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Abstract: We propose a new block bootstrap procedure for time series, called the ex-

tended tapered block bootstrap, to estimate the variance and approximate the sam-

pling distribution of a large class of approximately linear statistics. Our proposal

differs from the existing tapered block bootstrap (Paparoditis and Politis (2001,

2002)) in that the tapering is applied to the random weights in the bootstrapped

empirical distribution. Under the smooth function model, we obtain asymptotic

bias and variance expansions for the variance estimator and establish the consis-

tency of the distribution approximation. The extended tapered block bootstrap

has wider applicability than the tapered block bootstrap, while preserving the fa-

vorable bias and mean squared error properties of the tapered block bootstrap over

the moving block bootstrap. A small simulation study is performed to compare the

finite-sample performance of the block-based bootstrap methods.

Key words and phrases: Block bootstrap, empirical measure, influence function, lag

window estimator, tapering, variance estimation.

1. Introduction

Since the seminal work of Künsch (1989), the nonparametric block bootstrap
methods have received a lot of attention in time series literature. As an important
extension of Efron’s iid (independent and identically distributed) bootstrap to
stationary observations, the moving block bootstrap (MBB) (Künsch (1989), and
Liu and Singh (1992)) can be used to approximate the variance and sampling
distribution of statistics from a time series. A few variants of the MBB have been
proposed, such as the circular block bootstrap (Politis and Romano (1992)), the
non-overlapping block bootstrap (Carlstein (1986)), and the stationary bootstrap
(Politis and Romano (1994)), among others. For variance estimation in the
smooth function model, the MBB and its variants yield the same convergence
rate of the mean squared error (MSE), albeit with a different constant in the
leading term of the bias and variance expansions; see, e.g., Lahiri (1999, 2003) and
Nordman (2009). In an attempt to reduce the bias and MSE, Carlstein, Do, Hall,
Hesterberg and Künsch (1998) proposed the so-called matched block bootstrap,
which links the bootstrapped blocks using a matching algorithm to achieve a
bias reduction, but their method only works for Markovian processes. Later,
utilizing a connection between the spectrum estimator and bootstrap variance
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estimator, Paparoditis and Politis (2001) (PP, hereafter) proposed the tapered
block bootstrap (TBB), that involves tapering each (overlapping) block of the
series first, then a resampling of those tapered blocks. The TBB offers a superior
convergence rate in the bias and MSE compared to the MBB and its variants.
The validity of the TBB is shown for the sample mean case in PP (2001), and
further extended by PP (2002) to a large class of statistics that are approximately
linear. The TBB seems to be the current state-of-the-art block bootstrap method
as far as the asymptotic accuracy for variance estimation is concerned.

The main goal of this paper is to widen the scope of the applicability of
the TBB by developing a new tapered version of the block bootstrap method,
called the extended tapered block bootstrap (ETBB). To motivate our work,
we first point out the limitation of the TBB method. Consider a univariate
strictly stationary process {Xt}t∈Z, and denote by F the distribution function
of X1. Suppose the quantity of interest is θ = T (F ). Given a realization of
the process XN = {Xt}N

t=1, a natural estimator of θ is θ̂N = T (ρN ), where
ρN = N−1

∑N
t=1 δXt is the empirical measure, with δx representing a unit mass

on point x. An approximately linear statistic T (ρN ) admits an expansion in a
neighborhood of F ,

T (ρN ) = T (F ) + N−1
N∑

t=1

IF (Xt; F ) + RN , (1.1)

where IF (x; F ) is the influence function (Hampel, Ronchetti, Rousseeuw, and
Stahel (1986))

IF (x; F ) = lim
ε↓0

T ((1 − ε)F + εδx) − T (F )
ε

,

and RN is the remainder term. Under some regularity conditions that ensure
the negligibility of RN , σ2

N = NVar (θ̂N ) ≈ N−1Var {
∑N

t=1 IF (Xt;F )}. In prac-
tice, IF (Xt; F ) is unknown, but can be replaced by its empirical counterpart
IF (Xt; ρN ), so one can estimate σ2

N by applying a block bootstrap procedure
to IF (Xt; ρN ). In fact, in the TBB, PP (2002) proposed to apply tapering to
IF (Xt; ρN ), which is (implicitly) assumed to be known once we observe the data
XN . This is true for a large class of statistics, such as smooth functions of a vec-
tor mean, but is not necessarily the case for some other important statistics. A
prominent example is θ̂N = median(X1, . . . , XN ), which consistently estimates
the median of the marginal distribution of X1, denoted as θ = F−1(1/2). In
this case, we have IF (x; F ) = {1/2 − 1(x ≤ θ)}/f(θ), where 1(·) is the indi-
cator function and f(x) = F ′(x) is the density function of the distribution F .
So IF (Xt; ρN ) = {1 − 21(Xt ≤ θ̂N )}/f(θ̂N ) is unknown since f(·) is (typically)
unknown in practice. Thus the TBB by PP (2002) is not directly applicable to
this setting.
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As a remedy, we propose to taper the random weights in the bootstrapped
empirical measure in the ETBB. As another natural generalization of the ta-
pering idea to the block bootstrap method, the ETBB turns out to have wider
applicability than the TBB. In the sample mean case, the ETBB is identical to
the TBB; for the smooth function model, the ETBB variance estimator is not
identical to, but is asymptotically equivalent to its TBB counterpart in terms
of asymptotic bias and variance. A notable distinction between the ETBB and
TBB is that the linearization is implicitly used in the TBB, but not in the ETBB.

The following notation is used throughout the paper. For a column vector
x = (x1, . . . , xq)′ ∈ Rq, let ‖x‖ = (

∑q
j=1 x2

j )
1/2. Let ξ be a random vector. Write

ξ ∈ Lp (p > 0) if ‖ξ‖p := [E(|ξ|p)]1/p < ∞, and let ‖ · ‖ = ‖ · ‖2. Denote by →D

and →p convergence in distribution and in probability, respectively. The symbols
Op(1) and op(1) signify being bounded in probability and convergence to zero in
probability respectively. Let N(µ,Σ) be a normal distribution with mean µ and
covariance matrix Σ. Denote by bac the integer part of a and a ∨ b = max(a, b),
a ∧ b = min(a, b) for any a, b ∈ R. The paper is organized as follows. Section
2 introduces the main idea of the ETBB and discusses its connections to the
MBB and TBB. Section 3 presents asymptotic results to show the validity of the
ETBB. Some simulation findings are reported in Section 4 to corroborate our
theoretical results. Section 5 concludes with some discussion.

2. Methodology

To describe the idea of the ETBB, we first introduce the MBB procedure.
To perform the MBB, we first specify a block size l = lN . Then k = kN = bN/lc
is the number of blocks. For the convenience of presentation, assume N = kl.
Given the data XN , we form overlapping blocks Bj = {Xj+1, . . . , Xj+l}, j =
0, 1, . . . , N − l. When we resample k blocks with replacement from the collection
{Bj}N−l

j=0 , say, we get BSj , j = 1, . . . , k, where S1, . . . , Sk are iid uniform ran-
dom variables on {0, . . . , N − l}. Bootstrapped pseudo-observations are obtained
by concatenating the resampled blocks together. In other words, the k blocks
(X∗

1 , . . . , X∗
l ) (= BS1), (X∗

l+1, . . . , X
∗
2l) (= BS2), (X∗

N−l+1, . . . , X
∗
N ) (= BSk

) are
iid with distribution (N − l+1)−1

∑N−l
t=0 δ(Xt+1,...,Xt+l). Following Künsch (1989),

the bootstrapped empirical measure is

ρ∗N = N−1
k∑

j=1

Sj+l∑
t=Sj+1

δXt = N−1
N∑

t=1

ftδXt , where ft = #{j : t−l≤Sj ≤ t−1}.

The key idea of the ETBB is to modify ft to allow the (random) weights to
be tapered. Define the data-tapering windows wl(·) as

wl(h) = w

(
h − 0.5

l

)
, h ∈ N, (2.1)
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where the function w(·) satisfies the following conditions.

Assumptions 2.1. The function w(·) : R → [0, 1] has compact support on
[0, 1], and w(t) > 0 for t in a neighborhood of 1/2. Further, the function w(t) is
symmetric about t = 0.5 and nondecreasing for t ∈ [0, 1/2].

Write ‖wl‖1 =
∑l

h=1 |wl(h)| and ‖wl‖2 = (
∑l

h=1 w2
l (h))1/2. Take the tapered

random weight assigned to Xt to be

f̃t =
N

k‖wl‖1

l∑
h=1

wl(h)#{j : Sj = t − h} =
N

k‖wl‖1

k∑
j=1

l∑
h=1

wl(h)1(Sj = t − h),

and the bootstrapped empirical measure for the ETBB as

ρ̃∗N = N−1
N∑

t=1

f̃tδXt . (2.2)

Note that N−1
∑N

t=1 f̃t = 1, so the bootstrapped empirical measure is a proper
probability measure. A detailed check of the TBB procedure in PP (2001) shows
that the implied random weights for the TBB coincide with the {f̃t}N

t=1 defined
above. Note that the TBB is applied to the demeaned data {Xt − X̄N}N

t=1,
where X̄N = N−1

∑N
t=1 Xt, so the points at which the bootstrapped probability

measure concentrates are different from those for the ETBB. For the statistic
θ̂N = T (ρN ), its bootstrap version is θ̂∗N = T (ρ̃∗N ). Denote by pr∗, E∗, Var ∗,
Cov∗ the probability, expectation, variance, and covariance conditional on the
data XN . Then the ETBB variance estimator of σ2

N is σ̃2
N = Ml(kl)Var ∗(θ̂∗N ),

where Ml = ‖wl‖2
1/(l‖wl‖2

2) is the scaling factor needed to account for the in-
crease of the variance due to the tapering in (2.2). Similarly, the distribution of√

N(θ̂N −θ) can be approximated by its bootstrap counterparts
√

klMl(θ̂∗N − θ̂N )
or

√
klMl(θ̂∗N − E∗θ̂∗N ).
To give a heuristic idea why (2.2) is a proper way of doing tapering, we note

that for l ≤ t, s ≤ N − l, E∗(f̃t) = N/(N − l + 1) and

Cov∗(f̃t, f̃s) = E(f̃tf̃s) − E(f̃t)E(f̃s)

=
l2

‖wl‖2
1

l∑
h,h′=1

wl(h)wl(h′)
k∑

j,j′=1

E
{
1(Sj = t−h)1(Sj′ = s−h′)

}
− N2

(N − l + 1)2

=
l2

‖wl‖2
1

l∑
h,h′=1

wl(h)wl(h′)
{

(k2 − k)
(N−l+1)2

+
k1(t−s = h−h′)

N − l + 1

}
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− N2

(N − l + 1)2

= O
(1

k

)
+

Nl

‖wl‖2
1(N − l + 1)

l∑
h,h′=1

wl(h)wl(h′)1(t − s = h − h′)

≈ O
(1

k

)
+l‖wl‖−2

1

l+(t−s)∧0∑
h=1+(t−s)∨0

wl(h)wl(h−(t−s))
(

1+O
(1

k

))
. (2.3)

Let vl(k) =
∑l−|k|

j=1 wl(j)wl(j + |k|). Then Cov∗(f̃t, f̃s) = lvl(|t − s|)/‖wl‖2
1 +

O(1/k). Further, we can expand T (ρ̃∗N ) in a neighborhood of F , analogous to
(1.1), T (ρ̃∗N ) = T (F ) + N−1

∑N
t=1 IF (Xt; F )f̃t + R∗

N . Under suitable conditions
that imply the negligibility of R∗

N , we have

MlNVar ∗(θ̂∗N ) ≈ N−1
N∑

t,s=1

IF (Xt; F )IF (Xs; F )Cov∗(f̃t, f̃s)Ml,

which admits the form of a lag window estimator for the spectral density of the
stationary process {IF (Xt; F )}. In the case of the MBB, wl(h) = 1, h = 1, . . . , l,
vl(k) = l−|k|, Ml = 1, and Cov∗(f̃t, f̃s) ≈ max(1−|t−s|/l, 0), which corresponds
to the Bartlett window (kernel) (Künsch (1989)). In the literature of spectrum
estimation (Priestley (1981)), it is well-known that the Bartlett window yields a
bias of order 1/l and a variance of order l/N . If we use a window that is locally
quadratic around zero, such as Parzen’s window, then the bias is of (optimal)
order 1/l2, and the variance is still of order l/N . Equivalently, for the ETBB,
if we adopt the data-taper windows wl(·) (see (2.1)) with v(·)/v(0) being locally
quadratic around the origin, then the ETBB variance estimator achieves a bias
reduction over its MBB counterpart.

In the sample mean case, T (F ) =
∫

xdF = µ, T (ρN ) = X̄N , IF (x; F ) =
x − µ, IF (x; ρN ) = x − X̄N , and the remainder term RN in (1.1) vanishes. For
θ̂∗N , T (ρ̃∗N ) = N−1

∑n
t=1 f̃tXt = X̄N + N−1

∑N
t=1 f̃t(Xt − X̄N ). It is not hard to

see that the ETBB variance estimator

σ̃2
N = MlN

−1
N∑

t,s=1

(Xt − X̄N )(Xs − X̄N )Cov∗(f̃t, f̃s)

is identical to its TBB counterpart, where the tapering is applied to {Xt − X̄N}
directly; compare PP (2001).

Remark 2.1. As mentioned in PP (2001), the TBB can be linked to Künsch’s
(1989) tapered block jackknife in the same way that Efron’s bootstrap is linked
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to Tukey’s jackknife. In view of the formulation of the tapered block jackknife in
terms of empirical measure (see Künsch (1989, eq. 2.3)), the ETBB is naturally
connected to the tapered block jackknife. While both the ETBB and tapered
block jackknife can be used for variance estimation, the ETBB offers more by
providing an estimate of the sampling distribution of the estimator.

Remark 2.2. The idea of tapering the random weights associated with boot-
strapped empirical distribution was mentioned in Künsch (1989) (see Eq. 2.12
therein); this was due to a referee of that paper. The suggested bootstrapped
empirical measure takes the form

ρ̄∗n =
( n∑

t=1

W (
t

l
)
)−1 n∑

t=1

W (
t

l
)δXt ,

where W (t) is a positive stationary process with continuous covariance function
R(t), independent of Xt. It seems quite difficult to provide rigorous asymptotic
results for this interesting idea, and I am not aware of any developments along
this line. In contrast, the form of the random weights is explicitly given in the
ETBB, and the extension from ft to its tapered counterpart f̃t has great intuitive
appeal. In the next section, we provide an asymptotic justification.

3. Theoretical Validity

We establish here the consistency of the ETBB for both variance estima-
tion and distribution approximation. To make our theoretical results broadly
applicable, we consider a multivariate strictly stationary time series Xt ∈ Rm.
Denote its marginal distribution by Fm and its mean by µ = E(Xt). The ETBB
method described in the previous section can be applied to the multivariate case
with only a slight modification of notation. In practice, the statistic of interest
could be a functional of m-th marginal distribution of a univariate time series
{Yt}t∈Z; thus, with Xt = (Yt, . . . , Yt+m−1)′, the m-th marginal distribution of Yt

is identical to the first marginal of the multivariate series Xt.
Note that for the bootstrapped statistic T (ρ̃∗N ), we have

T (ρ̃∗N ) = T (Fm) + N−1
N∑

t=1

IF (Xt; Fm)f̃t + R∗
N .

The derivation for the asymptotic bias and variance expansions of our boot-
strapped variance estimator σ̃2

N turns out to be very involved. This difficulty
was also mentioned on page 1,231 of Künsch (1989). See Remark 3.1 for more
discussions. For this reason, we restrict our attention to the smooth function
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model θ = H(µ), where H : Rm → R is a smooth function. This framework is
wide enough to include many statistics of practical interest, such as autocovari-
ance, autocorrelation, the Yule-Walker estimator, and other interesting statistics
in time series.

Let ∇(x) = (∂H(x)/∂x1, . . . , ∂H(x)/∂xm)′ and ∇ = ∇(µ). Note that in this
case, IF (x;F ) = ∇′(x − µ) and we can write (1.1) as

H(X̄N ) = H(µ) + ∇′N−1
N∑

t=1

(Xt − µ) + RN . (3.1)

Further note that IF (x; ρN ) = ∇(X̄N )′(x − X̄N ), so the tapering in the TBB
procedure of PP (2002) is applied to ∇(X̄N )′(Xt − X̄N ), t = 1, . . . , N . Let
w ∗ w(t) =

∫ 1
−1 w(x)w(x + |t|)dx be the self-convolution of w(t), and a(x) =

w ∗w(x)/w ∗w(0). Then the TBB variance estimator of σ2
N has a (approximate)

closed-form as

∇(X̄N )′N−1
N∑

t,t′=1

(Xt − X̄N )(Xs − X̄N )′a(
|t − s|

l
)∇(X̄N )

that can be computed without doing any bootstrapping. In contrast, the ta-
pering in the ETBB is applied to the random weights in the bootstrapped em-
pirical measure, and the resulting bootstrapped statistic is θ̂∗N = H(X̄∗

N ), where
X̄∗

N = N−1
∑N

t=1 f̃tXt. It is not hard to see that the two procedures yield asymp-
totically equivalent variance estimators under the smooth function model; com-
pare Theorem 3.1 with Theorem 2.1 in PP (2002). Similar to (3.1), for the
bootstrapped statistic T (ρ∗N ) = H(X̄∗

N ) we have

H
(
X̄∗

N

)
= H(µ) + ∇′(X̄∗

N − µ) + R∗
N . (3.2)

To state the bias and variance expansions for σ̃2
N , we make the following

assumptions.

Assumptions 3.1. The function H : Rm → R is 3-times continuously differen-
tiable and max{|DvH(x)| : |v| = 3} ≤ C(1 + ‖x‖κ), x ∈ Rm, for some integer
κ ≥ 1.

Denote the i-th component of Xt by Xt,i.

Assumptions 3.2. For any (i1, . . . , is) ∈ {1, . . . ,m}s, 2 ≤ s ≤ r,∑
t1,...,ts−1∈Z

∣∣∣cum(X0,i1 , Xt1,i2 , . . . , Xts−1,is)
∣∣∣ < ∞.
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Assumption 3.1 is made to control the magnitude of the remainder term
R∗

N ; see Lahiri (2003). Assumption 3.2 is common in spectral analysis and can
be derived under appropriate moment and mixing conditions (Zhurbenko and
Zuev (1975)).

Denote by {α(k)} the strong mixing coefficients of the process {Xt}t∈Z, and
let ∆(r; δ) = 1 +

∑∞
k=1 k2r−1α(k)δ/(2r+δ) for some integer r ≥ 1 and δ > 0. Let

RIF (k) = ∇′ Cov (X0, Xk)∇ and σ2
F =

∑∞
k=−∞ RIF (k) > 0.

Theorem 3.1. (i) Suppose Assumptions 2.1, 3.1 and 3.2 hold with r = 4. As-
sume Xt ∈ L6+2κ+δ for some δ > 0, and ∆(3+κ; 1) < ∞. If w∗w is twice contin-
uously differentiable around zero, l−1 + l/N1/3 = o(1), and

∑∞
k=−∞ |RIF (k)|k2 <

∞, then
E(σ̃2

N ) = σ2
F + B1l

−2 + o(l−2), (3.3)

where B1 = (1/2)([(w ∗ w)
′′
(0)]/[w ∗ w(0)])

∑∞
k=−∞ k2RIF (k). (ii) Suppose As-

sumptions 2.1, 3.1 and 3.2 hold with r = 8. Assume Xt ∈ L12+4κ+δ, l−1 + l/N =
o(1), and ∆(6 + 2κ; 1) < ∞. Then

var(σ̃2
N ) = B2

l

N
+ o

( l

N

)
, (3.4)

where B2 = 2σ4
F

∫ 1
−1([(w ∗ w)2(x)]/[(w ∗ w)2(0)])dx.

The statement (3.3) still holds if we replace σ2
F by σ2

N , and l = o(N1/4), since
σ2

N = σ2
F + O(N−1/2) under the assumptions of Theorem 3.1 (i). Compared to

Theorem 2.1 in PP (2002), obtained under the same bias and variance expansions
for the TBB, we require a stronger moment assumption. It can actually be
relaxed at the expense of a more stringent assumption on the block size l. We
omit the details.

Corollary 3.1. Under the combined assumptions in Theorem 3.1 (i) and (ii),
the optimal bandwidth lopt = (4B2

1/B2)1/5N1/5, and the corresponding MSE is
{(4−4/5 + 41/5)B2/5

1 B
4/5
2 }N−4/5(1 + o(1)).

This result follows from Theorem 3.1 and a straightforward calculation.
Thus the optimal MSE corresponding to the ETBB is O(N−4/5), improving

upon the N−2/3 rate of the MBB. The major improvement is on the bias, which
is reduced from the MBB’s l−1 to l−2 since w∗w is locally quadratic around zero.
Also note that the variance is inflated after tapering by a factor of (3/2)

∫ 1
−1([(w∗

w)2(x)]/[(w ∗ w)2(0)])dx.
The following theorem states the consistency of the ETBB in terms of ap-

proximating the sampling distribution of
√

N(θ̂N − θ).
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Theorem 3.2. Suppose Assumptions 2.1 and 3.1 hold. Assume that w ∗ w

is twice continuously differentiable around zero,
∑∞

k=−∞ |RIF (k)|k2 < ∞, and
l−1 + l/N1/3 = o(1). Further suppose Xt ∈ L6∨(3+κ)+δ for some δ > 0 and
∆(b2 + κ/2c; 1) < ∞. Then

sup
x∈R

∣∣∣P [
√

N{H(X̄N ) − H(µ)} ≤ x]

−P ∗[
√

klMl{H(X̄∗
N ) − E∗(H(X̄∗

N ))} ≤ x]
∣∣∣ = op(1), (3.5)

sup
x∈R

∣∣∣P [
√

N{H(X̄N ) − H(µ)} ≤ x]

−P ∗[
√

klMl{H(X̄∗
N ) − H(X̄N )} ≤ x]

∣∣∣ = op(1). (3.6)

The proofs of Theorems 3.2 and 3.1 are included in the online supplement,
that can be found at http://www.stat.sinica.edu.tw/statistica.

Remark 3.1. To indicate the difficulty involved in obtaining analogous results
to those of Theorems 3.1 and 3.2 for general statistics T (Fm), we resort to the
second order von Mises expansion of T (ρN ) (von Mises (1947), and Fernholz
(1983)). Following the notations in Fernholz (2001), write

T (ρN ) = T (Fm) + N−1
N∑

t=1

φ1(Xt) +
1

2N2

N∑
t,s=1

φ2(Xt, Xs) + Rem2.

Here φ1(x) = IF (x; Fm) is the influence function, that corresponds to the
Gâteaux derivative of the functional T . The function φ2 can be defined as

φ2(x, y) =
d2

dsdt
T (F (1 − s − t) + tδx + sδy)

∣∣∣
t=0,s=0

and satisfies
∫

φ2(x, y)dFm(x) =
∫

φ2(y, x)dFm(x) = 0. Similarly, for the boot-
strapped statistic,

T (ρ∗N ) = T (Fm) + N−1
N∑

t=1

φ1(Xt)f̃t +
1

2N2

N∑
t,s=1

φ2(Xt, Xs)f̃tf̃s + Rem∗
2.

To find a probabilistic or moment bound for Var ∗(R∗
N ), we need to bound

Var ∗(Rem∗
2) and Var ∗(

∑N
t,s=1 φ2(Xt, Xs)f̃tf̃s) accordingly. It seems hard to come

up with easily checked regularity conditions in this general setting, and a case-
by-case study might be needed here.

http://www.stat.sinica.edu.tw/statistica
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4. Simulation Studies

In this section, we study the finite sample performance of the ETBB com-
pared to the MBB and TBB. In the sample mean case, PP (2001) showed that
the TBB outperforms the MBB in terms of the finite-sample MSE of variance
estimator and empirical coverage probability of bootstrapped-based confidence
interval. Since the ETBB is equivalent to the TBB in the sample mean case,
this advantage automatically carries over to the ETBB. Here, we first focus on
the comparison of the ETBB with the MBB in the case where the TBB is not
applicable. We considered the AR(1) model Xt = ρXt−1 + εt, εt ∼ iid N(0, 1)
with ρ = ±0.7. The estimated quantities are the median and 75% quantile of
the marginal distribution of X1. Two sample sizes N = 200 and 1, 000 were
considered, but only the results for N = 200 are shown as we observe qualita-
tively similar results for N = 1, 000. Define the following family of trapezoidal
functions as

w
trap
c (t) =


t

c
, if t ∈ [0, c],

1, if t ∈ [c, 1 − c],

(1 − t)
c

, if t ∈ [1 − c, 1].

In our simulation, we took c = 0.43, since it was found in PP (2001) that w
trap
0.43

offers the optimal (theoretical) MSE provided we fix the covariance structure of
a time series. For each time series and each block size, we generated 1, 000 ETBB
and MBB pseudo-series to estimate σ2

N and obtained the bootstrap-based critical
values. In every bootstrap repetition, the ETBB and MBB pseudo-series was
based on the same randomly selected blocks. Then we repeated this procedure
1,000 times and ploted the empirical MSE and the empirical coverage of nominal
95% symmetric confidence intervals as a function of block size in Figures 1 and 2,
respectively.

When ρ = 0.7, it is seen from Figure 1 (a), (b) that the ETBB outper-
formed the MBB for a range of block sizes, although the MBB did better for
small (and suboptimal) block sizes. Apparently, the optimal MSE (i.e., the MSE
corresponding to the empirical optimal block size) for the ETBB was smaller
than that for the MBB, consistent with our theory. For ρ = −0.7, Figure 1 (c),
(d) shows that the ETBB was superior to the MBB uniformly over the range
of block sizes examined. An examination of the empirical coverage probabilities
plotted in Figure 2 (a) (b) suggests that for ρ = 0.7, the optimal coverage of the
ETBB was closer to the nominal level than that of the MBB. For ρ = −0.7, the
coverage for the block size l = 1, which is obviously suboptimal for the purpose
of variance estimation, was closest to the nominal level. This might be explained
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Figure 1. The empirical mean squared error of the MBB and ETBB variance
estimators of the variance of the normalized statistics (a) median, ρ = 0.7,
(b) 75% quantile, ρ = 0.7, (c) median, ρ = −0.7, and (d) 75% quantile,
ρ = −0.7.

by the fact that the optimal bandwidth for variance estimation is different from
the optimal bandwidth for distribution estimation; see Hall, Horowitz, and Jing
(1995). For 3 ≤ l ≤ 30, the empirical coverage for the ETBB was fairly close
to that of the MBB, and perhaps slightly better than the MBB when l ≥ 10.
Overall, our findings are consistent with those reported in PP (2001, 2002).

For the smooth function model, θ = H(µ), where H(µ) 6= µ, the TBB
and ETBB, although asymptotically equivalent, differ in that the ETBB in-
volves no linearization while the TBB does. Thus it would be interesting to
examine their finite sample performance in this context. Here we considered
the quantity γ(1) = Cov (X0, X1), which is estimated by its sample analogue
γ̂(1) = (N − 1)−1

∑N−1
t=1 XtXt+1 − {(N − 1)−1

∑N−1
t=1 Xt}2. To put it into

the framework of the smooth function model, let Zt = (XtXt+1, Xt)′. Then
µZ = E(Zt) = (E(X1X2), E(X1))′ and H(µZ) = E(X1X2) − [E(X1)]2.

From Figure 3, we see that the MBB outperformed both TBB and ETBB
when l was small and suboptimal, but the optimal MSE for the MBB was larger
than the optimal MSEs for the TBB and ETBB. A possible explanation for this
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Figure 2. The empirical coverage probability of a two-sided 95% (nominal)
confidence interval of (a) median, ρ = 0.7, (b) 75% quantile, ρ = 0.7, (c)
median, ρ = −0.7, and (d) 75% quantile, ρ = −0.7. Here the bootstrap
approximation is based on (3.6).

Figure 3. The empirical mean squared error of the MBB, TBB, and ETBB
variance estimators of the variance of normalized empirical autocovariance
at lag 1 (denoted as ACF(1)). (a) ρ = 0.7, (b) ρ = −0.7.

advantage of the MBB is that the shape of the taper window cannot fully manifest
itself at small block sizes. It is interesting to note that the TBB and ETBB
offered almost identical MSEs, which suggests that the linearization involved in
the TBB does not cause inaccuracy at the sample size N = 200 in this case. Our
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limited experience with a few other models and smooth functions suggests that
the performance of the TBB and ETBB are fairly close. A distinction between
the ETBB and the TBB is that no derivative of H(·) needs to be derived in the
implementation of the ETBB, while it is needed in the TBB. This could be a
disadvantage for the TBB when a closed-form expression for the derivative of H(·)
is hard to obtain. In summary, our simulation results provide further support
to the claim that the ETBB inherits the advantage of the TBB over the MBB
in terms of the MSE of variance estimation, while having broader applicability
than the TBB.

5. Discussions

Many issues still merit further research. For the TBB, PP (2001, 2002)
remarked on the magnitude of the error term in approximating the sampling
distribution of the normalized statistic; compare Theorem 3.2. In view of the
connection between the TBB and ETBB, these remarks are expected to apply
to the ETBB under appropriate conditions. For the MBB, Götze and Künsch
(1996) established second order correctness, i.e., the bootstrap approximation is
better than normal approximation. It would be interesting to generalize their
results to the TBB and ETBB. An important practical issue is the choice of
the block size l. The existing methodologies can be roughly divided into two
categories: nonparametric plug-in method (Bühlmann and Künsch (1999), Politis
and White (2004), and PP (2001, 2002) among others) and subsampling method
(Hall, Horowitz, and Jing (1995)); see Chapter 7 of Lahiri (2003) for a review.
For the smooth function model, it is easy to see that the nonparametric plug-in
approach works for the ETBB. In particular, the plug-in estimates of B1 and
B2 can be formed as in PP (2001, 2002) using flat-top lag window estimates.
For more general statistics, such as the median, the plug-in approach is still
feasible, as noted by Bühlmann and Künsch (1999) for the MBB. In the case of
the median, IF (Xt; ρN ) = {1 − 21(Xt ≤ θ̂N )}/f(θ̂N ), where θ̂N is the sample
median, is not directly observable. However, the selection of the optimal block
size can be based on {1 − 21(Xt ≤ θ̂N )}N

t=1, since the block length selection
is independent of the scale of the data. Further, we note that the subsampling
approach of Hall, Horowitz, and Jing (1995) can be easily extended to the ETBB.
We leave the finite-sample comparison of the aforementioned block size selection
rules to future work. In this article, the theoretical analysis is restricted to the
class of smooth function models. In time series analysis, a large class of statistics
can be expressed as smooth functionals of empirical processes; see Theorem 4.4
of Lahiri (2003). The consistency of blockwise bootstrapped empirical processes
has been studied by Bühlmann (1994), Naik-Nimbalkar and Rajarshi (1994) and
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Peligrad (1998) among others, and an extension of their results to the ETBB
would be interesting.
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