; > 0 and a random variable 71(O;) > 0 such that
Ellogri(0;)] < oo and, for any 6 € © and any finite Aq,..., Ag,

(0;;60, A) <11 (O HH{H—/ )dAk()}

k=1t<t

—dN}. (1)
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x {1 + /0 ' Rik.(t)dAk(t)} h

almost surely, where N7 (t) = >°;"% N7, (t). In addition, for any constant cs,
inf {W(0350,4) : [Millvion < cor- o |Ak lvios) < 2,0 € O} > 12(0;) >0,

where ||k is the total variation of h(-) in [0,7], and r2(0;), which may
depend on ¢y, is a finite random variable with E[|logr2(0;)|] < oc.

We require certain smoothness of ¥. Let Uy denote the derivative of U(0O;; 0,
A) with respect to 6, and let W;,[Hy] denote the derivative of W(0;;6,.A) along
the path (Ay + eHy), where Hy, belongs to the set of functions in which Ay + eHy,

is increasing with bounded total variation.

(C4) For any (61, 0®) € ©, and (AV, AP, ... (AL A2, (D B, ..
(Hﬁ(l), g)) with uniformly bounded total variations, there exist a random vari-
able F(O;) € L4(P) and K stochastic processes p;,(t; O;) € Lg(P), k=1,..., K,
such that

U (Oi; o), A<1>) = (oi; 0@, A<2>) M\if@ (OZ—; 9<1>,A<1>) _p ((’)i; 6@, A<2>) ’

+ 3 |0k (000, AW V] 0y (009,42 [ 57| ’

M T

(03560, AN H) \Pk(oi;e@xmw)m,ﬁ”]‘
1

+ _
= (0500, AW) U (0;; 0@, AD)
K T
<)o~ 0|+ - { [ a6 - A0 duin(s:0)
k=1

+/ _ngl)(s) — H]g2)(8)‘dﬂik(5§ Ol)}] .

0

In addition, wu(s;O;) is non-decreasing, and E[F(O;)uik(s; O0;)] is left-
continuous with uniformly bounded left- and right-derivatives for any s € [0, 7].
Here, the right-derivative for a function f(x) is defined as limy,_oy(f(x + h) —

f(@+))/h-

The following condition ensures identifiability of parameters.

(C5) (First Identifiability Condition) If

K ngg

TTTIIT o) s @aVin® | w0y 0%, A°)

k=11=1t<t
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\IJ(OM 907 -’40)

B [ ﬁ ﬁ LT hon () R NG (®

k=11=1t<7

almost surely, then 6* = 0y and A} (t) = Agi(t) for t € [0,7], k=1,... K.

The next assumption is more technical and will be used in proving the weak
convergence of the NPMLEs. For any fixed (6,.4) in a small neighborhood of
(8p, Ag) in R% x {BV[0, 7]}, where BV[0, 7] denotes the space of functions with
bounded total variations in [0, 7], (C4) implies that the linear functional

U,(0430,.A) [Hk]]
U(0;;6,.A)

is continuous from BV [0, 7] to R. Thus, there exists a bounded function ng(s; 6,
A) such that

E [\I’k\(lf(?gj’éjtﬁflkq - /OT ok (s; 0, A)dHy (s).

(C6) There exist functions ok (s; 00, Ag) € BV[0,7], k =1,..., K, and a matrix
Cop (0o, Ap) such that

E[‘ife(oi;e,fl) ~ Uy(0i; 60, Ao)

W07~ WO | ~ A0~ 0

K T
=3 [ Gl o, Aok = o)
k=1

K
= 0<|9 — o+ ) l[Ak - Aozc!\/p,ﬂ)-

=1
In addition, for £k =1,..., K,
K
Sl[lp] {UOk(S; 0, A) — o (s; 90,«40)} — noke(s; 0o, Ao) (0 — bo)
k=1 S€ 0,7

;K
= [ o585, Ao — o) 0)
0 m=1

K
_ o<|9 a3 A A%HV[O,T}),

k=1

where nggm, is a bounded bivariate function and ngxg is a d-dimensional bounded
function. Furthermore, there exists a constant cz such that |nogm, (s, t1;60,.A0) —
Nokm (8, t2; 00, Ao)| < cslt1 — t2| for any s € [0, 7] and any t1,t2 € [0, 7].
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The final assumption ensures that the Fisher information matrix along any
finite-dimensional submodel is non-singular.

(CT7) (Second Identifiability Condition) If with probability one,

K nig
Y / () Riga (£) AN 1)
k=1 =1
+¢9<0i; 0o, Ao)Tv + S0 T4 (O4; 60, Ao) [ hrdAok]

=0
lI’(Ola 00) AO)

for some constant vector v € R? and hy € BV[0,7], k = 1,..., K, then v = 0
and hy =0for k=1,..., K.

Remark 1. (C1)—(C2) are standard assumptions in any analysis of censored
data. (C3) pertains to the model structure, and (C4) and (C6) essentially impose
the smoothness of this structure. Although they appear technical, these condi-
tions are easy to verify in practice. (C5) and (C7) usually require some work to
verify, but can be translated to simple conditions in specific cases.

5. Some Useful Lemmas
Lemma 1. For any constant c, the following classes of functions are P-Donsker:

Fi= {log\I/((’)i;G,.A) NAkllvios <o k=1,...,K, 0 ¢ @},
£ p(0;;0,A)
2T 000, A)

[ U,(050, A)[H]
fi’*’“{ V{050, A)

HAk‘HV[O,T] <eg, k= 17"'7K7 NS 6}7

: ”AmHV[O,T} <e¢, m=1,...,K, €0, ’H|’\/[07ﬂ§c}7
k=1,... K

Proof. We only prove that Fs3 is P-Donsker, the proofs for the other two classes
are similar. For k = 1,..., K, we define a measure fij in [0, 7] such that, for any
Borel set A C [0, 7],

T 2
i) = [ 100 € B[00 (sl 09 — 1n(0:00) (s 09
0
Condition (C4) implies that pg([0,7]) < |1 F (O Lypyllir (75 Oi) — 241 (0;

Oi)llg(py- Thus, pig, is a finite measure. According to Theorem 2.7.5 of [Vanl
der Vaart and Wellner| (1996]), the bracket covering number for any bounded set
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in BV[0, 7] is of order exp{O(1/¢€)} in Lao(pir), k = 1,..., K. Thus, we can con-
struct N, = (1/€)% x exp{O(K/¢)} x exp{O(1/¢)} brackets for the set of (6,4, H)
in F3p, denoted by

[95,65] X [AILP,AZ?} X e X [Aﬂp,A%p] X {HPL,H;Z,]}, p=1,..., N,

such that |9g - 0£| < € and
2 2
/‘AkUp—Aﬁp‘ djiy, < €, /‘Hg—HPL’ di, <€, k=1,....K.

Any (6,A, H) must belong to one of these brackets. Obviously, the bracket
functions

O A 51000 -]+ 3 o - b

xduim(s;(’)i)—i—/‘Hg(s)—HpL(s)‘duim(s;(’)i)}, p=1,....N..

cover all the functions in F3i. Since
K
Hf(@i){]eg - eﬂ +3 / (A;fw(s) - Aﬁw(s)‘d,uim(s;Oi)
m=1

K
_|_m§::1/‘Hg(s)—HZf(s)}dﬂim(«S;Oi)}

L2(P)
K
o — 0F |+ mz::l {E</ (AL (5) = Al (s)

HY(s) — HE(s) ‘Qdﬁm}l/z

<c

o))}

67 — 6| + 5 {/‘A%p(s) —Afnp(s)fdﬁm}l/Q
m=1

HY(s) - H;(s)(2dﬁm}l/2 ,

where ¢ is a constant depending on K, the Lo(P)-distance within each bracket
pair is O(e). Hence, the bracket entropy integral of F3y is finite, so that Fsj is
P-Donsker.
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Lemma 2. For any bounded random variable (6, A) in © x BV[0, 7], the function
g(s) = |E[Wi(Os 0, A[I(- > 5)]/¥(0Os; 0, A)]| is left-continuous and satisfies that,
for any s € [0, 7], there exist ds,cs > 0 such that |g(5) — g(s)| < ¢s|5 — s| for
5€(s—0ds,5) and |g(5) — g(s+)| < |5 —s| for 5 € (s,s + ds).

Proof. Since p;(t; O;) is non-decreasing in ¢, it follows from (C4) that for any
s1 and s,

o(e1) = g(s2)l < | 7O [ 1602 50) = 160 2 )| a0,

< ‘E[}—(Oi)ﬂik(sﬁoi)} - E[}-(Oi)“ik(sz;@)] ‘

Thus, g(s) is in BV[0, 7] and is left-continuous. In addition, the left- and right-
differentiability of E[F(O;)uix(s; O;)] in (C4) implies that the second part of the
lemma holds.

Lemma 3. For any h(s) € BV|0,7], the linear map h — [ h(t)nokm(t, s; 6o,
Ap)dAox(t) is a bounded compact operator from BV[0, 7| to BVI]0,7].

Proof. It is clear from (C6) that this function maps any bounded set in BV'[0, 7]
into a bounded set consisting of Lipschitz-continuous functions. The result thus
follows since any bounded and Lipschitz-continuous functions consist of a totally
bounded set in BV[0, 7] and the linear map is continuous.

6. Consistency

The following theorem states the consistency of 9 and /AXk, k=1,..., K.
Theorem 1. Under (C1)—(C5), \GA—GOHZ,CKZI SUPye|0,7] \/A\k(t)—AOk(tN —as 0.

Proof. We fix a random sample in the probability space and assume that
(C1)—(C5) hold for this sample. The set of such samples has probability one.
We prove the result for this fixed sample. The entire proof consists of three steps.

Step 1. We show that the NPMLEs exist or, equivalently, Kk(T) < 00
(k=1,...,K) for large n. By (C3), the likelihood function is bounded by

n K
[Im©) 111
=1

k=1t<t

X {1 + /0 ’ R,;k.(s)dAk(s)}q

M1+ [ Ruin ) ]dem
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<

n
1=

(O H{1+ /0 TRikA(s)dAk(s)}_q.

1 k=1

If Ax(7) = oo for some k, then (C2) implies that, with probability one, inf,c(y -
R;.(t) > 1 for some i, so that the above function is equal to zero. Thus, the
maximum of the likelihood function can only be attained for Ax(7) < occ.

Step 2. We show that limsup, Ax(T) < oo almost surely, ie., Ax(7) is
bounded uniformly for all large n. By differentiating the objective function (B.])
with respect to Ap{Yjn} for which dN},;(Yir) = 1 and R (Yir) = 1, we note
that Ax{Yjw} satisfies

L R U056, A1 > Vi)
A{Yiu} ; (050, A) '

In other words,

=y { (Zj;)o?[,I%ZS)]}_IR”””( JINion5)

i=1 m=1

To prove the boundedness of Kk (1), we construct another step function Ag with
jumps only at the Yj; for which dN};(Yir) = 1 and Ry (Yir) = 1,

ot Z U (0500, Ao) I (- > Yir)]
Ap{ it} = (0j; 6o, Ao) ’

that is,

n. Nk \Ijk 037007-/40)[ ( ZS)] - .
ZZ/{ W(0;: 00, Ao) } o () ()

i=1 m=1

We show that Ay uniformly converges to Agg. By Lemma [I]

1 - \I/k(oj,eo,AO)[I(ZS)] R \Pk(OiQGO)AO)[I('ZS)]
R I R A Bt el IS

j=1

uniformly in s € [0, 7]. Since the score function, along the path Ay, = Ao +el(- >
s) with the other parameters fixed at their true values, has zero expectation,

"=E [ni/ )\ok Ria(t)d zkzl()]+E[¢1k(0§(9(g;:‘;2?52‘)2 8)]]
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_ B[S Rira(s)dNG, (s)/ds] [\ifk(oi; B0, Ao)[I(- > s)]]’ (6.2)

Aok () V(O3 6o, Ao)

where §(t = s) is the Dirac function. The submodel is not in the parameter
space; however, we can always choose a sequence of submodels in the parameter
space which approximates this submodel. Thus, the uniform limit of Ag(t) is

<& [ [ E[X[ Rin(s)dN;,(s)/ds]
|2

-1
} Rt (8)ANGn (5) | = Aok(1).

Aok (8)

That is, Kk(t) uniformly converges to Ao ().

We next show that the difference between the log-likelihood functions eval-
uated at (5, A) and (6, A), where A = (Aq,...,A), is negative eventually if
some Kk(T) diverges, which will induce a contradiction. The key arguments are
based on (C3). Clearly, n_lﬁn(é\, A) > n~1L, (60, A). Tt follows from (6.I) and

6.2) that nA{t} converges to Aox(t)/E[> """ Rip(t)dN},(t)/dt], and is thus
uniformly bounded away from zero, where ¢ is an observed failure time. There-

fore,
_ n K ng
n L, (00, A) +nt Z Z Z / Riri(t)d Ny, (t) logn
=1 k=1 [=1
n K ng » n
= n_l Z Z Z / log(TLAk{t})Rzkl(t)dN:;d(t) + n_l Z 10g \Il(olv 007 ./40),
i=1 k=1 I=1 i=1

which is bounded away from —oco when n is large. That is,

n K n

n L (00, A) +n Y NN / R (t)d NGy, (t) logn = O(1),

i=1 k=1 I=1
where O(1) denotes a finite constant. On the other hand, (C3) implies that

n 1L, (0, 4) <n! Z Z Z / Ripi(t) log /A\k{t}dN{Ez(t)
i=1 k=1 =1

+n~t Z log U(0;; 0, A)
i=1

n K

<o Y logn(0) 40 Y0 [ (R (1) > 0)
=1

i=1 k=1
x log A {t}dNi. ()
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—n_lii / log{l—!— /0 t Rik.(s)dﬁk(s)}dNik.(t)

=1 k=1
n K T R

—n1 Z Z c1 log {1 + / Rzk(s)dAk(s)},
i=1 k=1 0

where dNji.(t) = Y% Ry (t)dN}, (t). Thus,

n K
01) <0 373" [ 1R (t) > ) log(nRu{t)) N (1

i=1 k=1

! znji / log {1 + /0 t Rik.(s)df\k(s)}dNik.(t)

i=1 k=1

—n! iicl log {1 + /OT Rik-(S)de(S)}. (6.3)

1=1 k=1

We now show that the right-hand side diverges to —oo if ZA\k(T) diverges
for some k. The proof is based on the partitioning idea of Murphy| (1994).
Specifically, we construct a sequence top, = 7 > t1x > top > ... in the following
manner. First, we define

tig = argmin{t € [0,tox) : %E[I(Rik.(r) > 0)]

>E [I(Rik. (t) > 0, Ryp..(1) = 0) /t o dNik-(t):| }

where R;.(t) = infye(o Rik.-(s). Clearly, such a t; exists, and the above in-
equality becomes an equality if ¢1; > 0. If ¢1; > 0, we choose a small constant
€o such that

€ _ c1E[I(Ri.(1) = 0, Ri.(t1x) > 0)
1—¢g E[I(Eik.(tlk) = O,RikA(O) > 0) fOT dNik.(t)],

and define

o = argmin{t €10, t10) ¢ (1— eo)E[{cl + /t% dNik.(t)}

tik

XI(R‘k-(fOk) =0, Rk (t1x) > 0)}

>F |:I<Rik~(tlk) =0, Ri.(t) > 0) /ttlk dNik-(t)] }
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Such a top exists. If 9 > 0, the inequality is an equality, and we define

tok

t3r, = argmin{t €10,t1): (1 —€)F [{cl + /tlk dNik'(t)}
< (Rig (t11) = 0, R (t21) > 0)}

>F [I (E‘h(t%) =0, Ri.(t) > 0) /tt% sz‘k-(t)] }

We continue this process. The sequence eventually stops at some ty, , = 0. If
this is not true, then the sequence is infinite and strictly decreases to some t* > 0.
Since all the inequalities are equalities, we sum all the equations except the first
one to obtain

(1—e€)FE

{cl + /t o dNik.(t)}I<Rl-k.(t*) > 0, Ryp. (1) = 0)]

_ E[I (Rt (t10) = 0, R (£7) > 0) / & dNik.(t)],
which implies that
er(1— EO)E[I(R»,.C.(T) — 0, Rip. (1) > 0)}
< eF [1 (Ek.(tlk) =0, Ry (0) > 0) /0 " ANk (t)] :

This contradicts the choice of €g. Thus, the sequence stops at some ¢y, = 0.
If we write Iy = [tg41.k, tqk), then the right-hand side of (6.3]) can be bounded
by

Z[ _1i]\§:1 ( (tgk) =0 Rzk(q+1,k)>0>

k=1 i=1 ¢q=0

X / log (nZA\k{t}> dNip.
tEqu
n Ni—1

—n~! Z Z I<Eik~ (tgk) = 0, Rig.(tqs1.h) > 0)

i=1 ¢q=0

X / dNZ'k. log {1 + Kk(tq—i-l,k)}
tEqu

n Ni—1

1YY I(le (tqr) =0, Ri.(t q+1,k)>0)cl log {1 T K’f(tq“’k)}

i=1 ¢q=0
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,121( ik (tok) >0) 10g{1+7&k(7')}]. (6.4)

Since log z is a concave function,

n

ZI<Eik~(tqk) =0, Rk (tgs1k) > 0) /

=1 telqk

log (nxk{t})dmk.(t)

n

< {ZI(Rik.(tqk) =0, Rir.(tgs1,) > 0) /t . dNik-}
Elgk

=1
[2;;1 I(Rig. (tgr) = 0, Rig.(tg1,e) > 0) [, n/A\k{t}dNik.(t)}
Yt I (Rik. (tgr) = 0, Rig.(tgs1,6) > 0) [, dNik-(t)

< { ZI(RM (tqk) = O,Eik.(tq+17k) > 0) / dNik.}
i=1 tGqu

nAg(tyr) }
2liny I(Rig(tgr) = 0, Rig(tg11.%) > 0) fyeq , dNik.(2)

x log

xlog[

Therefore, (6.4]) can be further bounded by

K [ Ng-1
O(].) < Z [ Z -1 Z ( qk = 0 Rzk( +1,k) > O) / szk

x log { - = _n }
2licy I(Rig(tgr) = 0, Rig(tg11.6) > 0) fyeq , dNi.

Ni—1 n
og A e g ik-(lg+1, ik-
+;1g/\k(tqk){ ZI(Rk( k) =0, Ri.(t +1k)>0>/ de}

i=1 tely,
n Np—1
_IZZI(RM: qk —ORzk( +1k) )
i=1 ¢g=0
x / ANy, log {1 i Kk(tq%k) }
tely
Ni—1 R
_ Z -1 Z < =0, Rip. (t q+17k) >0) c1 log {1 + Ak(tq+17k) }
n

12]( ik t()k >0>10g{1+7&k(7)} .
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By (C2),

n

Z?:l I(Rzk (tqk) = O,Eik.(tq+17k) > 0) ftelqk dN;p.

-1
—as | E |:I<Rik-(tqk) =0, Rip.(tq1,k) > 0) / dNilc~:| < 00,
tElqk

5;( Y G (Rt > 0) o {1+ Rucr)

{nl Z ( ik t(]k > 0) —n7! Z I(Eik.(tok) = O,Eik. (tlk) > 0)
=1
x/ dNik.}log{l —|—Kk(t0k)}
telyy
Ni—1 n
_Z [n—lz[ qlk —0 Rzk( )>0>{01+/ dNik.}
— tEqu
- Z < qk =0, Rzk ( q+1,k) > O) / dNj.

tEqu
X{l + log Kk(tqk)}) .

According to the construction of the tg;’s, the coefficients in front of log /A\k(tqk)
are all negative when n is large enough. Therefore, the corresponding terms
cannot diverge to co. However, if Ax(7) — oo, the first term in the summation
goes to —oco. We conclude that for all n large enough, Ak(7) < oo. Thus,
lim sup,, Ax(7) < 0.

Step 3. We obtain the consistency result from (C5). Since Ay, is bounded
and monotone, /AXk is weakly compact. Helly’s Selection Theorem implies that,
for any subsequence, we can always choose a further subsequence such that /AXk
point-wise converges to some monotone function Aj. Without loss of generality,
we also assume that 6 converges to some 0*. The consistency will hold if we can
show that A} = Aoy and 0 = 6. Since Ay is continuous, the weak convergence
of Kk to Agr can be strengthened to the uniform convergence of Kk to Agg in
[0, 7].

Note that

B /t ™ 3271 Yi(0j3 60, Ao) (- > 5)]
370 Uk(05:0, A)[I(- = 5)]

(0Oj; 6o, Ao)|
v(0;30, 4)|

; dAy(s).  (6.5)
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Clearly, Kk is absolutely continuous with respect to Ay By condition (C3),

W )[I( > 5)] U, (067, AL (- 2 9)]
n 12 k ~ IZ : J O],Q* A*)

n—lj;ﬂoj){w q +Z / a0 - A0l 03) | 0,

since Ay converges to A} and is bounded and {F(O;)u;x(t; O;) : t € [0,7]} is a
P-Glivenko-Cantelli class. By Lemma [I] and the Glivenko-Cantelli Theorem,

Uy (05;0%, A (- > )]
Z 7 U (0;; 6%, A¥)

Uy (0;; 6%, A)[I(- > s)]
HE[ ‘;’(Oj;H*,A*)

sup
s€[0,7]

} uniformly in s € [0, 7],

n-! \Ilk 037907“40)[ ( = S)]
Z U (0Oj; 60, Ao)

. E{‘I’k(oj?eoaAO)[I(- > s)]
¥ (03 00, Ao)

] uniformly in s € [0, 7].

The numerator and denominator in the integrand of (6.5]) converge uniformly
to deterministic functions, denoted by g1x(s) and go(s), respectively. It follows
from (@2) that gix(s) = E[D_;74 Riri(s)dN;=(5)/ds]/Nir(s) is bounded away
from zero. We claim that 1nf$€[07T] gor(s) > 0. If this is not true, then there
exists some s* € [0, 7] such that gor(s*+) = 0 or gox(s*) = 0. By Lemma 2] there
exist 6* and ¢* such that |gox(s)| < ¢*|s—s*| for s € (s*,*4+%) or s € (s*—5*, s¥].
On the other hand, for any ¢ > 0,

~ /T n = 320y Wi(Oy; 600, Ao)I(- > 5)]/¥(Oj3 60, Ao)|
0

A (T - —— T dAL(s).
M2 o (00, AN = 8 (050, A)

Taking limits on both sides, we obtain O(1) > [/ {e + gax(s )}7 g1k (8)dAok(s).
Let ¢ — 0. By the Monotone Convergence Theorem, O(1) > [ o {c*|s —
s* [} g1r(s) Aor(s)ds, or O(1) > S*_5*{c*|5 — 5%} " Lge(s ))\Ok( )ds. This is a
contradiction since the right-hand side is infinite. The contradiction implies that
the limit go(s ) is umformly positive. We can take limits on both sides of (6.5))
to obtain Aj(t fo gzk s)g1k(s)dAok(s). Thus, A is also absolutely continuous
with respect to Ao and dA} /dAox, = g1/ g2k Since Agi(t) is differentiable with
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respect to ¢, so is Aj(t). We write {A}} (t) = A;(t). The forgoing arguments
show that dAy(t)/dAx(t) uniformly converges to A% (t)/ Aok (t), which is uniformly
positive in [0, 7].

It follows from the inequality 'L, (8, 4) > n=1L, (6, A) that

B n K n; . - 0“0./4
IZZZ/ zkl(t) i (t 121 01,00,,4)) > 0.

i=1 k=1 I=1

In view of Lemmal[ll the Glivenko-Cantelli Theorem and the uniform convergence
of dAy/dAy, taking limits on both sides of the above inequality yields

T T e AN () R QNGO W (035 6%, A¥)
Hk LT Tl AN ()} Rim O4NG (O (0;: 6y, Ao)

The left-hand side is the negative Kullback-Leibler distance of the density indexed
by (6*,.A*). Thus, (C5) entails that 6* = 6y and A* = Ag.

FE|log

7. Weak Convergence and Asymptotic Efficiency
Define V = {v € R%, |[v| < 1}, and Q = {h(t) : ||h(t)|lv}o.-) < 1}. We identify

(g— 0o, A — Ap) as a random element in [*°(V x QF) through the definition
(0= 00) v+ ks fy ha()d(Ag — Aow) (s).

Theorem 2. Under (C1)—(C7), n'/2(8 — 6o, A — Ag) —q G in 1°(V x QK),
where G is a continuous zero-mean Gaussian process. Furthermore, the limiting
covariance matrix of n1/2(9 — 6y) attains the semiparametric efficiency bound.

Proof. The proof is based on the likelihood equation and follows the ar-
guments of Van der Vaart| (1998, pp.419-424). Let £(6,.A) be the log-likelihood
function from a single cluster, £g(), A) be the derivative of £(6,.4) with respect
to 0, and Ly(0,.A)[Hy] be the path-wise derivative along the path Ay + eHj,. We
sometimes omit the arguments in these derivatives when 6 = 6y and A = Ap.
Let P, be the empirical measure based on n i.i.d. observations, and P be its
expectation.

Let W = (h,...,hk) € € QK. The likelihood equation for (6,.4) along the
path (6 4 ev, A+ edeA where v € R? and hy € BV[0, 7], is given by

Ozpn

oT £(6, A) + Z £(0, A) [ / hdek}
k=1

To be specific,

T . K
oop,[LinOs00]

=1
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+0,(04: 6, A) [/ hkd/\k]

Since (6o, Ap) maximizes P[L(6, A)],
0= P[UTLQ(QO,AO)}, 0= P[ﬁk(eo,Ao) [/hdeOk”, e k=1,... K.

~

These equations, combined with the likelihood equation for (5, ), yield

n'2(P, — P) [UT@(@, A) + i w0, 4) [/hkdxk”

k=1

0T Wy (0500, Ao)
lI’(Ola 00) AO)

K . .
N 2p | Y050, ) hedAg] Wk (04500, Ao) [ hrdAok]
2 P[ \If(@i;a A) U (O;; 600, Ao) }

Define Ny = {(6,A) : |0 — 6o + S5, [ Ax — Aokllvio,-) < do}, where &g is
a small positive constant. When n is large enough, (6, .4) belongs to Ny with
probability one. By Lemma [Tl and the Donsker Theorem,

op(1) + n2(P,, —P) [v%(eo, o)+ 3 Lulbo, o) [ / hdeOkH
k=1

/\/\

_ nl/QP[” Vy(0;;0,A) T‘i’e(oi;eon)}
U(0;:0,A) U (0500, Ao)
K 1/2 \I/k((’) é\ fhdek \I/k(ol,g(),.Ao)U‘ hde(]k]
- n'*P . (7.1
pt U(0;: 6, A) U(0i; 6o, Ao)

where op,(1) represents some random element converging in probability to zero in
1°(V x QF).
Under (C6), the first term on the right-hand side of (Z.1]) is

K . ~ ~
—NI/Q{ Z/ v" Con(s)d(A — Aox) + v" Con (0 — 90)}
k=1"0

K
o072~ ol + 2 S 1R~ Auelvi )
k=1
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The second term is —Zk 1n1/2{f0 e () mog (¢; ) L A)YdA(t) — Jo P (y)mox(t:; G,
Ag)dAok(t)}. Tt follows from (C6) that the above expression is

ZW[ R {ﬁow(t 00, A0) (8 — 60)

/0 " ot (51 : 80, Ao (R — A0m>(s>}dA0k<t>

+

_|_

= iMw

hie (8)710k (£ 60, Ao) (A (£) — AOk(t))]

K
+o( n/?|0 — | + n'/? Z 1A% = AOkHV[O’TO

k=1

N\

n!/? [(5 90)T/ i (£)noke (¢; 6o, Ao ) d Aok (1)
0

_|_

/T {I(m = k) hp (t)n0m (t; 60, Ao)
0

=) 3 iMNEMW

_l’_

Nokm (5, t; 0o, AO)hk(s)dAOk(s)}d(Km(t) - A0m<t))]

K
o(n2 - ol + 2 S~ 1R~ Auelvo )
k=1

Thus, the right-hand side of ([TI]) can be written as

K
_nl/Q{B1 v WT(6 - 6o) + > / Bog[v, W]d(Ay — AOk)}
—1

K
+o<n1/2|0 — bg| +n'/? Z | Ax — AOkHV[O,bT]>7
k=1

where (By, Bai,. .., Bog) are linear operators in R? x {BV[0,7]}¥, and

K T
Bi[o, W] = v"¢op(6o, Ao) + Z/o hue () ok (t; 0o, Ao) d Aok (1), (7.2)
k=1

Boy[v, W] = v or (53 00, Ao) + hi(t)nok(t; 60, Ao)

K
+ Z / nOmk(37 tv 007 AO)hm(s)dAOk(S)7 k= 17 LRI 7K' (73)
m=170
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It follows from the above derivation that

K
Bilo, W5+ ) / Boy[v, W|WidAgx
k=1

d N
=—| P |:’UT,C9 (00 +ev, Ag + € / WdAo)
dele=0
K —
+3° L, (90 +eb, Ag + € / WdAO) [ / hdeokH . (7.4)
k=1
We can write (B, Bai, ..., Bog)[v, W] as
v 0T ¢ (00, Ao) + Sn_, Jo ha(t)nowe (t; 00, Ao)dAok () — v
101 (t; 00, Ao) X h1(t) UTCOl(t; 6o, Ao) + Eﬁ:l fOT Nom1 (8, t; 00, Ao ) hm (s)dAom ()
. + .
nox (t; 0o, Ao) X hi(t) 0" Coxk (500, Ao) + 3ok 1 [ nomx (5,15 00, Ao) han (5)dAom ()

We wish to prove that (B, Bai, ..., Bak) is invertible. As shown at the end of
this section, no(t; 0o, Ag) < 0, so that the first term of (By, Bai, ..., Bak) is an
invertible operator. It follows from Lemma [3] that the second term is a compact
operator. Thus, (B, Bai, ..., Bok) is a Fredholm operator, and the invertibility
of (By,...,Bak) is equivalent to the operator being one-to-one (Rudinl (1973,
pp.99-103)). Suppose that Bijv, W] =0, ..., and Bag[v, W] = 0. It is easy to
see from (7-4) that the derivative of P[vT Ly(o, Ao)+ S0, Li (6o, Ao)[[ hedAok]]
along the path (6p+ev, Ag+e [ WdAp) is zero. That is, the information along this
path is zero, or v* L4 (6, Ag) + Zé{:l L (00, Ao)[J hrdAok] = 0 almost surely. By
(C7), v=0and W = 0, so that (By, Bai, ..., Bak) is one-to-one and invertible.
It follows from (1)) that, for any (v, W) € V x QK|

K
n1/2{,UT(§_ 0o) + I;/O hk(t)d(xk(t) - AOk(t>)}

K
— —n1/2(77n — P) [ﬁTﬁ'g(Qo, Ao) + Z ﬁk(eo, Ao) [/de/\o]f]

k=1

K
+o <n1/2|'9 — O] + 1" |[Ay - A0k|v[o,T]> :
k=1
where (5,%1, ce ,TLK) = (Bl, By, ..., BQK)_I('U, hi,... ,hK). Since

K

10— 6o + > 11k — Aokllvio.
k=1
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= sup
(v,h1,.,hE)EVX QK

@00+ [ modBate) - A0k<t>>',
k=170

K
W{w o+ SRy - AOkuV[o,T]}
k=1

K
= Op(l) + 0<n1/2]0 — 90‘ + n1/2 Z HAk — AOkHV[O,T]) .
k=1

Thus, n1/2{|§— Oo| + Zle 1A, — Aokllvio,n} = Op(1). Consequently,

K
nl/?{UT(é\_ 60) + Z/D hk(t>d(Kk(t> - AOk(t))}
k=1

K

T Lg(00, Ao) +Z£k(90,Ao)[/7Lde0k]

k=1

= —n2(P, - P) + 0p(1).

We have proved that n'/ 2(5— 0o, A— Ap) converges weakly to a Gaussian process
in 1°°(V x @K). By choosing hj, = 0 for k = 1,..., K, we see that vT is an
asymptotically linear estimator of vy with influence function ?}Tﬁg(Go,Ao) +
Zé(:l L1.(6o, Ao) L[ %deOk]- Since the influence function lies in the space spanned
by the score functions, 8 is an efficient estimator for Bo.

It remains to verify that 7oy (t; 6o, .4g) < 0. Under (C6), P[¥y(O;; 0o, Ao) [ Hi]
/Y (O;; 00, A0)] = fOT nok(8; 0o, Ao)dHp(s). The choice of Hy(s) = I(s > t) yields
PUL(Oi; 00, Ao) (- > t)] /¥ (O;; 00, Ao)] = nok(t; 00, Ag). On the other hand, the
score function along the path Agx + eI(- > t), with the other parameters fixed at
their true values, has zero expectation. We expand this expectation to obtain

U (O35 00, Ao) [I(- > )] N ()AE[I(Rig. () > 0)NG (¢)]

=- 0.
P U(Os; 60, Ao) dt <

Thus, nox(t; 0o, Ag) < 0.

8. Information Matrix

Theorem [2 implies that the functional parameter A can be estimated at
the same rate as the Euclidean parameter . Thus, we may treat ([B.I]) as a
parametric log-likelihood with € and the jump sizes of A, £k =1,..., K, at the
observed failure times as the parameters and estimate the asymptotic covariance
matrix of the NPMLEs for these parameters by inverting the information matrix.
This result is formally stated in Theorem[Bl We impose an additional assumption.
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(C8) There exists a neighborhood of (6, Ag) such that for (0, .A) in this neigh-
borhood, the first and second derivatives of log ¥(0;; 0, .A) with respect to 6 and
along the path Ay + eHj with respect to e satisfy the inequality in (C4).

For any v € V and hy,...,hg € Q, we consider the vector (v’ IT{, e ﬁjl;)T,
where hy, is the vector consisting of the values of hy(-) at the observed failure
times. Let Z,, be the negative Hessian matrix of (B.I]) with respect to f and the
jump sizes of (jA\l, ce KK)

Theorem 3. Assume (C1)—(C8). Then I, is invertible for large n, and

sup n(vT,ﬁlT,...,H%})Igl(vT,E?,...,ﬁ%)T

vEV,h1,....,hgx €EQ

—AVar[nl/Z{vT(g— fo) + é / hed(Rg — AOk)H ‘ 0

in probability, where AVar denotes the asymptotic variance.

Proof. The proof is similar to that of Theorem [ in [Parnerl (1998); see also
Van der Vaart! (1998, pp.419-424). First, (7.4]) implies that, for any v € V and
hi,...,hg € O,

v v

E'gg £.91 ﬁé[( fhldAm fhldA01

LroLrk1...LKK fthAOK fthAOK

K
= UTBl(U, hi,..., hK) + Z/ng(v, hi,..., hK)hdeOka (8.1)

where £ pertains to the second-order derivative of the log-likelihood function.

On the right-hand side of (Z.4)), we replace P by P,, to obtain two new linear
operators B,,1 and B,or. It is easy to show that B,; and B,,o; converge uniformly
to By and By, respectively. Under (C8), the results of Lemma [ apply to the
second-order derivatives £ and the operators. (B1, Ba1, ..., Bak). By replacing
6o, Aox and P on both sides of (81 with 9 Aok and P, we obtain

I BT R0 BT )T

K
= UTBnl(’ﬁ, hi,...,hg)+ Z/Bn%(i;, hi,...,hg)hpdAg + Op(l).

According to the proof of Theorem 2], (B, Bgl, .., By K) is invertible, and so is
(Bpi, . .., Bpay) for large n. Note that v B, (7, hl, .. hK)—I—Zk 1 | Bnax(© h1,
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. ,EK)hdek can be written as (v7 i_ilT, - i_iﬁ) x By (vT l_ilT, cee E}Q)T for some
matrix B,,. Therefore B,, is invertible, and so is Z,,. Furthermore,

sup (N 1 5 Y (T Y A S
vEV,h1,....hgx€Q
—ThF R BT AT, DT = 0.

According to Theorem [ the asymptotic variance of n'/2{uT(0 — 6,) +
Soicr S had(Ag — Aox)} s

K 27

k=1 J
.. . .. [ v v
Log Lor ... Lok fﬁldAol f7l1dA01

=-Pol i o N )

Lo L1 Lxi

ffiledAOK f}VLKdAOK

where (5,%1,...,EK) is (B, Bot,...,Bog) (v, h1,...,hg), which can be ap-
proximated by (Bn1, Bpoi, ..., Bnox) (v, h1,...,hi). Hence, the asymptotic

variance can be approximated uniformly in v and hj’s by its empirical counterpart
=T =T

(vT, l:z:lT, . hT)B 7. B LT NURER . h)T, which is further approximately by
WT AT, R (T h{,.. T

9. Profile Likelihood

Theorem 4. Let pl,(0) be the profile log-likelihood function for 6, and assume
(C1)—(C8). For any €, = Op(n_l/z) and any vector v,

~

_pln(§+ €nv) — 2pl,(0) + plo (6 — e,v)
ne2

Ty—1
—p U X,

where X is the limiting covariance matriz of n'/? (5— 6o). Furthermore, 2{pl, (5)—
pla(00)} —a X5-

Proof. We appeal to Theorem [I] of Murphy and van der Vaart| (2000). Specifi-
cally, we construct the least favorable submodel for 6y and verify all the condi-
tions in their Theorem [l For notational simplicity, we assume that K = 1. It is
straightforward to extend to K > 1.

It follows from the proof of Theorem [2] that

EAA[ / h*dAo, / hdAO]

/ Ba(0, h)h*dAg = —
0
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where By stands for the operator (Bai,..., Bk ), and iAA[Hl, Hs] denotes the
second-order derivative of £(#, A) with respect to A along the bi-directions H;
and Hs. On the other hand,

LA [ / h*dAo} Lo

where £} is the dual operator of £, in L9[0,7]. Thus, if we choose h such that

By(0,h) = —L4 Ly, then
ﬁAA[/h*dAo,/hdAO]

ﬁA[/h*dAo] Lo

By definition, | hdAg is the least favorable direction for 6y and Lo— CA[ [ hdAo]

is the efficient score function. Such an h exists since Bz (0,-) is invertible. In

addition, h € BV[0, 7]. Hence, we can construct the least favorable submodel at

(0,A) by € — (e,A¢) with dA¢(0,A) = {1+ (e — 0) - h}dA. Clearly, Ag(6,A) = A
OL(e, Ae)

and
zﬁg—ﬁA[/hdAo].
Oe e=00,0=00,A=Aq

If o —p 0y and Kg maximizes the objective function with 0 replaced by 5, we

E

_ / B (8) % Lodo(s),
0

E =_E

can use the arguments in the proof of Theorem [ to show that /AX9~ is consistent.

In the likelihood equation for Kg, we can use the arguments for the linearization
of (Z1)) to show that, uniformly in h € Q,

op(1) + n!/2(P, — P) L‘A(GO,AO)UhdAO]

= —n!/? /O B (0, h)d(Az — Ag) + Op(n/?16 — bo|) + 0p(n*/?[|[ A5 — Ao|vpo)-

The arguments for proving the invertibility of (B, By) show that h — Bs(0, h)
is invertible. Thus,

135 — Rollvio. = Op (16— b0l +n7172).

By condition (C6), we obtain the no-bias condition, i.e.,

0L (e, Ae)
Bl 2=
[ Oe

We have verified conditions (8)—(11) of [Murphy and van der Vaart| (2000).
Condition (C4), together with Lemma [T implies that the class

{M(;:EAJ : |6— 00’ < 50,(9,A) EN(]}

. = 0,(10 -6 -1/2)
6290,9297/\:7\5} p(| o| +n )
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is P-Donsker and that the functions in the class are continuous at (6y, Ag) almost
surely, while condition (C8) implies that the class

92L (e, A
{é;) e — Bo| < 8o, (8, A) e/\/o}

is P-Glivenko-Cantelli and is bounded in La(P). Therefore, all the conditions in
Murphy and van der Vaart| (2000) hold, so that the desired results follows from
their Theorem [I

10. Applications

In this section, we apply the general results to the problems described in
Section 2. We identify a set of conditions for each problem under which regularity
conditions (C1)—(C8) are satisfied so that the desired asymptotic properties hold.
These applications not only provide the theoretical justifications for the work of
Zeng and Linl (2007)), but also illustrate how the general theory can be applied
to specific problems.

10.1. Transformation models with random effects for dependent failure
times
We assume the following.

(D1) The parameter value (3F,7¢)? belongs to the interior of a compact set ©
in R%, and AJ,(t) >0forallt € [0,7], k=1,..., K.

(D2) With probability one, Ziy(-) and Zg(-) are in BV[0,7] and are left-
continuous with bounded left- and right-derivatives in [0, 7].

(D3) With probability one, P(Cix; > 7|Zigi) > 09 > 0 for some constant d.
(D4) With probability one, n;; is bounded by some integer ng. In addition,
E[Ny.(1)] < 0.

(D5) For k = 1,...,K, Gi(x) is four-times differentiable such that G(0) =
0,G).(z) > 0, and for any integer m > 0 and any sequence 0 < z1 < ... < Ty, < ¥,

m

TT{ + 2)Gh(a) } exp{—=Gr(y)} < (1 +y) "o
=1

for some constants g and ki > 0. In addition, there exists a constant pgx such

that
GR (@) +1G¥) (@) + |GW ()
sup { k G )11 ) } < 00

T



896 DONGLIN ZENG AND D. Y. LIN
(D6) For any constant a; > 0,
sup B| [explan (Vi (7) + DIolb ()] <
gl b

and there exists a constant ag > 0 such that for any -,

f4(b;7) ‘ B 112 ®9)
f(b57) f(;7) f(b;7)

+

-+

‘ < O(1) exp{az(1 + |b])}.

(D7) Consider two types of events: k € K; indicates that event k is recurrent
and k € Ky indicates that event k is survival time. For k& € K1 U Ko, if there
exist ¢ (t) and v such that with probability 1, cx(t) + v? Zi(t) = 0 for k € Ky
and c(0) +v7 Z;3,,(0) = 0 for k € Ky, then v = 0.

(D8) If there exist constants ay and ay such that for any subset Ly, C {1,...,n}
and for any wy; and tg,

/ 11 ﬁexp{iwkleZkl(tkl)} IT TI exp{ak +b" Zixa(0)} £ (b )db

brer, i=1 keka leLy
Nik . .
=/ 1T I expliwnd” Zina(t)} T] ] exp{oor + 0" Zina(0)} £ (b5 7o) db,
b ek, 1=1 keko l€Ly

then v = 7. In addition, if for £ € Ky and for any ¢,

foo] —eu( [ P0an) promoa
- /b op { o < /ot ebTZ"’”(S)dM(s)) }f(b; Yo)db,

then A7 = As. Furthermore, if for some vector v and constant ay,

I(k‘ e Kl)/€2bTZikl(0)f/(b; ’yo)TUdb+ I(k: c ICQ) /ebTZikl(O)(akf(b; ,70)
b b

— ' (b;70)Tv)db = 0,
then v = 0.

(D1)—(D4) are standard conditions for this type of problem. We show that
(D5) holds for all commonly used transformations. We first consider the class of
logarithmic transformations G(x) = plog(1 + rz) (p > 0,7 > 0). Clearly,

k=1

k=1
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< {pr(l n %) }mmin(l,r)_p(l +y)".

Thus, in (D5), we can set po to pr(l+ 1/r) min(l r)7P and ko to p. We can

verify the polynomial bounds for G”(z)/G(z), G®)(z)/G(z) and G (x)/G(x)

by direct calculations. We next consider the class of Box-Cox transformations
G(z) = {(1 + z)? — 1}/p. Clearly,

¢
I

k=1

f_/H
y_n
+
8
??‘

G (w) } exp{~G(y))

2557 )
< {4,0 + exp ([1)) } (1+y) "

Thus, we can set ug to 4p + exp(l / p) and kg to p. The polynomial bounds for
G"(x)/G(z), G®)(x)/G(zx) and G® (z)/G(z) hold naturally. Finally, we consider
the linear transformation model: H(T) = 37 Z+¢, where € is standard normal. In
this case, G(x) = —log{1—®(log z)}, where ® is the standard normal distribution
function. We claim that there exists a constant vy > 0 such that ¢(x) < vp{l —
®(z)}(1 + |z|). If 2 < 0, then ¢(x) < (2m)~ Y2 < 2(21)~1/2{1 — ®(2)}(1 + |z]).
If >0,

im p(x) — 9(27)" /2
P S s ousve e e GO

By the L’Hospital rule,
lim 1_7% = lim (@) =
N T LCL
lim (@) = lim —¢(@)z
z—o0 {1 = ®(z)}(1+z) o—o0 —¢(w)(1+w)+{1—‘1’(w)}

= (1+x>/x_{1— ®(x)}/zo(r)

Therefore, ¢(z)/[{1 — ®(z)}(1 + z)] is bounded for > 0. Without loss of
generality, assume that y > 1. Clearly,

]ﬁ{(1+xk)G'(:ck)} exp{—G(y)} = ﬁ{ (1+1xi)i((llzgg((zlz))))/xk }{1—@(102; y)}.
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Since (1+xz)¢p(log(z))/[z{1—P(log x)}] is bounded when z is close to zero and it is
bounded by a multiplier of (1+logz) when z is close to oo, (1+z)¢(log(x))/z{1—
®(logz)} < wvo1 + vp2log(l + x) for two constants v and vp2. Therefore,

[ {1+ 20)G @0) } exp{-G)} < {vor + vz log(1 +1)}" {1 - ®(logy)}.
k=1

Since 1 — ®(z) < 2'/2 exp(—z2/4) when z > 0, the above expression is bounded
by

21/2{1/01 + vp2 log(1 + y)} exp{—(logy)?/4}

< Vo3{l/01 + vp2 log(1 + 3/)} exp{—rpa(log(1 + y))Q}

< (14 y) T/,

where all the v’s are positive constants. The polynomial bounds for G”(x)/G(x),
G®)(z)/G(x) and GW(z)/G(z) follow from the fact that ¢(z)/{1 — &(z)} <
O(1 + |z|).

Condition (D6) pertains to the tail property of the density function for the
random effects f(b;y). For survival data, N} (1) < 1, so that the first half
of condition (D6) is tantamount to that the moment generating function of b
exists everywhere. This condition holds naturally when b has a compact support
or a Gaussian density tail. The second half of condition (D6) clearly holds for
Gaussian density functions.

(D7) and (D8) are sufficient conditions to ensure parameter identifiability
and non-singularity of the Fisher information matrix. In most applications, these
conditions are tantamount to the linear independence of covariates and the unique
parametrization of the random-effects distribution. Specifically, if Zikl is time-
independent, then the second condition in (D8) is not necessary; if Z-kl does
not depend on k and I, and b has a normal distribution, then the other two
conditions in (D8) hold as well provided that Z-kl is linearly independent with
positive probability; if Z-kl is time-independent and K; is non-empty (i.e., at least
one event is recurrent), then (D8) can be replaced by the linear independence of
Zin for some k € Ky and the unique parametrization of f(b;~).

We wish to show that (D1)—(D8) imply (C1)—(C8), so that the desired
asymptotic properties hold. Conditions (C1) and (C2) follow naturally from
(D1)—(D4). To verify (C3), we note that

K Nik

¥(0:0,4) = [ TTT[%(bs 8001t

k=11=1
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where
AN}, ()

zkl( B, Ak) H {Rikl(t)eﬁTZ““l(t)+bTZikl(t)G§€(Qikl(t))}

t<t

X eXp{ - Gk(Qikl(T)>}>

and g (t) = [y Rirr(s) exp{B7 Ziri(s) + b7 Zisa(s) }dA(s).

If | Ax[lv(o,r are bounded, then Qx;(b; 3, Ax) > exp{O(1) N, (7)}H (|b] < Bo)
for any fixed constant By such that P(|b|] < Bp) > 0. Thus, ¥(0;;6,A) is
bounded from below by exp{O(1)N},(7)}, so that the second half of (C3) holds.
It follows from (D5) that

Qira(b; B, Ax) <O(1) H {Rikl(t)ebTZ“”(t)}dNikl(t)

t<t
N

XMOIQ“( R H {1 + qz‘kl(t)}idN;kl(t){l + qz‘kz(T)}%Ok.

t<t

e ol 2y + W Zaa(s)} > exp{~O(1 + b))}, we have 1+ gua(t) >
e~ OO+ 1 —i—f Rik.(s)dAk(s)}, so that

(r ) —dNZ ()
Quna (b5 8, Ag) < O(1)pgyt' ™ OU+N (7 ”"H{1+/ (s)dAx(s )}

t<rt

« {1 + /0 ' Rikl(s)dAk(s)}_HOk.

Thus, the first half of (C3) holds as well.
We now verify (C4). Under (D5),

Qua(b; B, A)| < exp {01+ N (r))1ol},

‘ 0 Qirt (b; 8, Ak

op

Qi (05 B, Ay)

{/Rikl() Ziga ()N ()

/Rkl( G// (g ( fo il ( eﬁTZikl(s)erTZikl(S)Zikl<s)dAk( )d (t )}
Z Gl (im(t)) g

_G;g(Qikl(T»{/ Rikl(s)eﬁTZikl(5)+bT§ikl(S)Zikl(S)dAk(8)}

0
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< exp { O(1 + Nja(r) (1 + ) |,

0
‘M Qi (b; B, M) [Hy]
= |Qira(b; B, Ar)
GYlaim(1)) fi Ria(s)e?" 2wt &)+ 25 g (5) }
X Rz t d i
{/ u(?) Gl (g (1)) ()

_Gk;((hlcl {/ Ri(s B Ziga ()47 Ziy (s )de( )}”

< exp { O(1 + Njiy (1) (1 + o)) ).
Thus, it follows from the Mean-Value Theorem that
0
‘35 Qira (b5 ’ﬁ ‘
SGXP{O(1+ il (T \b’}’ﬂ

Qi (b; B, Ag) — Qg (b; 8P, Ay) | = 3%, Ay,)

szl(baﬁaA](gl) Zkl( ﬁa )‘
| 0
“|ox;
<exp {O(1+ ;;,wb\}

e

Qb 5, A7) [AL Aﬁf)H

Zikl(S)erTZikl(S)d(AS) _ A(z))(s)

+ / Ry (t)eB " Zim(s )+bT'Z“ikz(S)d(A](€1)_A](f))(s)'}
0
<exp{O(1+ ;zl<f>><1+|b|>}
o [ R0 - AP @10+ [T - AP s .

where the last inequality follows from integration by parts and the fact that
Zi(t) and Zkl(t) have bounded variations. It then follows from (D6) that
1T (000, ADY — W(0;;60?), A?)| is bounded by the right-hand side of the
inequality in (C4). By the same arguments, we can verify the bounds for the

other three terms in (C4).
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To verify (C6), we calculate that

nok (550, A)

[ / ml " Qi (03 8, M) £ (05 7)
fb 1Hlnmf szl( ﬁa )f(b77)db

x{ G(qikl())d i (t) = G%(Qz’kl(T))}Rikl(s)eﬁTZikl(S)erTZikl(s)db] :
t>s

(szl( ))
For (6,.A) in a neighborhood of (6, .Ap),

0
nok(s; 6, A) — nok(s; 0o, Ao) — %UOk(S; 0o, Ao)" (6 — 6p)

K
0
- Z % (50, Ao) Ay = ]| = 018~ 1+ 3= = Aoy )

m=1

Thus, for the second equation in (C6), nogm(s,t;60,.Ag) is obtained from the
derivative of ng, with respect to A,, along the direction A,, — Agm, and Mgrg is
the derivative of ngr with respect to 0. Likewise, we can obtain the first equation
n (C6). It is straightforward to verify the Lipschitz continuity of 1k, .

The verification of (C8) is similar to that of (C4), relying on the explicit
expressions of Wge(O;; 0, A) and the first and second derivatives of ¥(0;; 0, Ao+
€H) with respect to e.

It remains to verify the two identifiability conditions under (D7) and (D8).
To verify (C5), suppose that (3,7,A1,...,Ax) yields the same likelihood as
(ﬂo,")/g, Al(), c. 7Ak0)- That iS,

K ng

/ TT T ® 000 (0: 5. M) £ (b )l
br=11=1
K ni
/bHHAkO N Q0 (b; Bo, Aro) £ (b;70)db.
fm1 1=1

We perform the following operations on both sides sequentially for k =1,..., K
and [ =1,...,n.

(a) If the kth type of event pertains to survival time, for the [th subject of this
type of event, the first equation is obtained with Ry (t) = 1 and dN},(t) = 0
for any ¢t < 7, i.e., the subject does not experience any event in [0,7]. The
second equation is obtained by integrating ¢ from %y to 7 on both sides un-
der the scenario that Ry (t) = 1 and Nj,(t) has a jump at ¢, i.e, the subject
experiences the event at time ;. We then take the difference between these



902 DONGLIN ZENG AND D. Y. LIN

two equations. In the resulting equation, the terms Ag(¢ )sz*kl( Qi (b; 5, Ax)
and Ao (t )dekl(t)Qikl(b; Bo, Ako) are replaced by exp{—Gk(fo’“ exp{ﬁTZlkl( ) +

bTZ-kl(s)}dAk)} and exp{—Gk(fot“ exp{ 8L Zipi(s) + bTZkl(s)}dAko)}, respec-
tively.

(b) If the kth type of event is recurrent, for the Ith subject of this type of event,

we let R (t) = 1 and let N}, () have jumps at sq,...,sp, and s},..., s, , for any
arbitrary (m+m’) times in [0, 7]. We integrate s, ..., sp from 0 to t5; and inte-
grate s7,...,s, , from 0 to 7. In the obtained equatlon Ap(t )sz*kl( Qir1(b; B, Ak)

is replaced by {Gr(qiri(te)) " {Gr(qiri(7))}™ on both sides. Note that m and
m’ are arbitrary. We then multiple both sides by {(iwg;)™/m!}/m’! and sum over
m,m’ = 0,1,.... On both sides of the resulting equation, the terms associated
with k& and [ are replaced by exp{iwk Gk (qiki(tx))}-

After these sequential operations, we obtain

Nk

/H HeXp 1wlek q@kl(tkl))}

kEIC1 =1
Nk

X H H exp { - Gk(%’k’l(tkl))}f(b; 7v)db
keks I=1

Nik

/bH HGXP 1wlek(qzkzo(tkz))}

kel =1

Nik

X H Hexp{ k(qirto (ter)) } f (b5 7v0)db.

ke =1

For survival time, we can let any subject from the n;; subjects have ty; = 0,
which results in

Nik

/H HGXP lwszk szl(tkl))}
ke =1

< 1] ﬁ [ + eXP{ - Gk(%kl(tkl))}} f(b;~y)db
ke =1

/H ﬁexp lwszk szlo(tkl))}

brerc, =1

<1 ﬁ [ + eXP{ - Gk(qiklo(tkl))}] f(b;70)db,
keks I=1

where & is any positive variable.
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The above expression implies that {G(qiri(t)), k € K1} as a function of

Nik

b~ [] 1:[ [ﬁlkz + eXp{ - Gk(%’kl(tkl))}] f(b;)

has the same distribution as {Gk(qixi0(t)), k € K1} as a function of

Nik

b~ [T 11 [fk + exp{ - Gk(QiklO(tkl))}} F(0570);

kekq I=1

so this is true between {g;x;(t)} and {g;xi0(t)} because of the one-to-one mapping.
Thus, the distributions of {logq},,(t)} and {logq;,,,(t)} should also agree and
they have the same expectation. Now let t; = 0 for k € Ky. Since E[by] =
E[ba] = 0, we obtain log Ay (t) + 87 Zi(t) = log Aro(t) + B Ziw(t) for k € K.
The above arguments also yield

Nik

/H HGXP b Ziny tkl)}

k:ElCl =1

11 lHl oo { - Gulat | fmas

Nk

/H Hexp b Zii tkl)}

b ek, 1=1

X H ﬁ [;kl +eXP{ — Gk(QiklO(tkl))}]f(b;’)’o)db.

We compare the coefficients of &; for k € K. This yields that for any subset
Lk C {1, . ,nik},

Nik

/H Hexp iwgb szl(tkl)}

ke, =1

% H H eXp{ - Gk(qikz(t))}f(bﬂ)db
ke leLy

Nik

/ 11 HeXP iwpb szl(tkl)}

ke =1

X H H eXP{ Gr(qikio(t ))}f(b;'yo)db.

kekq leLy,

We differentiate the above expression with respect to tg; at 0 for k € Ko. It
then follows from (D8) that log Ax(0) — log Aox(0) + (8 — Bo)* Zix(0) = 0 and
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v = 7. Thus, (D7) implies that 8 = [y and Ag(t) = Agk(t) for k € Ky. On
the other hand, for any fixed k € Ky, we let tgy = 0 if k' # k or I’ # 1. Thus,
Joexp{=Gr(qiri(tr)) } f(b;79)db = [, exp{—Gr(qoiri(tr1))} f(b; ¥o)db. Therefore,
Ay = Aoy, for k € KCy according to (DS).

To verify (C7), we write v = (vg,vy). We perform operations (a) and (b)
on the score equation in (C7). The arguments used in proving the identifiability
yield

Nik
/b [ Z leklAzkl(tkl)Gk ik10(tk1)) Z Z A (tr)

ke =1 keKa leLy,
f (b ")/0 v’y Nkl
+f(b7 P D> iwuGilgikio(ti))
ke 1=1
- Z Z Gk(QiklO(tkl))}f(b§70)db =0, (10.1)
kel 1Ly,
where Aj(t) = [5 (hi(s) + Zia(s) Tg)es Zin( T Zia () gy (5)Gh (qunao (1)) We

differentiate (EIIEI:I) with respect to ¢y twice at 0 for £ € Ky. Comparison of
the coefficients for wy; yields fb eQbTZikl(O)f’(b; ’yo)T’U,de = (0. We also differentiate
(I0I) with respect to ty; at 0 for k € Ky. Thus, foreach k € Ko andl = 1,...,ng,
[, (hie(0) + Zisg (0)Twg)e” 7t ) f(b;70)db = —G4(0) [, ¥ %41 £ (b; 70)Twy db. Tt
then follows from (D8) that v, = 0. For fixed ko and [y, with the fact of v, =0,
the score equation under operations (a) and (b), where in (a) we let dN},(t) =0
for any ¢ < 7 and in (b) we let m = 0 whenever k # ko or | # ly, becomes
a homogeneous integral equation for hg,(t) + Zikgi,(t) vs. The equation has a
trivial solution, so hg,(t) + Ziki, (t)Tvg = 0. Since ko and [y are arbitrary, (D7)
implies that hy, = 0 and vg = 0.

Remark 2. For survival time, (D5) is required to hold only for m = 0 and
m = 1.

Remark 3. The above results do not apply directly to the proportional hazards
model with gamma frailty because (D6) does not hold when b has a gamma
distribution. It is mathematically convenient to handle this model because the
marginal hazard function has an explicit form. The likelihood is a special case
of ours with

U(0;;0,A) = HHYm (t; B)Nia (® H{l +9Ni.(u_)}dN¢.(t)

j=1t<7 t<t

T —(1/6+N;.(7))
x{l +9/ Yi.(u;ﬂ)dA(u)}
0



MAXIMUM LIKELIHOOD ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS 905

in the notation of [Parner] (I998)). Clearly, ¥ satisfies (C3) when 6 > 0. The other
conditions can be verified in the same manner as before.

Remark 4. Our theory does not cover the case in which the true parameter
values lie on the boundary of ©. It is delicate to deal with the boundary problem.
One possible solution is to follow the idea of [Parner| (1998) by extending the
definition of the likelihood function outside © and verifying (C2)—(C8) for the
extended likelihood function.

Remark 5. We have assumed known transformations. We may allow Gy to
belong to a parametric family of distributions, say G/(+; 1), where ® is a param-
eter in a compact set. Then 6 contains ¢. Our results and proofs apply to this
situation if (D5) holds uniformly in ¢ and the two identifiability conditions are
satisfied.

10.2. Joint models for repeated measures and failure times

For the (parametric) generalized linear mixed model, the likelihood can be
viewed as a special case of that of Section 10.1 except that there is an additional
parameter o in f(y|z;b). We assume that (D1)—(D8) hold but with (D6) replaced
by the following.

(D6’) For any constant a; > 0,

sup 8| [exp {3 (r) + 1} ] £ X001 i < oc

and there exists a constant as > 0 such that for any v and «,

) (b;4)
f(b57)

3

O (Vi X5, b) ‘
Ym | X5, b)

< (O exp {1 + 1)}
k=

almost surely, where r3(0;) is a random variable in La(P).

Under these conditions, the desired asymptotic properties follow from the argu-
ments of Section 10.1.

Under the semiparametric linear transformation model for continuous re-
peated measures, the likelihood is in the form of that of Section 2.2 with K = 2
and n;z = n;, where the time to the second type of failure is defined by Y;;
(assuming without loss of generality that Y;; > 0). Thus, if we regard Y;; as a
right-censored observation when it is greater than a very large value (i.e., the
upper limit of detection), then the asymptotic results given in Section 10.1 hold.
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When such an upper limit does not exist, the estimator for A can be unbounded
when sample size goes to infinity. Then our proof of Theorem [I] does not apply.

10.3. Transformation models for counting processes
We verify (C1)—(C8) under the following conditions.

(E1) The parameter value ( g , ’yg )T belongs to the interior of a compact set ©
in R, and Aj(t) > 0 for all ¢ € [0, 7].

(E2) With probability one, P(C > 7|Z) > d¢ > 0 for some constant d.
(E3) Condition (D5) holds.

(E4) With probability one, Z(-) and Z are in BV[0,7] and are left-continuous
with bounded left- and right-derivatives in [0, 7].

(E5) If fyTE is equal to a constant with probability one, then v = 0. In addition, if
BT Z(t) = c(t) for a deterministic function c(t) with probability one, then 3 = 0.
In this case,

~ t e
U(0;;0,A) = H <Ri(t)eﬁTZi(t)+’7TZi{1 +/ Ri(S)@'BTZi(S)dA(S)}
0

t<rt
. ATZ\ AN (D)
{1+/ Ri(s)eﬁTZi(s)dA(s)} ])
0

X exp (—G {1 +/OT Ri(s)eﬁTZi(s)dA(s)}ew D

T
- t e Zi—1
11 (RxweﬁTZi(“ﬂTZi{l + [ R A |
0

¢ 2 AN (1)
{1 +/ Ri(s)eﬁTZi(s)dA(s)} ])
0
T e Zi
X exp ( -G {1 + / Ri(s)eﬁTZi(s)dA(s)} ])
0

N7 (7) ! T —ANT(®)
<ppt H{1+/ Ri(s)e” Z"(S)dA(s)}
0

t<t

Ts
Zi—l

x G’

xG’

T 7!{6’7T2i
x{1+/ Ri(s)eﬂTZi(s)dA(s)}
0
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for some constant pp. Thus, (C3) follows from the boundedness of ’yTZ;. We can
verify the other conditions by using the arguments of Section 10.1.

To verify the first identifiability condition, we assume that N;*(¢) has jumps
at x,x1,...,T, for some integer m. After integrating both sides of the equation
in (C5) over x1,...,xy from 0 to 7 and integrating x from x to 7, we obtain

(G {1+/0 eﬁoTZi(t)dAo(t)}

><<G {1+/ eﬁf?Zi<t>dAo(t)}
0

X exp <— G

T T e x T e Zi

— (G {1+/ eﬁ* Zz(t)dA*(t)} {1+/ eﬁ* Zz(t)dA*(t)} ])
0 0
- e’Y*TZi m

x(G {1+/ eﬁ*TZi“)dA*(t)} G(l))
0

6W*TZ
X exp ( -G {1 + / eﬁ*TZi“)dA*(t)} + G(1)> .
0

Multiplying both sides of this equation by 1/m! and summing over m > 0, we

obtain
T e’y(?zi T e’ygzi
{1+/ eBOTZi(t)dAg(t)} {1+/ eBOTZi(t)dAo(t)} ]
0 0
T - e T . eW*TZi
0 0

Setting N(7) = 0 in the likelihood function yields

{1+ /Oxeﬂf?zﬂt)dAo(t)}ewgziD
- G(1)>m

T 678‘21‘
{1 +/ eﬁgzi(t)dAo(t)} +G(1))
0

*TZ

T
€0 Zi

-G

T
e Zi

. *T ~
i

-G

i

G -G

*TZi

=G -G

. e”gii T e'Y*Tzi
0 0
Thus
e Zi Tz

T T e i
0 0
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Then A*(t) is absolutely continuous with respect to ¢. Differentiating both sides
with respect to x and letting 2 = 0 yield A*(0) > 0. When x converges to zero,
the left-hand side is [exp{3Z Z;(0 ( )})\0( i ]ewgzi +o(x 07 ') while the right-hand
side is texp{ 8T Zi(0)IA (0] Z +o(e®” 7). Thus, 77 Z; = v*TZ:. By (E5),
Yo = ~*. Furthermore, e% Zi(!) dAo(t)/dt = B Zi(®) dA*(t)/dt. Tt follows from
(E5) that Gy = f* and Ay = A*.

To verify (C7), we assume that the score function along (5o + €hg,v0 +
ehy,dNg + €hdAg) is zero. Equivalently, if we let go(t) = {1+ fg B Zils)
dAo(s)}VOTZi, then we obtain

0= / h(t)R;(t)dN; (t / Ri( hTZ hzz}dN;(t)

1 f f( G ZS‘);Al())( )[ [ A0 1825 + 106 b0 Nz )

+ / Ri(t)h Z;e"" Z log{1+ / e Zi(s)dAo(s)}dNi*(t)
0

G"(go(t)
+ [ R oD
G"(go(t)
+ [ ) 0l
& (go(m)) o) Zue" e Log {1 - "o Zi<8>dAo<s>}

e,mTFZVZ- /T -

o Zi(s)} BT 7. +h d

e i(s s Ag(s).
1+foT eﬁoTZi(s)dAo(s) 0 { 5 2i(s) ( )} ols)

t
go(t )hTZ V' 7 log{l—l—/ eﬁoTZi<S>dA0(s)}dN;(t)
0

o e % [P 7 BT Zy(s) + h(s)}dAo(s)
1+ [ €% Zil5)d Ay (s)

Q

dN; (1)

s

)
)
)
)

—G'(go(7))go(7)

We multiply both sides by the likelihood function and let N;(t) have jumps at
times t1,...,ty,. We integrate ¢t; from 0 to ¢t and ¢;, 1 <1 < m from 0 to 7. By
multiplying the resulting equation by 1/(m — k)! and summing over m = 1,.. .,
we obtain

~ t teﬁgzi(s) hTZZ ) + h(s)YdAo(s
hz;Zilog{l—i-/ eﬂoTZz'(S)dAO(S)} + Jo {tﬁ T(Z) (s)}dAo(s) _0
0 1+ [y €% 2 dAg(s)

Differentiation with respect to t then yields

t BEZi(s) (1T 7.

7 e h5Zi(s) + h(s dAo(s

hzZi + {hEZi(t) —l—h(t)} - Jo {tﬂ T(Z-) (5)}dAo(s) _0
L+ [y e% %) dAg(s)
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Combining the above two equations, we have

Jo 87T Zi(s) + h(s)hdAo(s)
1+ fot eP0 Zi(8) 4N (s)

{hEZi(t) + h(t)}

1
x |1+ =0
[ log{1 + fg B0 Zi(9) dAg(s)}

This is a homogeneous integral equation for thi(t) + h(t) and has zero solution.
That is, hEZZ-(t) +h(t) = 0. It follows from (E5) that h(t) = 0 and hg = 0. Thus,
hy = 0.

11. Concluding Remarks

We have developed a general asymptotic theory for the NPMLEs with right
censored data and shown that this theory applies to the models considered by
Zeng and Lin| (2007). This theory can also be used to establish the desired
asymptotic properties for other existing semiparametric models, particularly the
models mentioned in Sections 7.1—-7.4 of [Zeng and Lin| (2007), as well as those
that may be invented in the future. It is much simpler to verify the set of
sufficient conditions identified in this paper than to prove the asymptotic results
from scratch. Conditions (C1) and (C2) are standard conditions required in all
censored-data regression; (C3), (C4) and (C6) are certain smoothness conditions
that can be verified directly, as demonstrated in Section 10; (C5) and (C7) are
two minimal identifiability conditions that need to be verified for any specific
problem.

Although the basic structures of our proofs mimic those of Murphy| (1994
1995) and [Parner (1998), our technical arguments are innovative and substan-
tially more difficult because we deal with a very general form of likelihood func-
tion rather than specific problems. In all previous work, verification of the
Donsker property relies on the specific expressions of the functions, whereas our
Lemma [I] provides a universal way to verify this property. In verifying the in-
vertibility of the information operator, all previous work requires an explicit
expression of the information operator that is identified as the sum of an invert-
ible operator and a compact operator, whereas we allow a very generic form of
information operator obtained from the likelihood function ([B1]). Murphy and
van der Vaart| (2001) stated that the consistency of NPMLESs needs to be proved
on a case-by-case basis; however, we were able to prove the consistency for a
very general likelihood function. Although we borrowed the partitioning idea of
Murphy]| (1994)), our technical arguments are very different because of the generic
form of the likelihood.
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In some applications, the failure times are subject to left truncation in addi-
tion to right censoring. To accommodate general censoring/truncation patterns,
we define N () as the number of events observed by time ¢ and R(t) as the at-risk
indicator at time t, reflecting both left truncation and right censoring. Assume
that the truncation time has positive mass at time 0, so that (C2) is satisfied.
Then all the results continue to hold.

This paper is concerned with the theoretical aspect of the NPMLEs and com-
plements the work of [Zeng and Lin| (2007). The interested readers are referred to
the latter for the calculations of the NPMLEs and for the use of the semiparamet-
ric regression models and NPMLEs in practice. The latter also provides rationale
for the kind of model considered in Sections 2 and 10 of this paper. Although the
latter contains some theoretical elements, this paper presents the theory (espe-
cially the regularity conditions) in a more rigorous manner and provides all the
proofs.
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