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Abstract: Art auction catalogs provide a pre-sale prediction interval for the price

each item is expected to fetch. When the owner consigns art work to the auction

house, a reserve price is agreed upon, which is not announced to the bidders. If the

highest bid does not reach it, the item is brought in. Since only the prices of the

sold items are published, analysts only have a biased sample to examine due to the

selective sale process. Relying on the published data leads to underestimating the

forecast error of the pre-sale estimates. However, we were able to obtain several art

auction catalogs with the highest bids for the unsold items as well as those of the

sold items. With these data we were able to evaluate the accuracy of the predictions

of the sale prices or highest bids for all item obtained from the original Heckman

selection model that assumed normal error distributions as well as those derived

from an alternative model using the t2 distribution, which yielded a noticeably

better fit to several sets of auction data. The measures of prediction accuracy

are of more than academic interest as they are used by auction participants to

guide their bidding or selling strategy, and similar appraisals are accepted by the

US Internal Revenue Services to justify the deductions for charitable contributions

donors make on their tax returns.
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1. Introduction

The selection model was introduced by Heckman (1976) to describe the dis-
tribution of wages that women could earn if they participated in the labor force.
As data on market wages is only available for working women, whose market
wage exceeds the value of their work at home, the observed wages are a selected
sample from the potential wages distribution of women. The use of selection
models is the subject of considerable discussion in the econometrics and statis-
tics literature, much of it focusing on the issues of identifiability and sensitivity
(Kenward (1998)). Since the true values of missing data are rarely obtained it
is difficult to evaluate how well the adjusted estimates obtained from a selection
model actually fit the “full” data set. The accidental finding of two art auction
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catalogs with both the sale price for the sold times and the highest bids received
for the unsold items in a used bookstore by the second author stimulated this
study. These data sets enable us to estimate the accuracy of the pre-sale predic-
tions and to evaluate the selection models more thoroughly than in the previous
literature.

In this article, we extend Heckman’s selection model to a heavier tailed error
distribution and demonstrate that this model yields more accurate prediction of
the “missing” highest bids using real data and simulation. The proposed method
is parametric so it is applicable when the selection and response equations have
the same predictors, while other semi-parametric approaches require that there
is at least one independent variable in one of the equations that is not used in the
other (Vella (1998)). The result that the selection bias leads to underestimation
of the forecast error of the pre-sale estimates has implications for participants
in the art market and in the use of appraisals for the purpose of deducting
a charitable deductions or the valuation of art in legal matters (Inde (1998,
Chap. 4)). Prospective bidders need an accurate estimate of the forecast error
in order to plan their bidding strategy.

The art auction data and measures of forecast error are described in Section
2. The effect of selection bias is illustrated by comparing the estimated forecast
error measures when the data on unsold items are omitted to those calculated
from the full data. The use of Heckman’s model and its extension are described
and applied to the art auction data in Section 3. Criteria for evaluating the
utility and fit of selection models are given in Section 4. The results using the
extended selection model are shown to be much closer to the true data than
those obtained from the original selection model, which assumes the errors are
normally distributed.

2. Art Auction Data and The Selection Bias

In art auctions, all items offered are subject to a reserve price that is not
announced to the potential bidders. The auction catalogs provide an interval
prediction (L,U) for the price, and the middle of the interval is considered as
the predicted price (P ). Both the reserve price (R) and highest bid (A) should
be related to the predicted price (P ). For evaluating the accuracy of the pre-sale
prediction P published by the auction houses, several measures of forecast error
have been used (Gastwirth (1979)). Prospective buyers are interested in the
difference between the highest bid (sale price for a sold item) and the predicted
price, expressed as a percent error |A − P |/A, as they need to know how much
money beyond the published estimate they may need to bid in order to obtain
the item. On the other hand, |A − P |/P may be of more interest to sellers who
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Table 2.1. Summary of the auction catalogs.

Auction House Number Year Description # of items # of sold items

Sotheby’s 3,850 1998 Jewels 508 342

Sotheby’s 6,371 1992 Chinese Paintings 186 110

Christie’s 8,990 1998 19 & 20th Cent. Prints 729 617

Christie’s 9,028 1998 20th Cent. Contemporary Prints 205 157

Christie’s 9,038 1999 19 & 20th Cent. Old Master’s Prints 595 512

are concerned with their expected revenue from the sale. The two corresponding
measures are the average error relative to the actual price,

AREA = n−1
n∑

i=1

|Ai − Pi|
Ai

,

and the average error relative to the predicted price,

AREP = n−1
n∑

i=1

|Ai − Pi|
Pi

,

where n is the total number of items that actually were offered at the sale.
When the highest bid exceeds or equals the reserve price, i.e., A ≥ R, the

item is sold and the sale price is the highest bid. When the highest bid fails to
reach the reserve price, the item is not sold and that final bid A is omitted from
the published post-sale report. Since the sale of an item at the auction depends
on both the reserve price and the highest bid received, the published sale price
data are a non-random sample of the final bids. Selection bias occurs because
the highest bid A is missing when A < R. Consequently, estimates of the AREA
and AREP based only on the sale prices of the sold items are biased.

We obtained several catalogs along with all the highest bids, including those
for unsold items, enabling us to evaluate the selection bias due to the unsold
items, whose highest bids are usually not released by the auction houses. Table
2.1 summarizes the year, type of art, and number of objects for sale in each cat-
alog. As reported in the supplementary document, the frequencies of the highest
bid falling below, within and above the predicted interval, even when the inter-
vals are expanded by a factor of 1.75, show that the auctioneers underestimate
the variability of the actual bids.

In Table 2.2, we present the forecast error measures AREA and AREP and
the associated standard errors calculated on the highest actual bids for the sold
items, the unsold items, and the entire auction sale. From Table 2.2, we can
see that both average relative errors for the sold items are lower than those for
the complete data, and much smaller than those for the unsold items. Therefore,
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Table 2.2. Estimates and the standard errors (SE) of measures of forecast
error by sale status.

Auction Items used Number AREA SE(AREA) AREP SE(AREP )
3,850 All 508 0.325 0.011 0.295 0.012

Sold 342 0.224 0.008 0.277 0.017
Unsold 166 0.534 0.023 0.331 0.008

6,371 All 186 0.577 0.034 0.437 0.041
Sold 110 0.339 0.024 0.426 0.068

Unsold 76 0.921 0.055 0.453 0.014
8,990 All 729 0.353 0.010 0.327 0.014

Sold 617 0.290 0.009 0.315 0.016
Unsold 112 0.698 0.030 0.394 0.009

9,028 All 205 0.395 0.024 0.307 0.019
Sold 157 0.288 0.017 0.276 0.025

Unsold 48 0.745 0.061 0.406 0.014
9,038 All 595 0.329 0.010 0.366 0.023

Sold 512 0.280 0.010 0.364 0.026
Unsold 83 0.628 0.026 0.374 0.009

calculating the relative error using only the sold items underestimates the forecast
error of the pre-sale predictions. In this paper, the publicly released data, which
includes all the predicted prices, sale status, and the highest bids for the sold
items, is referred to as available incomplete data. The full data includes the
publicly released data plus the highest bids for the unsold items. As the reserve
prices are confidential, we could not obtain them so the full data is still not
complete.

As the results in Table 2.2 indicate, the sale prices are right skewed, we fit
a linear regression log(Ai) = β0 + β1 log(Pi) + σεi, εi ∼ N(0, 1), i = 1, . . . , n, to
the full data as well as the sold and unsold items to examine the selection bias.
The parameter estimates and the associated standard errors are shown in Table
2.3. The range of the standard errors for all the intercepts is (0.13, 0.45) and the
range of the standard errors of all the slopes is (0.02, 0.05). Only the slopes β1

for all items in Sale 3,850 was statistically different from 1. The differences of the
intercepts β0 between the sold and unsold items are pronounced. If we assume
common slopes for the sold and unsold items, the intercepts for the sold and
unsold items are statistically different for all five auction sales (p-value< 0.0001).
The regression lines for Sale 8,990, which are typical, are shown in Figure 2.1.
The intercept of the regression for the unsold items (indicated by o) is much
lower than that of the sold items (indicated by ∗), while the regression line for
all sold items lies above the line for unsold items. The regression line based on
all items is between the lines for the sold and unsold items. It is generally true
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Table 2.3. Parameter estimates and the associated standard error (SE) from
the regression by sale status.

Auction Items used β̂0 SE(β̂0) β̂1 SE(β̂1) σ̂ R2

3,850 All 0.431 0.137 0.919 0.021 0.343 0.795
Sold 0.343 0.149 0.955 0.023 0.304 0.835

Unsold -0.469 0.128 1.009 0.019 0.178 0.946
6,371 All -0.083 0.363 0.979 0.042 0.496 0.737

Sold -0.001 0.446 0.996 0.052 0.464 0.775
Unsold -0.572 0.282 0.999 0.032 0.325 0.868

8,990 All 0.136 0.136 0.974 0.016 0.386 0.839
Sold 0.185 0.140 0.977 0.016 0.363 0.853

Unsold -0.845 0.146 1.038 0.017 0.167 0.972
9,028 All -0.045 0.205 0.984 0.022 0.358 0.909

Sold -0.073 0.215 0.998 0.023 0.332 0.923
Unsold -0.592 0.236 1.006 0.025 0.191 0.973

9,038 All 0.003 0.150 0.998 0.017 0.414 0.848
Sold 0.061 0.153 1.000 0.018 0.393 0.862

Unsold -0.453 0.137 0.999 0.016 0.202 0.958

that the regression lines for sold items are above those for unsold items. This
is reasonable as the highest bids for unsold items are below their reserve prices,
which are often a percentage, e.g., 60-80%, of the predicted prices. Thus, the
intercept term is negative in the regression relating log(A) and log(P ). For all
five auctions the R2 values are higher and σ̂ values are smaller in the regressions
for unsold items than those of the regressions for sold items. The lower regression
lines, larger R2, and smaller σ̂ for the unsold items means that the final bids for
the unsold times are substantially lower than their predicted prices, but have less
variation. This implies that there is more variation for the highest bid for the
sold items. This could be due to extremely high bids (outliers) for some items
and/or lower reserve prices for others.

3. Selection Models for Art Auction Data

Heckman’s model concerns an incompletely observed variable Y that has
a linear regression on covariates X and is observed if and only if the value of
another completely unobserved variable D exceeds a threshold (say zero). The
distribution f(Yi, Di|Xi; θ) is specified as follows:(

Yi

Di

)
∼ N2

[(
βTXi

ξTXi

)
,

(
σ2 ρσ

ρσ 1

)]
, (3.1)

where X denotes the covariates, Y is incompletely observed, D is never observed.
The regression coefficients are β and ξ, and N2(a, b) denotes the bivariate normal
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Figure 2.1. Plots of {log(P ), log(A)} and fitted regression lines by sale status
for Sale 8990 (*-Sold Items, o-Unsold Items).

distribution with mean a and covariance matrix b. Let Si = I(Di ≥ 0) be the
response indicator, i.e., Yi is observed when Si = 1 and Yi is missing when Si = 0.
The main interest is estimating the outcome equation

E(Yi|Xi) = βTXi + σεi εi
i.i.d.∼ N(0, 1), (3.2)

for the complete data.
This model plays a central role in the econometrics literature and it has been

called Type II Tobit model (Amemiya (1984)) or stochastic censoring model
(Little and Rubin (1987)). Various extensions and reparametrizations of the
original models have been developed, of which the parametrization by Little and
Rubin (1987) is useful here. The probability of Yi being observed is

P (Si = 1|Xi, Yi) = P (Di ≥ 0|Xi, Yi) = Φ(γTXi + δYi), (3.3)

where γ = (ξ − βρσ−1)/
√

1 − ρ2 and δ = ρ/(σ
√

1 − ρ2). The selection equa-
tion (3.3) describes the missing-data mechanism explicitly. When δ = 0, then
ρ = 0, the missingness is ignorable conditional on the observed data. For ig-
norable missing data, the EM algorithm (Dempster, Laird and Rubin (1977))
and various extensions (Meng and Rubin (1991, 1993) and Meng and van Dyk
(1997)) have been proposed for obtaining the maximum likelihood estimates. For
the art auction data, the Wald tests of H0 : δ = 0 vs. H1 : δ 6= 0 in (3.7) are
very significant (p-value< 0.0001) for all auction sales. This indicates a strong
selection bias.
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Selection models have been widely used in economics and the social sciences.
The selection model with a logit selection equation has been considered by Green-
lees, Reece and Zieshang (1982), Lee (1983), Olsen (1982), and others. Diggle
and Kenward (1994) discussed models for informative drop-outs in longitudinal
data analysis. There is a considerable literature on the nonparametric or semi-
parametric estimation of selection models (Vella (1998); Das, Newey and Vella
(2003)). Most of the estimation methods are extensions of Heckman’s 1976; 1979
two-step approach based on the conditional expectation of Y ,

E(Yi|Xi, Si = 1) = βTXi + σWi, (3.4)

where Wi = E(εi|Xi, Si = 1) is a correction term. For the normal selection
model, Wi = φ(αTXi)/Φ(αTXi), the inverse Mills’ ratio. The two-step procedure
uses the estimated correction term, Ŵi, as an extra regressor in (3.4). The
actual implementation of the two-step procedure requires that the predictors in
the outcome equation (3.2) and the selection equation (3.3) are not identical or
have no collinearity (Vella (1998)). Consequently, the two-step procedure is not
applicable in our situation, as the pre-sale estimate is the only predictor variable
available to us and is used in both equations.

Let Xi = log(Pi), Yi = log(Ai), Zi = log(Ri), and let Si = I(Ai ≥ Ri) =
I(Yi ≥ Zi) indicate whether the ith item is sold (1) or not (0). The pre-sale
prediction Pi, hence Xi, is known priori to the auction sale. While the sale
status Si is always observed, Yi is observed only when Si = 1. The relationship
between (X,Y, Z) for the art auction data can be modeled as:

Yi = β0 + β1Xi + σε1i (3.5)

Zi = ξ0 + ξ1Xi + σ∗ε2i, (3.6)

where (ε1i, ε2i), i = 1, . . . n, are independent. Let Di = (Yi − Zi)/σ∗. If ε2i ∼
N(0, 1), then the probability that an item sells is

P (Si = 1|Xi, Yi) = P (Di ≥ 0|Xi, Yi) = Φ(γ0 + γ1Xi + δYi), (3.7)

where γ0 = −ξ0/σ∗, γ1 = −ξ1/σ∗, and δ = 1/σ∗.
Let X = (Xi; i = 1, . . . , n) and S = (Si; i = 1, . . . , n). For convenience,

we record the data so that the first n0 items are not sold and Yobs = (Yi; i =
n0+1, . . . , n) are the observed sale price (final bids) for the last n−n0 sold items.
If θ = (β0, β1, σ) and ψ = (γ0, γ1, δ), then the likelihood function for the released
auction data (Yobs,S,X) is

L(θ, ψ|Yobs,S,X) =
n0∏
i=1

P (Si = 0|Xi)
n∏

i=n0+1

f(Yi, Si = 1|Xi), (3.8)
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Figure 3.2. The discrete histogram of the regression residuals for Sale 9038.

where f(Yi, Si = 1|Xi) = P (Si = 1|Xi, Yi)f(Yi|Xi) and P (Si = 0|Xi) =
∫

P (Si =
0|Xi, y)f(y|Xi)dy. In the normal selection model, the marginal distribution f(Yi|
Xi) is normal, i.e., the error term ε1i ∼ N(0, 1). The maximum likelihood esti-
mates (MLE) can be obtained by the Newton-Raphson method (see Appendix
1). The computation can be implemented using numerical analysis software
MAPLE V (Release 4) or SAS PROC NLP for optimization of a continuous non-
linear function. These programs calculate the required first and second derivative
symbolically. In the data analysis, the starting values are the estimates from the
regression for sold items as starting values, and the stopping rule is either one
reaches the maximum number of iterations 100 or the maximum difference of the
estimates between consecutive iterations is below 10−4.

When the normal selection model is used to analyze the art auction data, we
find that the residuals ε1i, k = 1, . . . , n, in the response equation have several out-
liers, as some items received very high bids. Figure 4.3presents the distribution
of these residuals for auction sale 9038. The skewness measures of the regression
residuals for the five auction sales are (0.6, 1.4, 0.7, 0.8, 1.0), respectively. After
removing the upper 5% of the residuals, the residual distributions are almost
symmetric, with skewnesses (0.1, 0.2, 0.0, -0.1, 0.1). In order for the parameters
θ and ψ to be identifiable, some parametric assumptions concerning the distri-
butions of the errors (ε1i, ε2i) need to be made. Estimates of δ in the selection
equation and θ in the outcome equation are affected by the model assumptions
as well as the observed data. Furthermore, estimates from the normal selection
models are not robust to misspecification of the error distribution (Little (1985)).
For example, Glynn, Laird and Rubin (1986) allowed the residuals to follow a t
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or mixture normal distribution, and showed that the estimates from the normal
selection model were seriously biased. Copas and Li (1997) used the parameter δ

to reflect the degree of non-randomness of the sample and assessed the sensitivity
of inferences to small non-zero values of δ.

The t-distributions provide a useful extension of the normal for statistical
modeling of data involving errors having heavier tails. Gastwirth (1970) and
Lange, Little and Taylor (1989) discuss robust methods using the t distribution.
Thus, we replace the normal distribution by the t-distribution for the error term
in (3.2) in our analysis. The t density is

ft(y|µ, σ2, ν) =
Γ((ν + 1)/2)

Γ(1/2)Γ(ν/2)ν1/2σ
×

(
1 +

(y − µ)2

νσ2

)−(ν+1)/2
,

and the likelihood function is obtained by replacing f(Yi|Xi; θ) with ft(Yi|β0 +
β1Xi, σ

2, ν) and approximating P (Si = 0|Xi) by Gauss-Laguerre integration (see
Appendix 2). The t-distributions with lower degrees of freedom have higher
resistance to outliers, but may have lower efficiency. Lange et al. (1989) fixed the
degrees of freedom at a pre-determined value (such as 4). However, art auction
data often contains extremely high bids for a few sold items, and in the analysis
we found that the t2 distribution worked well and so present the results from the
t2 selection model. One could include the degrees of freedom as a parameter to
be estimated. But the calculations would become more complex.

4. Evaluating the Utility of the Selection Models

In this section, we evaluate the fit of the selection models by comparing
the estimated and actual final bids for the unsold items. Then we compare
the estimates of forecast error measures from different methods using only the
publicly released auction data and their values calculated from the complete data.

4.1. Evaluating the estimated final bids for the unsold items

To evaluate the fit of the selection models, we focus on the unsold items. For
each unsold item, we compare its imputed final bid conditional on the sale status,
A

(0)
i , to the actual highest bid Ai, i = 1, . . . , n0, which is usually not published

by the auction house. The final bid for the i-th unsold item is estimated by

A
(0)
i = E(Ai|Si = 0) =

E{AiI(Si = 0)}
P (Si = 0)

. (4.1)

The details of the calculation are in the supplementary document.
Table 4.4 reports several summary measures of the difference. The first

measure is the ratio of the imputed total to the actual total of the bids for
the unsold items. The second and third measures are the average bias and
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Table 4.4. Comparison of the imputed final bids for the unsold items ob-
tained from different selection models.

Auction Selection Model
P

A
(0)
i

P

Ai

P

(Ai−A
(0)
i )

n0

P

|Ai−A
(0)
i |

n0

1
n0

∑
|Ai−A

(0)
i

Ai
|

3,850 Normal 0.829 -125.21 154.87 0.197
t2 1.019 13.60 93.77 0.138

6,371 Normal 0.674 -1612.48 1789.83 0.277
t2 0.904 -473.69 1318.58 0.190

8,990 Normal 0.818 -1173.86 1300.95 0.202
t2 1.056 358.52 789.84 0.146

9,028 Normal 0.806 -3221.45 3337.48 0.212
t2 1.046 758.90 1678.41 0.159

9,038 Normal 0.828 -1121.65 1250.77 0.217
t2 1.099 648.36 1035.78 0.136

the average absolute error. The last measure is the average relative imputation
error. From the third column of Table 4.4, we see that the normal selection
model substantially underestimates the total of all the actual bids received for
the unsold items. The imputed total derived from the normal selection model
ranges from 67% to 83% of the actual total final bids for the unsold items. The
selection model based on the t2 distribution performed better for every auction.
It yields a total of the imputed prices ranging from 90% to 110% of the total
actual bids. In contrast the estimates of the highest bids for the unsold items
obtained from the normal selection model were usually below their actual value.
Both measures of bias in columns 4 and 5 in Table 4.4 are noticeably lower for
those from t2 error model and the relative imputation errors for unsold items in
the last column are much lower.

4.2. Evaluating the forecast error measures after using the selection
model

The forecast error measures AREA and AREP are estimated using different
selection models. The estimates from an appropriate selection model applied to
the publicly released data for the objects that sold should be close to those values.
First, the selection models are applied to the publicly released data. Then AREA

and AREP are calculated after including the imputed final bids for the unsold
items obtained from the selection models, A

(0)
i . For comparison, the estimates

of AREA and AREP without adjustment for selection bias from the full data
as well as publicly released data are also given in Table 4.5. For example, the
estimates of AREA and AREP for full data are shown on the “All” lines.

Table 4.5 demonstrates that the measures of forecast error are well approxi-
mated by the t2 selection model. Both estimated measures from this model are
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Table 4.5. Evaluation of forecast errors using different models for the publicly
released data.

Auction Items used Adjustment AREA AREP
3,850 All No adjustment 0.325 0.295

Sold No adjustment 0.224 0.277
Sold Normal selection model 0.416 0.333
Sold t2 selection model 0.296 0.287

6,371 All No adjustment 0.577 0.450
Sold No adjustment 0.339 0.426
Sold Normal selection model 0.813 0.497
Sold t2 selection model 0.545 0.438

8,990 All No adjustment 0.353 0.327
Sold No adjustment 0.290 0.315
Sold Normal selection model 0.407 0.346
Sold t2 selection model 0.333 0.323

9,028 All No adjustment 0.395 0.307
Sold No adjustment 0.288 0.276
Sold Normal selection model 0.475 0.333
Sold t2 selection model 0.360 0.299

9,038 All No adjustment 0.329 0.367
Sold No adjustment 0.280 0.364
Sold Normal selection model 0.386 0.384
Sold t2 selection model 0.312 0.360

close to their values calculated from the complete data. The normal selection
model overestimates the measures of forecast error, which suggest the pre-sale
estimates are less accurate than they truly are. This is expected from the finding
that the estimated highest bids, obtained from the normal selection model, were
too low. For each auction, the second line in the table reminds us that AREA
and AREP calculated from the publicly released data are underestimated.

4.3. Checking the model adequacy by residual plot

The goodness-of-fit of a model is commonly assessed by the plots of residuals.
Table 4.4 presents several accuracy statistics for the residual differences between
the imputed (Â(0)) and the observed final bids (A) for the unsold items. Figure
4.3 presents the plots of the residuals log(Â(0)) − log(A) vs. log(A) from the
selection models for the unsold items for Sale 8,990. The residual plots for other
auction sales follow similar pattern. The dots are the residuals from the normal
selection model and the circles are the residuals from the t-selection model. Cubic
spline curves for the residuals are also shown in Figure 4.3, where the solid (dash)
line is based on residuals from the normal (t) selection model. From the plots
in Figure 4.3 and the fourth column in Table 4.4, it is clear that the imputed
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Figure 4.3. Plot of the residuals between observed and imputed final bids for
unsold items for Sale 8990 (•: normal selection model, ◦: t-selection model).

final bids based on normal selection models underestimate the actual final bids
for unsold items, while the residuals for the t-selection model are closer to 0.

5. Simulation

To examine the robustness of the normal selection model and the t-selection
model, we performed a small simulation study. The primary equation of interest
is

Y = β0 + β1X + σε.

In art auctions, Y = log(A) is the highest bid and X = log(P ) is the pre-sale
prediction. Based on the estimated regression coefficients in Table 2.3, we set
β1 = 1 and σ = 0.5. We assume that the predictor x is standardized and
generated from a standard normal distribution. To introduce contamination in
the response y, we assumed that β0 = b0 with probability 1 − c and β0 = 3
with contamination probability c, where b0 takes three possible values 0, 0.2
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Table 5.6. Biases of the parameters β0 and β1 for normal and t2 selection
models.

No contamination Contamination rate c = 0.1
Normal t2 Normal t2

n β0 R/P β0 β1 β0 β1 β0 β1 β0 β1

200 0 0.4 0.044 0.020 0.023 0.026 0.352 0.021 0.060 0.025
0.6 0.142 0.016 0.103 0.021 0.480 0.016 0.144 0.020

0.2 0.4 0.021 0.021 0.009 0.027 0.324 0.023 0.045 0.026
0.6 0.083 0.018 0.053 0.024 0.402 0.019 0.091 0.023

0.4 0.4 0.009 0.021 0.003 0.027 0.311 0.024 0.039 0.027
0.6 0.045 0.020 0.024 0.026 0.353 0.021 0.061 0.025

500 0 0.4 0.044 0.013 0.024 0.016 0.350 0.015 0.060 0.016
0.6 0.143 0.010 0.103 0.012 0.478 0.011 0.143 0.012

0.2 0.4 0.021 0.013 0.009 0.016 0.323 0.016 0.045 0.016
0.6 0.084 0.011 0.053 0.014 0.400 0.014 0.091 0.015

0.4 0.4 0.009 0.013 0.003 0.017 0.309 0.016 0.039 0.017
0.6 0.045 0.013 0.024 0.016 0.351 0.015 0.060 0.016

and 0.4. When c = 0, there is no contamination and when c = 0.1, 10% of the
responses are contaminated with extremely high values. To mimic the art auction
data, we assumed that the probability of Y being observed is P (S = 1|X,Y ) =
Pr(Y ≥ Z) = Φ(Y − Z), where Z = log(R) is the logarithm of the reserve price.
We considered two possible rules for setting the reserve prices: R/P = 0.6 or
R/P = 0.4. Two sample sizes n = 200 and 500 were used in the simulation, and
the missing rate ranged from 11% to 31%.

We then fit the normal selection model and the selection model with t2
distributions to the simulated data and calculated the biases of the parameter
estimates β̂0 and β̂1 in the primary outcome equation. The average biases of β̂0

and β̂1 with 1,000 simulations are summarized in Table 5.6.
When there was no contamination, the biases of β0 and β1 for both selection

models were very small and similar, although the bias for β̂1 was slightly greater
for the t2 model. When there was 10% contamination, i.e., about 10% of the
items received extremely high bids, the biases for β1 from both selection models
were still small and quite close. However, the biases for β0 from the normal
selection model were noticeably higher than those from the t2 selection model.
Overall, the t-selection models showed much more resistance to the outliers than
the normal selection models.

6. Discussion

The Heckman selection model is widely used, often without questioning its
validity, in econometrics. Using the art auction data, we showed that this model
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may fail in the presence of outliers and that the selection model with a t2 dis-
tribution is a useful alternative. In general, the t-distribution with 2 degrees of
freedom (DOF) may not be optimal and the DOF could also be estimated from
the data.

Measures of the forecast error of art auction pre-sale predictions, relying
solely on the published data for sold items, have a noticeable selection bias.
As the final bids for the unsold items are substantially lower than the pre-sale
predictions, without correcting for this, one underestimates the forecast error of
the pre-sale prices. Thus, participants in the art market should allow for this
added uncertainty when using the predicted price interval to determine their
bids.

The more important AREA measure comparing the pre-sale estimates to the
actual prices is more severely affected than the AREP measure. It is also used
in the evaluation of company earning forecasts (Jaggi (1978)). Gastwirth (1979)
showed that the AREA is equivalent to the coefficient of dispersion (CD) used to
assess the forecast error and fairness of real estate tax assessments. The AREAs
of the art auction are in the same range as those of the real estate assessments.

In auction sales, the pre-sale prediction and reserve price are determined by
art experts. The first should be a good-faith estimate and the second provides a
“reasonable” lower limit for the sale price. There is no upper limit to the bidding.
Several studies showed that the distributions of the final highest bids are right-
skewed (McAndrew and Thompson (2007)), so appropriate transformation or
skewed distributions may be applied to the data. There are a few outliers in the
art auction data, which may be due to unusual competition (Lance, Klein and
Weiss (1987)). The sold items with extremely high bids produce large residuals,
yielding a large standard residual variance. The selection model that assumes
normally distributed random errors is highly influenced by the extremely high
bids for some sold items; as a result, it imputes overly negative residuals to
the missing (unsold) items. The low imputed bids for the unsold items will
overestimate the difference between pre-sale prediction and the final bids for the
unsold items. Kenward (1998) observed a similar phenomena in the analysis of
data on mastitis in dairy cows (see his Figure 1).

Since both the outcome and selection equations in the art auction context
have the same predictor, the pre-sale estimate provided by the auction house,
semi-parametric methods are not applicable (Vella (1998)). Replacing the normal
distribution in the classical model of Heckman by the t2 distribution, which is
known to be more resistant to outliers than the normal (Lange et al. (1989) and
Pinheiro, Liu and Wu (2001)), allows for the larger variability inherent in auction
data. Unlike the usual applications of selection models where one does not have
data on the items not ”selected” for the sample, the highest bids obtained for the
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unsold items were available and were used to verify that the selection model with
errors following a t2 distribution yielded much better estimates of the missing
values and the measures of prediction accuracy. It is noteworthy that these
improved results held for auctions of several types of art, i.e. Chinese painting,
20th Century prints and jewelry.

Recently, the skew t-distribution (Azzalini and Capitaino (2003)) has been
shown to be effective in modeling the presence of skewness effects and possible
heavy tails simultaneously. Arellano-Valle, Branco and Genton (2006) showed
that the skewed distributions may arise from selection. For the extension of the
approach developed here, one may consider the skewed t distribution for the
final bids of the sold items because of the selection effect. The analysis is more
computationally intensive as both the degrees of freedom and skewness should
be estimated.
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