
Statistica Sinica 20(2010): Supplement, S21∼S27

SEMIPARAMETRIC REGRESSION WITH TIME-DEPENDENT

COEFFICIENTS FOR FAILURE TIME DATA ANALYSIS

Zhangsheng Yu and Xihong Lin

Division of Biostatistics, Indiana University School of Medicine

and Department of Biostatistics, Harvard School of Public Health

Supplementary Material

This note contains the proof of Theorem 1, Theorem 3, and some asymptotic

expansions.

S1. Proof of Theorem 1

Let H = diag(Ip, hIp), where Ip is a p × p identity matrix. Let Uij(u, t) =

H−1X̃ij(u, t), and reparametrize α = H(b− b0), where b0 is the true value of the

corresponding parameters, i.e, β(t) and β′(t). We also introduce the following

notation:

Snr(α, u) = n−1
n∑

i=1

J∑

j=1

Yij(u)Uij(u)
⊗reX̃ij(u,t)T b0+Uij(u)Tα,

Sr(α, u) = E{
J∑

j=1

Pj(u|Xij(u))Uij(u)
⊗reX̃ij(u,t)T b0+Uij(u)Tα},

where r = 0, 1, 2. Application of Lemma 1 of Cai and Sun (2003) and by condi-

tions A, we can show S∗
nr(u) →p S

∗
r (u) and Snr(α, u) →p Sr(α, u) uniformly in a

small neighborhood of t. One can first show the consistency using the Lenglart

Inequality and Lemma A.1 of Spiekerman and Lin (1998), then prove the asymp-

totic normality using quadratic approximation formula on page 210 of Fan and

Gijbels (1996). The Cramer-Wold device (Durrett 1995, p.170) and Linderberg-

Feller Central Limit Theorem (Durrett, 1995, p.116) is used for the asymptotic

normality. We omit the details to save space.
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S2. Proof of Theorem 3

S2.1 Notation and Regularity Conditions B

We make the following notation: Spn0(u, β, γ) = n−1
∑

ij Yij(u)e
Xijβ(u,γ)+ZT

ijγ

Spn1(u, β, γ) = n−1
∑

ij Yij(u){Xijβγ(u, γ) + Z}eXijβ(u,γ)+ZT
ijγ

Spn2(u, β, γ) = n−1
∑

ij Yij(u){Xijβγγ(u, γ)+(Xijβ(u, γ)+Zij)
⊗2}eXijβ(u,γ)+ZT

ijγ .

Conditions B (1) The kernel function K(s) is a bounded symmetric function

with a bounded support, and h → 0, nh → ∞, as n → ∞, and nh5 = O(1); (2)

P (Yij(t) = 1, for all t ∈ [0, τ ]) > 0 for each i, j; (3) Covariates Xj , Zj are

bounded, time independent for j = 1, · · · , J ; (4) Σs(t, γ) is positive definite for all

t ∈ [0, τ ] in a small neighborhood of γ0; (5) βγ(t, γ), β(t, γ) are bounded and have

second continuous derivative as a function of t for γ in a small neighborhood

of γ0. They are also of bounded variation in [0, γ]; (6) Spnr(t, β, γ) converges

to its asymptotic limit uniformly over t ∈ [0, γ] and a small neighborhood of γ0
for r = 0, 1, 2; (7) fTij ,∆ij ,Xij ,Zij

(t, δ, x, z) has the same marginal density for all

j = 1, · · · , J .
The uniform convergence of Spnr can be satisfied by bounded conditions on

covariates, β(u, γ), βγ(u, γ), and Theorem III.1 of Andersen and Gill (1982).

S2.2 The Nonparametric component

Denote by β0(t) and γ0 as the true values of β(t) and γ. We first show that the

asymptotic distribution of β̂(t, γ̂) is the same as that of β̂(t, γ), where β(t, γ) is

the solution of the asymptotic limit of U1(b, t), i.e., E{U1(b, t; γ)} = 0, in (2.5) .

One can easily see that if β(t, γ0) = β0(t). By Taylor’s expansion,

√
nh{β̂(t, γ̂)− β(t, γ0)}
=

√
nh{β̂(t, γ̂)− β̂(t, γ0)}+

√
nh{β̂(t, γ0)− β(t, γ0)}

=
√
hβ̂γ(t, γ0)

T {√n(γ̂ − γ0)}+
√
nh{β̂(t, γ0)− β(t, γ0)},

where β̂(t, γ̂) is the nonparametric estimator β(t) given γ = γ̂. The first term

in the last equation is op(1) provided that γ̂ is
√
n-consistent. The leading term

is
√
nh{β̂(t, γ0) − β(t, γ0)}. Hence the asymptotic distributions of β̂(t, γ̂) and

β̂(t, γ) are the same. The results follow from the proof in Appendix 1.

S2.3 The Parametric component

We focus our proof on the correlated data. The results for independent data are

a special case. We present three steps to prove asymptotic normality, similar to

Andersen and Gill (1982).
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Consistency

Since β̂(u, γ)− β(u, γ) = op(1) for each u ∈ [0, τ ] and by assuming it is a totally

bounded functions set over [0, τ ], the uniform convergence follows (see Lemma

11.16 and Corollary 11.19 of Carothers 2000). One can then replace β̂(u, γ) by

β(u, γ) and work on p`2(γ, β(u, γ)) for the proof of consistency of γ.

p`2(γ, β(u, γ)) − p`2(γ0, β(u, γ0)) = n−1
n∑

i=1

J∑

j=1

∫ τ

0

[
Xij{β(u, γ)− β(u, γ0)}

+ZT
ij(γ − γ0)− log

Spn0(u, β, γ)

Spn0(u, β, γ0)

]
dNij(u) = Apn(τ) +Xpn(τ),

whereApn(τ) = n−1
∑n

i=1

∑J
j=1

[
Xij{β(u, γ)−β(u, γ0)}+ZT

ij(γ−γ0)−log Spn0(u,β,γ)
Spn0(u,β,γ0)

]

× Yij(u)e
Xijβ(u)+Zijγ0λ0(u)du and Xpn(τ) = n−1

∑n
i=1

∑J
j=1

∫ τ
0

[
Xij{β(u, γ) −

β(u, γ0)}+ ZT
ij(γ − γ0)− log Spn0(u,β,γ)

Spn0(u,β,γ0)

]
dMij(u).

It is easy to show Xpn(τ) = op(1) by Lemma A.1 of Spiekerman and Lin

(1998) and noting Xij , Zij are time independent. Now we consider Apn(τ). By

Conditions B,

Apn(τ) =

J∑

j=1

∫ τ

0

[
{β(u, γ)− β(u, γ0)}E{Yj(u)Xje

Xjβ(u)+ZT
j γ0}

+(γ − γ0)E{Yj(u)Zje
Xjβ(u)+ZT

j γ0}
−log

Sp0(u, β, γ)

Sp0(u, β, γ0)
E{Yj(u)eXjβ(u)+ZT

j γ0}
]
λ0(u)du+ op(1),

where Sp0(u, β, γ) =
∑J

j=1E{Yj(u)eXjβ(u,γ)+ZT
j γ}. The uniform convergence

of Snp0(u, β, γ) →p Sp0(u, β, γ) follows from the bounded variation condition

of β(u, γ), βγ(u, γ) and Theorem III.1 of Andersen and Gill(1982). Taking a

derivative of Apn with respect to γ, we have ∂Apn(τ)/∂γ|γ=γ0
= 0 by noting

β(u, γ0) = β(u). One can also verify that ∂2Apn(τ)/∂γγ
T is negative definite

at γ = γ0. So γ0 is the maximizer of Apn asymptotically. Then by the concave

lemma in Andersen and Gill (1982), we have the maximizer γ̂ of pl2(·) converges
to γ0 in probability.

Asymptotic Normality of γ̂

We need to show that the profile estimating equation
√
nU2 evaluated at true

value γ0 converges to a normal random vector in distribution. By a Taylor expan-

sion of β̂(Tij , γ0) and β̂γ(Tij , γ0) around β(Tij , γ0) and βγ(Tij , γ0) respectively, we



S24 ZHANGSHENG YU AND XIHONG LIN

have

√
nU2{γ0, β̂(Tij , γ0), β̂γ(Tij , γ0)} ≈ 1√

n

∑

ij

∆ij [Zij +Xijβγ(Tij , γ0)

−
∑

rl Yrl(Tij){Xrlβγ(Tij , γ0) + Zrl}eXrlβ(Tij ,γ0)+ZT
rlγ0

∑
rl Yrl(Tij)eXrsβ(Tij ,γ0)+ZT

rsγ0
]

+
1√
n

∑

ij

∆ij{β̂(Tij , γ0)− β(Tij , γ0)}Q(Tij)

+
1√
n

∑

ij

∆ij{β̂γ(Tij , γ0)− βγ(Tij , γ0)}
{
Xij −R(Tij)

}
= A+B + C

where

Q(Tij) = −
∑

rl Yrl(Tij){Xrlβγ(Tij , γ0) + Zrl}Xrle
Xrlβ(Tij ,γ0)+ZT

rlγ0

∑
rl Yrl(Tij)eXrlβ(Tij ,γ0)+ZT

rlγ0

+

∑
rl Yrl(Tij)Xrle

Xrlβ(Tij ,γ0)+ZT
rlγ0

{∑rl Yrl(Tij)eXrlβ(Tij ,γ0)+ZT
rlγ0}2

×
∑

rl

Yrl(Tij){Xrlβγ(Tij , γ0) + Zrl}eXrlβ(Tij ,γ0)+ZT
rlγ0

R(Tij) =

∑
rl Yrl(Tij)Xrle

Xrlβ(Tij ,γ0)+ZT
rlγ0

∑
rl Yrl(Tij)eXrlβ(Tij ,γ0)+ZT

rlγ0
,

where
∑

ij =
∑n

i=1

∑j
j=1 and

∑
rl =

∑n
r=1

∑l
l=1. We have

A =
1√
n

∑

ij

∫ τ

0
Zij+Xijβγ(u, γ0)−

∑
rl Yrl(u){Xrlβγ(u, γ0) + Zrl}eXrlβ(u,γ0)+ZT

rlγ0

∑
rl Yrl(u)e

Xrlβ(u,γ0)+ZT
rlγ0

dMij(u),

where we have used the fact that β(u, γ0) = β0(u). Plugging the expansion

β̂(t, γ0)−β(t, γ0) with t = Tij from Appendix 3 into expression B, and exchange

the summation, we have

B =
1√
n

∑
rs

∆rs{Xrs −R(Trs)} 1
n

∑

ij

σs(Tij , γ0)
−1∆ijQ(Tij)Kh(Tij − Trs)

+
h2

2
√
n

∑

ij

∆ijQ(Tij)β
(2)(Tij)d(Tij , γ0),

where d(t, γ0) = Σs(t, γ0)
−1

∑J
j=1E[∆j |Tj = t]g1{β(t)}fT (t) and g1 is a scalar

function defined in Appendix 3. Since Q(Tij) = op(1) as proved in Appendix 3

i.e., Q(t)fT (t) = op(1). Hence, the second term is op(1). Similarly, the inner sum
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of the first term is op(1). Hence, B = op(1). Substituting β̂γ(t, γ0) − βγ(t, γ0)

from Appendix 3.

into expression C and exchanging the summation, we have

C =
h2

2
√
n

n∑

i=1

J∑

j=1

∆ijβ
(2)(Tij)b1(Tij , γ0)

{
Xij −R(Tij)

}

+
1√
n

∑

rl

∆rl{Xrl −R(Trl)} 1
n

n∑

i=1

J∑

j=1

Σ2
s(Tij , γ0)Σsγ(Tij , γ0)∆ij

×
{
Xij −R(Tij)

}
Kh(Trl − Tij),

where b1(Tij , γ0) is a vector defined in Appendix 3, Σsγ(Tij , γ0) is the derivative of

Σs(Tij , γ0) with respect to γ. The first term is easy to handle. Noting R(Tij) =

E[Xij |T = Tij ,∆ij = 1] + op(1), then by adding and subtracting E[Xij |T =

Tij ,∆ij = 1], one can see the first term is op(1). Similarly, the inner part of the

second term is op(1) by calculation and noting the asymptotic form of R(Tij).

Hence the second term is op(1) and C = op(1). Therefore,

√
nU(γ0, β̂(Tij , γ0), β̂γ(Tij , γ0)) =

1√
n

∑

ij

∫ τ

0
Zij +Xijβγ(u, γ0)

−
J∑

j=1

E[{Xi1βγ(u, γ0) + Zi1}|Ti1 = u,∆i1 = 1]dMij(u) + op(1) (S1)

The derivation of this equation also uses Lemma A. 1. of Lin and Spiekerman

(1998) and Lemma 1 in Appendix S3.3. The asymptotic normality of γ̂ follows

easily from here.

S3. Asymptotic expansions of β̂(t, γ) and β̂γ(t, γ)

The asymptotic derivation of the profile estimator γ̂ requires the asymptotic

properties of β̂(t, γ) and β̂γ(t, γ). We study them here.

S3.1 Asymptotic Expansion of β̂(t, γ0)− β(t)

Using the kernel estimating equations (2.5) , some calculations give

β̂(t, γ)− β(t) = Σs(t, γ)
−1n−1

∑

ij

∆ijKh(Tij − t)
{
Xij −R(Tij)

}

+
h2

2
β(2)(t)

J∑

j=1

E{∆ij |Tij = t}Σs(t, γ)
−1g1(β(t))fT (t) + op(h

2) + op(1)
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where

R(Tij) =

∑
lr Ylr(Tij)Xlre

Xlrβ(Tij)+Zlrγ

∑
lr Ylr(Tij)eXlrβ(Tij)+Zlrγ

,

g1 is the derivative of R(·) as a function of β(Tij), fT (t) is the marginal distribu-

tion of observed time.

S3.2 Asymptotic expansion of β̂γ(t, γ)

Differentiating (2.5) with respect to γ gives the estimating equation of β̂γ(t, γ).

Denote its asymptotic limit by βγ(t, γ). Taking a linear expansion about βγ(t, γ),

we have

β̂γ(t, γ) = Σs(γ, t)n
−1

n∑

i=1

J∑

j=1

∫ τ

0
Kh(u− t)

∂

∂γ
{− S̃n1(0, γ, u)

Sn0(0, γ, u)
}dNij(u)

− Σs(t, γ)
−2Σsγ(t, γ)n

−1
n∑

i=1

J∑

j=1

∫ τ

0
Kh(u− t){Xij − S̃n1(0, γ, u)

Sn0(0, γ, u)
}dNij(u),

where Σsγ(t, γ) is the derivative of Σs(t, γ) with respect to γ. The first term is

Op(1), and the second term is op(1) at γ = γ0. Some calculations show that the

asymptotic limit βγ(t, γ0) satisfies

βγ(t, γ0) = −Σs(t, γ0)
−1{Q1(t, γ0, z)−Q1(t, γ0)Q0(t, γ0, z)/Q0(t, γ0)},

whereQr(t, γ, z) =
∑J

j=1 Yj(t)X
r
jZjexp{Xjβ(t)+ZT

j γ} for j = 0, 1 andQ0(t, γ) =∑J
j=1 Yj(t)exp{Xjβ(t) + ZT

j γ}. By condition B.7 and lemma 1 in S3.3, we have

βγ(t, γ0) = −E{X1Zi1|T1 = t,∆1 = 1} − E{X1|T1 = t,∆1 = 1}E{Z|T1 = t,∆1 = 1}
E{X2|T1 = 1,∆1 = 1} − E{X1|T1 = t,∆1 = 1}2 .

Therefore, denoting d1(t, γ0) = Σs(t, γ0)
−2Σsγ(t, γ0)

∑
j E{∆j |Tj = t}g1{β(t)}fT (t),

we have

β̂γ(t, γ0)− βγ(t, γ0) = −Σs(t, γ0)
−2n−1Σsγ(t, γ0)

∑

ij

∆ijKh(Tij − t)
{
Xij −R(Tij)

}

−h2/2β(2)(t)d1(t, γ0) + op(1).
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S3.3 Proof of Q(t) = op(1)

Some calculations show that Q(t) can be written as

Q(t) = −
J∑

j

E{X2
j βγ(t, γ0) + ZjXj |Tj = t,∆j = 1}

+

J∑

j

E{Xj |Tj = t,∆j = 1}
J∑

j

E{Xjβγ(t, γ0) + Zj |Tj = t,∆j = 1}

One can then easily see Q(t) = op(1) from Lemma 1 and by condition B.7.

Lemma 1 Let

SV (t) = E{
J∑

j=1

Yj(t)V (t,Xj , Zj)e
Xjβ(t,γ0)+ZT

j γ0}

S0(t) = E{
J∑

j=1

Yj(t)e
Xjβ(t,γ0)+ZT

j γ0}.

Using Conditions B, we have SV (t)
S0(t)

= 1
J

∑J
j=1E{V (t,Xj , Zj)|Tj = t,∆j = 1}.

This can be easily verified using an argument similar to Lemma 2 of Sasieni(1992a).

Note that we here omit subscript i.


