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Abstract: A method is suggested for constructing a conservative confidence region

for the parameters of a linear model on the basis of a linear estimator. In meta-

analytical applications, when the results of independent but heterogeneous studies

are to be combined, this region can be employed with little to no knowledge of error

variances. The formulas for the smallest volume and the corresponding critical con-

stant are derived. The method is compared to several resampling schemes by Monte

Carlo simulation, and particular cases of one or two parameters are examined.
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1. Introduction

The estimation of parameters in a linear model is one of the important prob-
lems of statistics. In its classical setting, with a given matrix of error covariances,
the solution is well known. However if the error covariance matrix cannot be as-
sumed known or proportional to a given matrix, the problem becomes much more
challenging.

Consider the general linear model, Y ∼ Np(Xβ, Σ) with a diagonal matrix
Σ. Thus if the parameter β is r-dimensional, r ≤ p, and X is a p × r design
matrix of rank r,

Y = Xβ + ε. (1.1)

The vector ε is formed by independent errors εj , j = 1, . . . , p, with zero mean
and unknown variances σ2

j . In the meta-analysis context, there are p independent
but heterogeneous studies, with each study producing an unbiased estimate of
its linear function of β. The accuracy of this estimator may not be given. The
classical least squares estimate β̂, determined from the equation, XT Σ−1Xβ̂ =
XT Σ−1Y , clearly depends on Σ which typically is (at least partially) unknown.

Carroll and Ruppert (1982) investigate different parametric models for het-
eroscedasticity. Fuller and Rao (1978) study a two-stage estimation procedure
assuming that observations compose several groups with constant variance within
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each group. The residuals derived from ordinary least squares are employed to es-
timate the covariance matrix, which is then used in the generalized least squares.
Wu (1986) devised a class of jackknife variance estimators and compared them
to the bootstrap method. The asymptotic behavior of these methods is eluci-
dated in Shao and Tu (1995, Chap. 7) and Basu and Chatterjee (2002). While
these authors are mainly interested in distributional properties, our approach is
motivated by the desire to construct confidence regions for the parameter β.

We look at linear unbiased estimators of the form δ = WY , with an r × p

matrix W . Then, with I denoting the identity matrix (whose size is usually clear
from the context), WX = I, and Var (δ) = WΣW T is the covariance matrix of δ.
A natural form of the estimator is δ = (XT QX)−1XT QY with a p × p diagonal
matrix Q, where Q is thought of as an approximation to Σ−1. Thus, we take
W = (XT QX)−1XT Q. If Q = Σ−1, then Var (δ) = (XT QX)−1. However, the
commonly used estimator of Var (δ), (XT QX)−1, typically underestimates this
matrix.

To adjust for this bias and to derive a conservative confidence ellipsoid, a
new estimator V̂ar (δ) of Var (δ) is suggested here. It is a scalar multiple of
(XT QX)−1,

V̂ar (δ) = [Y T (I − XW )T S(I − XW )Y ](XT QX)−1. (1.2)

The non-negative definite p × p matrix S defining the quadratic form in the
residuals Y −XWY in (1.2) allows many choices, like S = Q, or S corresponding
to the jackknife variance estimator discussed in Section 6. When r = 1, one can
take S leading to the statistic suggested by Horn, Horn, and Duncan (1975).

A confidence ellipsoid for β based on δ is given by

(δ − β)T V̂ar (δ)
−1

(δ − β) ≤ t2. (1.3)

Our goal is to determine the coverage probability of this ellipsoid for any Σ at
least for large t.

In the common mean case, when r = 1 and X is the p-dimensional vector of
ones, this problem was considered by Rukhin (2007). The maximal non-coverage
probability as a function of t equals 1 for sufficiently small t, but for large t it
coincides with the tail probability of the tp−1-distribution. Then the maximum
is attained when all σ’s are equal, and one can determine the adjustment factor
G (which depends on t,Q and S), G ≥ 1, such that

sup
Σ

P
(
(δ − β)T V̂ar (δ)

−1
(δ − β) > t2G

)
= P

(
|Tp−1| > t

)
,

where Tp−1 denotes a t-distributed random variable with p−1 degrees of freedom.
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In Section 2 the asymptotic behavior of the coverage probability for any r is
shown to be that of the probability when t2 is a multiple of a percentile of the F -
distribution with r and p−r degrees of freedom. Section 3 contains needed results
about the moments of indefinite quadratic forms in Gaussian random variables,
relating them to Dirichlet averages (Carlson (1977)). Section 5 discusses the
volume of the confidence ellipsoid and suggests an optimal choice of S and the
corresponding value of t2 in (1.3). Sections 4 and 6 give some examples and
simulation results. All proofs are collected in the Appendix.

Motivation for the problem comes from interlaboratory studies where the
data is influenced by systematic, laboratory-specific errors (the so-called type B
uncertainties), and where error variances cannot be reliably estimated. Indeed,
the possibility of “unrealistic” uncertainties which do not take into account all
possible sources of errors, is widely recognized (as well as the fact that in such
a situation the classical least squares procedures cannot be employed.) Paule
and Mandel (1970) describe a study in which several laboratories performed
measurements via different techniques of gold vapor pressure as a function of
the absolute temperature T in the (individual for each laboratory) range from
1, 300 to 2, 100K. According to the heat law, the logarithm of pressure log P

is a linear function of 1/T . The data on P was collected from 38 runs of ten
laboratories with the number of observations at each run varying from 5 to 31.
After removal of obvious outliers and the results of one dubious laboratory, there
are a total of 375 different temperature points. A natural assumption is that
the error variance depends only on the run within each individual laboratory
(and not on the temperature value). This study then fits the model (1.1) with
p = 375, under the additional condition that there are only 38 different values of
σ2

j corresponding to each run. The matrix X is formed by the reciprocals of T

employed by each laboratory; the diagonal matrix Q is composed of reciprocals
of the sample variances obtained for each laboratory.

2. Conservative Confidence Regions

Let Sr be the unit sphere in r-dimensional space parametrized by ω1, . . . , ωr

with
∑

ω2
i = 1. Define for λi > 0, i = 1, . . . , r, and real q,

Hq(λ1, . . . , λr) =
∫

Sr

[ ∑
i

λiω
2
i

]q

dω, (2.1)

where dω denotes the normalized uniform distribution over Sr. Denote by Fr,p−r

a F random variable with r and p − r degrees of freedom, and by Fr,p−r(α) the
critical point of its distribution, let λi = λi(Λ) denote the eigenvalues of a matrix
Λ.
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Theorem 2.1. Let δ = WY be a linear unbiased estimator of β in (1.1). With
V̂ar (δ) defined by (1.2) and

µi = λi

(
(XT QX)1/2(XT Σ−1X)−1(XT QX)1/2

)
, i = 1, . . . , r,

one has

lim
t→∞

tp−rPΣ

(
(δ − β)T V̂ar (δ)

−1
(δ − β) > t2

)
=

H(p−r)/2(µ1, . . . , µr)Γ(p/2)
det(XT Σ−1XWS−1W T )1/2 det(ΣS)1/2Γ(r/2)Γ((p − r + 2)/2)

= lim
t→∞

tp−rP

(
rFr,p−r

p − r
>t2

[
det(XT Σ−1XWS−1W T ) det(ΣS)

H2
(p−r)/2(µ1, . . . , µr)

]1/(p−r)
)

. (2.2)

According to (2.2), the ellipsoid (1.3) has approximate confidence 1 − α for
fixed Σ, if

t2 = t2(Σ) =
rFr,p−r(α)

p − r

[ H2
(p−r)/2(µ1, . . . , µr)

det(XT Σ−1XWS−1W T ) det(ΣS)

]1/(p−r)

.

As Σ is unknown, a conservative procedure corresponds to

t20 =
rFr,p−r(α)G

(p − r)

[
det(WQ−1W T ) det(Q)
det(WS−1W T ) det(S)

]1/(p−r)

, (2.3)

where the adjustment factor,

G = sup
Σ

[ H2
(p−r)/2(µ1, . . . , µr)

det(WQ−1W T ) det(Q) det(XT Σ−1X) det(Σ)

]1/(p−r)

= sup
Σ

[H2
(p−r)/2(λ1((AT Σ−1A)−1), . . . , λr((AT Σ−1A)−1))

det(AT Σ−1A) det(Σ)

]1/(p−r)

(2.4)

does not depend on S, but only on X and Q through A = Q1/2X(XT QX)−1/2,
so that AT A = I.

To see that, replace Σ by Σ̃ = QΣ in (2.4). Since µi = λi((AT Σ̃−1A)−1)
and det(AT Σ̃−1A) = det(XT Σ−1X)/det(XT QX) = det(XT Σ−1X)×det(WQ−1

W T ), it follows that t20 = maxΣ t2(Σ). Of course G ≥ 1, which is seen from (2.4)
when Σ = I.

If r = 1,

H(p−r)/2(µ) = µ(p−1)/2 =
(

XT QX

XT Σ−1X

)(p−1)/2

.
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For a given value of det(Σ) =
∏

j σ2
j , the minimum of XT Σ−1X =

∑
j X2

j1σ
−2
j is

attained when σ2
j ∝ X2

j1, so that

sup
Σ

XT QX

(XT Σ−1X)p/(p−1) det(Σ)1/(p−1)
=

XT QX

pp/(p−1)(
∏p

1 X2
j1)1/(p−1)

and, according to (2.4), Gp−1 = (XT QX)p−1/[pp det(WQ−1W T ) det(Q)
∏p

1 X2
j1].

Thus for r = 1,

t20 =
F1,p−1(α)(XT QX)

(p − 1)pp/(p−1)[WS−1W T det(S)]1/(p−1)(
∏p

1 X2
j1)1/(p−1)

.

3. Moments of Quadratic Forms in Normal Variables: Asymptotics
and Special Functions

This section contains the needed results for the distribution of quadratic
forms in normal variables.

Theorem 3.1. Let Z1, . . . , Zp be independent standard normal variables, and
λr+1, . . . , λp be fixed positive numbers. As λ1, . . . , λr → 0,

lim
P (

∑r
i=1 λiZ

2
i >

∑p
k=r+1 λkZ

2
k)

H(p−r)/2(λ1, . . . , λr)
=

Γ(p/2)√
λr+1 · · ·λpΓ(r/2)Γ((p − r + 2)/2)

.

When λi = t−2, i = 1, . . . , r, λk = 1, k = r + 1, . . . , p, H(p−r)/2 = tr−p,
and the formula in Theorem 3.1 agrees with the well-known result for the tail
probabilities of Fr,p−r, a F random variable with r and p− r degrees of freedom.
Indeed as t → ∞,

P

(
Fr,p−r >

(p − r)t2

r

)
∼ Γ(p/2)

Γ(r/2)Γ((p − r + 2)/2)tp−r
.

The proof of the Theorem 3.1 shows that

P

( ∑r
i=1 λiZ

2
i∑p

k=r+1 λkZ
2
k

> t2
)
≤ P

(
[H(p−r)/2(λ1, . . . , λr)]2/(p−r)

∑r
i=1 Z2

i

(λr+1 · · ·λp)1/(p−r)
∑p

k=r+1 Z2
k

> t2
)

= P

(
r[H(p−r)/2(λ1, . . . , λr)]2/(p−r)

(p − r)(λr+1 · · ·λp)1/(p−r)
Fr,p−r > t2

)
.

In other words, when approximating the tail probability for the ratio of two
quadratic forms, the λi’s in the numerator are to be replaced by their spherical
average [H(p−r)/2(λ1, . . . , λr)]2/(p−r), and the λk’s in the denominator by their
geometric mean.
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The function Hq is a particular case of the so-called Dirichlet averages (Carl-
son (1977, Chap. 5)), i.e.,

Hq(λ1, . . . , λr) =
∫ [ r∑

1

λkuk

]q

dµb(u),

where integration is over a unit simplex in Rr and µb is the Dirichlet distribution
with the parameter b = (1/2, . . . , 1/2). If a r × r positive definite symmetric
matrix Λ has eigenvalues λi, then with Z ∼ Nr(0, I) and q > −r/2,

Hq(λ1, . . . , λr) =
Γ(r/2)

2qΓ(q + r/2)
E(ZT ΛZ)q. (3.1)

Meng (2005) gives a number of useful formulas for such moments and discusses
their statistical applications.

4. Example: r = 2

To evaluate G when r = 2, one needs H(p−2)/2(λ
−1
1 , λ−1

2 ) with λi = λi(AT

Σ−1A), i = 1, 2. By symmetry and homogeneity of this function, one gets

H(p−2)/2(λ
−1
1 , λ−1

2 ) =
H(p−2)/2(λ1, λ2)
(λ1λ2)(p−2)/2

.

It is more practical to calculate the ratio Rm(λ1, λ2) = Hm+1(λ1, λ2)/Hm(λ1, λ2),
as it satisfies the recurrence formula

Rm+1(λ1, λ2) =
(2m + 1)(λ1 + λ2)

2(m + 1)
− mλ1λ2

(m + 1)Rm(λ1, λ2)
,

(Carlson (1977, p.101)).
According to Lemma 1 in the Appendix, to find G one has to minimize for

fixed h1, h2, ρ = (h1 − h2)/(h1 + h2), with tan φj = aj2/aj1, j = 1, . . . , p,∏


eT
 AODOT AT e =

∏
j

(
a2

j1 + a2
j2

)(
h1 cos2(φj − φ) + h2 sin2(φj − φ)

)
= 2−p(h1 + h2)p

∏
j

(
a2

j1 + a2
j2

) ∏
j

(
1 + ρ cos 2(φj − φ)

)
= det(Σ)

over 2 × 2 orthogonal matrices O = [cos φ,− sinφ; sinφ, cos φ]. This is an ex-
ample of the classical problem of finding the minimum of a trigonometric poly-
nomial. Its statistical interpretation is maximum likelihood estimation of the
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rotation parameter φ, arg minφ
∑

log(1 + ρ cos(φj − φ)), in the family of den-
sities (2π)−1

√
1 − ρ2[1 − ρ cos 2(· − φ)]−1. These densities are popular as mod-

els for wind directions, where they arise as a distribution of the polar angle in
a bivariate normal vector whose coordinates have variances σ2

1 and σ2
2. Then

ρ = (σ2
2 − σ2

1)/(σ2
1 + σ2

2).
For large p, one can estimate the “true” density f(φ) of angles φj on the

unit circle, 0 ≤ φ < 2π, and then approximate this minimum by

exp
{

p min
ψ

∫ 2π

0
log(1 + ρ cos(φ − ψ))f(φ)dφ

}
.

Assuming that λ1 = x ≤ 1 = λ2,

G =
2p/(p−2)

pp/(p−2)
∏

j(a
2
j1 + a2

j2)1/(p−2)

× max
x:0≤x≤1

x1/(p−2)[H(p−2)/2(x, 1)]2/(p−2)

[Rp/2−1(x, 1)]p/(p−2)[minφ
∏

j(1 + ρ cos 2(φj − φ))]1/(p−2)
. (4.1)

When x → 0, ρ → 1,

x

1 − ρ
→ p − 1

2
,

minφ
∏

j(1 + ρ cos 2(φj − φ))
1 − ρ

→ 2p−1 min
k

∏
j:j 6=k

sin2(φj − φk),

which is positive provided all angles φj are different. Thus

G ≥ [Γ((p − 1)/2)]2/(p−2)

(p − 1)(p−1)/(p−2)π1/(p−2)[Γ(p/2)]2/(p−2)

× 1
[
∏

j(a
2
j1 + a2

j2)]1/(p−2) mink[
∏

j:j 6=k sin2(φj − φk)]1/(p−2)

=
[Γ((p − 1)/2)]2/(p−2)

(p − 1)(p−1)/(p−2)π1/(p−2)[Γ(p/2)]2/(p−2)

×max
k

(a2
k1 + a2

k2)∏
j 6=k |ak1aj2 − ak2aj1|2/(p−2)

.

Numerous examples show that when p ≥ 5, this bound is typically attained, and
this is the case for the interlaboratory studies by Paule and Mandel (1970) of
gold vapor pressure.

Assuming there are 38 different values of σ2
j corresponding to the different

laboratory runs, the experimental data allows one to estimate the sample variance
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Figure 1. Confidence ellipsoid for β in the gold vapor pressure study (the
value of the estimator δ is marked by a ‘+’).

for each run, and reciprocals of these variances give the diagonal matrix Q. The
matrix A is then determined from the design matrix X formed by pairs (1, 1/Tj).
We used p = 375 different temperature points Tj given in Table 2 and employed
1/T104 in K−1 units. Thus, this procedure coincides with the one suggested by
Fuller and Rao (1978). Numerical determination of G(A), employing the scheme
above for α = 0.05, gives φopt = 2.19, λ2 = 1, λ1 = 0, G(A) = 9.23, and the
formula (5.4) from the next section provides the value t20 = 0.1495.

The formula (1.2) leads to an approximate 95%-confidence ellipsoid for β

based on a F -distribution with r = 2 and p − r = 373 degrees of freedom. This
ellipsoid portrayed in Figure 1 provides useful information about the joint nature
of the slope and the intercept in this study. Monte Carlo study indicates that
the coverage probability of this ellipsoid is about 0.977 when the errors have the
covariance matrix Q−1. For the least favorable σ2

j , the coverage probability is
0.987.

5. Volume of the Confidence Set

The volume of the confidence ellipsoid (1.3) is

trπr/2[Y T (I − XW )T S(I − XW )Y ]r/2

Γ((r + 2)/2)
√

det(XT QX)
.
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Under an error covariance matrix Σ0 its expected value, because of (3.1), has the
form

∆ =
trπr/2EΣ0(Y

T (I − XW )T S(I − XW )Y )r/2

Γ((r + 2)/2)
√

det(XT QX)

=
trπr/2E(ZT Σ1/2

0 (I − XW )T S(I − XW )Σ1/2
0 Z)r/2

Γ((r + 2)/2)
√

det(XT QX)
.

The matrix Σ1/2
0 (I −XW )T S(I −XW )Σ1/2

0 has rank p− r. Let ηj , j = 1, . . . , p
denote its eigenvalues (r of them are zeros.) Then for t20 in (2.3),

∆ =
[
rFr,p−r(α)G

p − r

]r/2 (2π)r/2Γ((p + r)/2)
Γ(p/2)Γ((r + 2)/2)

det(XT QX)(2r−p)/[2(p−r)]

×
Hr/2(η1, . . . , ηp) det(Q)r/[2(p−r)]

[det(S) det(WS−1W T ) det(XT QX)2]r/[2(p−r)]
. (5.1)

With A = Q1/2X(XT QX)−1/2, Π = I − AAT is a projection matrix.

Theorem 5.1. The expected volume ∆ of the confidence ellipsoid (1.3) under
the error covariance matrix Σ0 has the form (5.1). With G defined by (2.4), its
minimal value,

min
S

∆ =
[
rFr,p−r(α)G

p − r

]r/2 (2π)r/2Γ(p/2)
Γ((p − r)/2)Γ((r + 2)/2)

×
∏p

k=r+1[λk(ΠΣ0QΠ)]r/[2(p−r)]√
det(XT QX)

, (5.2)

is attained when Q−1/2SQ−1/2 is the generalized, Moore-Penrose inverse of Q1/2

(I − XW )Σ0(I − XW )T Q1/2.

In practice, the matrix Σ0 is unknown, but Q−1 is a suitable surrogate. If
Σ0 = Q−1, then S = Q(I −XW ), which gives the same result in (1.2) as S = Q,
since WX = I. Then (5.2) simplifies to

min
S

∆ =
[
rFr,p−r(α)G

p − r

]r/2 (2π)r/2Γ(p/2)√
det(XT QX)Γ((p − r)/2)Γ((r + 2)/2)

. (5.3)

According to (2.3), one gets for this S, when Σ0 = Q−1,

t20 =
rFr,p−r(α)

p − r
G. (5.4)
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Thus G with (G ≥ 1) can be interpreted as the adjustment factor to the percentile
of an F -distribution needed to obtain a conservative 1 − α confidence region.

When r = 1, Xj1 ≡ 1, (i.e., in the common mean case), Theorem 5.1 shows
that the shortest interval for this common mean based on the weighted means
statistic δ =

∑
ωiYi, ωi ≥ 0,

∑
ωi = 1, corresponds to the quadratic form∑

ωi(Yi − δ)2 in (1.3) (Rukhin (2007)).

6. Further Examples and Simulation Results

We re-examine here the example discussed by Wu (1986), in which p = 12,
r = 3, X = [X1, X2, X3] with X1 being the 12-dimensional vector of ones, X2 =
[1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10]T , and X3 formed by the squares of coordinates
of X2. Wu considers two cases, namely that of unequal variances σ2

j = xj2/2,
and of equal variances σ2

j ≡ 1. With Q =diag(2/X2), α = 0.05, calculations give
the value t20 = 6.71 while, when Q is the identity matrix, t20 = 16.72.

We evaluated, by Monte Carlo simulation, the coverage probabilities and
average volumes of (1.2) as well as for the confidence ellipsoid based on the
estimators vJ,8, vH(1), vw, and vJ(1) defined in Wu (1986). The retain-eight
jackknife variance estimator vJ,ρ, ρ = 8, has the form

vJ,ρ =
1(

p − r

ρ − r + 1

)
det(XXT )

∑
k1,...,kρ

XXT (k1, . . . , kρ)

×(δk1,...,kρ − δ)(δk1,...,kρ − δ)T ,

where δ is the least squares estimator, δk1,...,kρ is the least squares estimator
obtained on the basis of the pairs (xj , yj), j = k1, . . . , kρ, and XXT (k1, . . . , kρ)
denotes the principal minor of the matrix XXT corresponding to the rows and
columns indexed by k1, . . . , kρ.

The delete-one jackknife variance estimator,

vJ(1) =
∑

j

(1 − wj)(δ(j) − δ)(δ(j) − δ)T ,

is based on the least squares estimators δ(j) after removal of the j-th observation
and on the weights wj = diag(X(XT X)−1XT ) (which cannot exceed one.)

A related procedure was given by Hinkley (1977),

vH(1) =
1

1 − r/p

∑
j

(1 − wj)2(δ(j) − δ)(δ(j) − δ)T .

The weighted bootstrap variance estimator,

vw =
E?(det(XT D?X)(δ? − δ)(δ? − δ)T )

E?(det(XT D?X))
,
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Table 1. The coverage probabilities (cp) of the confidence ellipsoids and
their average volumes (av).

equal variances unequal variances
(1.3) vJ,8 vJ(1) vH(1) vw (6.1) (1.3) vJ,8 vJ(1) vH(1) vw (6.1)

cp 0.99 0.52 0.46 0.37 0.46 0.51 0.99 0.83 0.81 0.76 0.73 0.89
av 0.25 0.03 0.02 0.02 0.02 0.11 2.59 0.12 0.75 0.59 0.27 0.18

uses P ?
j copies of (yj , xj1, . . . , xjr), j = 1, . . . , p, with E? referring to the resam-

pling expected value, and D? = (P ?
1 , . . . , P ?

p ).
We also compared these procedures with the estimation method of the error

covariance matrix by Horn, Horn, and Duncan (1975) that suggests estimating
Var(δ), δ = WY , via

Ṽar (δ) = Wdiag
(
R−1(I − XW )Y Y T (I − XW )T

)
W T , (6.1)

where R = diag(I − XW ).
Table 1 illustrates the conservative nature of the ellipsoid (1.3). While it is

superior to all other procedures in terms of coverage probability, which is near
one, its volume exceeds their volumes.
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Appendix

By replacing Y by Q1/2Y , X by Q1/2X, and Σ by Q1/2ΣQ1/2, we will assume
in the proofs of Theorems 2.1 and 5.1 that Q = I.

A.1. Proof of Theorem 2.1

When Q = I, I−XW = X(XT X)−1XT = Π and XW = I−Π are projection
matrices.

With the vector Z formed by independent standard normal Z1, . . . , Zp,

P

(
(δ − β)T V̂ar (δ)

−1
(δ − β) > t2

)
= P

(
(Y − Xβ)T W T XT XW (Y − Xβ) > t2Y T (I − XW )T S(I − XW )Y

)
= P (ZT TZ < 0),



798 ANDREW L. RUKHIN

where T = Σ1/2[ΠSΠ − t−2(I − Π)]Σ1/2, and Σ1/2 is the diagonal matrix given
by the elements σi, i = 1, . . . , p. Thus T is congruent via Σ1/2 to the matrix
ΠSΠ − t−2(I − Π), which does not depend on σ1, . . . , σp.

The linear operator corresponding to I − Π leaves the subspace spanned by
the columns of the matrix X invariant, while Π annuls this subspace. Thus,
by Sylvester’s law of inertia, Theorem 4.5.8 in Horn and Johnson (1985), T
(as well as Σ1/2TΣ1/2) must have r negative eigenvalues λ1, . . . , λr and p − r
positive eigenvalues λk, k = r + 1, . . . , p. When t → ∞, λk ∼ λk(Σ1/2ΠSΠΣ1/2).
According to perturbation theory for symmetric matrices, λi ∼ −

∑
j µijt

−2j , i =
1, . . . , r, is an analytic function in t−2 for sufficiently large t.

One can identify µi = µi1 as non-zero eigenvalues of the matrix Π0Σ1/2(I −
Π)Σ1/2Π0, where Π0 is the projection matrix onto the r-dimensional eigenspace
corresponding to the zero eigenvalue of Σ1/2ΠSΠΣ1/2, i.e., the projection ma-
trix onto the r-dimensional space spanned by the columns of Σ1/2XΣ1/2, Π0 =
Σ−1/2X(XT Σ−1X)−1XT Σ−1/2. Thus

Π0Σ1/2(I − Π)Σ1/2Π0 = Σ−1/2X(XT Σ−1X)−1XT X(XT Σ−1X)−1XT Σ−1/2.

The non-zero eigenvalues of this matrix are those of the matrix

(XT Σ−1X)−1XT X(XT Σ−1X)−1XT Σ−1/2Σ−1/2X = (XT Σ−1X)−1XT X,

so that µi are the eigenvalues of the matrix (XT Σ−1X)−1XT X, and they coincide
with λi((XT X)1/2(XT Σ−1X)−1(XT X)1/2).

Because of Theorem 3.1,

P
(
ZT TZ < 0

)
= P

(
r∑

i=1

|λi|Z2
i >

p∑
k=r+1

λkZ
2
k

)

∼
H(p−r)/2(µ1, . . . , µr)Γ(p/2)

tp−r
√

λr+1 · · ·λpΓ(r/2)Γ((p − r + 2)/2)
.

To find the product λr+1 · · ·λp, notice that with φC(λ) = det(C − λI) denoting
the characteristic polynomial of a matrix C,

λr+1 · · ·λp = lim
λ→0

|φΣ1/2ΠSΠΣ1/2(λ)|
λr

.

Let V denote a 2r × 2r symmetric matrix of the form,

V =
(

XT SX − Ir

− Ir 0r

)
,

where 0r is the r × r zero matrix. Then |det(V )| = 1,

V −1 =
(

0r −Ir

− Ir − XT SX

)
,
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Σ1/2ΠSΠΣ1/2 − λI = Σ1/2SΣ1/2 − λI + Σ1/2(W T , SX)V
(

W

XT S

)
Σ1/2.

If λ does not belong to the spectrum of ΣS, one gets, from Theorem 18.1.1 in
Harville (1997),

φΣ1/2ΠSΠΣ1/2(λ) = det(Σ) det(S − λΣ−1) det(V )

×det
(

V −1 +
(

W

XT S

)
(S − λΣ−1)−1(W T , SX)

)
.

Therefore,

|φΣ1/2ΠSΠΣ1/2 |
λr

=
det(Σ) det(S − λΣ−1)

λr

× det
(

W (S − λΣ−1)−1W T W (S − λΣ−1)−1SX − Ir

XT S(S − λΣ−1)−1W T − Ir XT S(S − λΣ−1)−1SX − XT SX

)
→ det(Σ) det(S) det(WS−1W T ) det(XT Σ−1X).

A.2. Proof of Theorem 3.1

For a standard normal variable Z (Erdelyi (1953, Chap. 9, 9.3(3)))

P (Z2 > z) =
1
π

∫ ∞

1

e−zu/2 du

u
√

u − 1
, z > 0.

If Z1, . . . , Zp are independent standard normal variables, then for positive coef-
ficients λ2, . . . , λp,

P (Z2
1 >

p∑
2

λkZ
2
k) =

1
π

∫ ∞

1

E
(
e−(

P

λkZ2
k)u/2

)
du

u
√

(u − 1)

=
1
π

∫ ∞

1

du

u
√

(u − 1)
∏

k(1 + λku)
.

More generally, when r = 2m + 1 is an odd positive integer,

P
( r∑

i=1

Z2
i > z

)
=

∫ ∞

z/2
e−uum−1/2 du/Γ(m + 1/2)

=
m∑

j=1

e−z/2zj−1/2

2j−1/2Γ(j + 1/2)
+

1
π

∫ ∞

1

e−zu/2 du

u
√

u − 1
,

so that

P

(
r∑

i=1

Z2
i >

p∑
k=r+1

λkZ
2
k

)
=

m∑
j=1

E
(
e−

P

k λkZ2
k/2(

∑
k λkZ

2
k)j−1/2

)
2j−1/2Γ(j + 1/2)
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+
1
π

∫ ∞

1

E
(
e−u(

P

k λkZ2
k)/2

)
du

u
√

u − 1
.

Known formulas for the normal distribution show that for any positive integer
r, r ≤ p,

P

(
r∑

i=1

Z2
i >

p∑
k=r+1

λkZ
2
k

)

=
m∑

j=1

1
2j
√

πΓ(j + 1/2)

∫ ∞

1

E
(
e−u(

P

k λkZ2
k)/2(

∑
k λkZ

2
k)j

)
du

√
u − 1

+
1
π

∫ ∞

1

E
(
e−u(

P

k λkZ2
k)/2

)
du

u
√

u − 1

=
1√
π

m∑
j=1

j!
Γ(j + 1/2)

∑
νr+1+···+νp=j

∏
k

λνk
k Γ(νk + 1/2)
νk!Γ(1/2)

×
∫ ∞

1

du√
u − 1

∏
k(1 + uλk)νk+1/2

+
1
π

∫ ∞

1

du

u
√

(u − 1)
∏

(1 + uλk)
. (A.1)

Here and further νr+1, . . . , νp are non-negative integers, and we used the formulas,

1√
z

=
1√
2π

∫ ∞

1

e−z(u−1)/2 du√
u − 1

with z =
∑

k λkZ
2
k ,

E
(
e−uλkZ2

k/2Z2ν
k

)
=

2νΓ(ν + 1/2)
(1 + uλk)ν+1/2Γ(1/2)

combined with the multinomial theorem.
Since Z2

s = (
∑

i Z
2
i )ω2

s , s = 1, . . . , r,
∑

i ω
2
i = 1, one gets

P (
∑

i

λiZ
2
i > z) = P (

∑
i

Z2
i

∑
i

λiω
2
i > z).

By replacing λk in (A.1), k = r + 1, . . . , p, with λk/
∑

i λiω
2
i , we see that

P

(
r∑

i=1

λiZ
2
i >

p∑
k=r+1

λkZ
2
k

)

=
m∑

j=1

j!
Γ(j + 1/2)Γ(1/2)

∑
νr+1+···+νp=j

∏
k

λνk
k Γ(νk + 1/2)
νk!Γ(1/2)
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×
∫

Sr

dω

∫ ∞

1

(
∑

i λiω
2
i )

(p−r)/2 du√
u − 1

∏
k(

∑
i λiω2

i + uλk)νk+1/2

+
1
π

∫
Sr

dω

∫ ∞

1

(
∑

i λiω
2
i )

(p−r)/2 du

u
√

(u − 1)
∏

k(
∑

i λiω2
i + uλk)

.

With H(p−r)/2 defined by (2.1) when λi → 0, i = 1, . . . , r,

P

(
r∑

i=1

λiZ
2
i >

p∑
k=r+1

λkZ
2
k

)
∼

H(p−r)/2(λ1, . . . , λr)√
λr+1 · · ·λp

[ m∑
j=1

j!
Γ(j + 1/2)Γ(1/2)

×
∑

νr+1+···+νp=j

∏
k

Γ(νk + 1/2)
νk!Γ(1/2)

∫ ∞

1

du

uj+(p−r)/2
√

u − 1
+

1
π

∫ ∞

1

du

u(p−r)/2
√

u − 1

]
=

H(p−r)/2(λ1, . . . , λr)√
λr+1 · · ·λp

[ m∑
j=1

j!Γ(j + (p − r)/2)B(1/2, j + (p − r − 1)/2)
Γ(j + 1/2)Γ(1/2)Γ((p − r)/2)j!

+
1
π

B(1/2, (p − r + 1)/2)
]

=
H(p−r)/2(λ1, . . . , λr)Γ(p/2)√

λr+1 · · ·λpΓ(r/2)Γ((p − r + 2)/2)
(A.2)

with B(a, b) denoting the beta function.
The situation, when r = 2m is an even integer, is easier to handle since then

P

(
r∑

i=1

Z2
i > z

)
= e−z/2

m−1∑
j=0

zj

2jj!
,

P

(
r∑

i=1

λiZ
2
i > z

)
=

m−1∑
j=0

zj

2jj!

∫
Sr

exp
{
− z

2
∑

i λiω2
i

}
dω

(
∑

i λiω2
i )j

.

Thus

P

(
r∑

i=1

λiZ
2
i >

p∑
k=r+1

λkZ
2
k

)

=
m−1∑
j=0

1
2jj!

∫
Sr

E

(
exp

{
−

∑
k λkZ

2
k

2
∑

i λiω2
i

}
(
∑

k

λkZ
2
k)j

)
dω

(
∑

λiω2
i )j

=
∑

νr+1+···+νp≤m−1

∫
Sr

∏
k

λνk
k

2νkνk!
E

(
exp

{
−

λkZ
2
k

2
∑

i λiω2
i

}
Z2νk

k

)
dω

(
∑

λiω2
i )νk

=
∑

νr+1+···+νp≤m−1

∫
Sr

∏
k

λνk
k Γ(νk + 1/2)
Γ(1/2)νk!

(
∑

i λiω
2
i )

(p−r)/2 dω

(
∑

i λiω2
i + λk)νk+1/2

,
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so that as λi → 0, i = 1, . . . , r,

P

(
r∑

i=1

λiZ
2
i ≥

p∑
k=r+1

λkZ
2
k

)
∼

H(p−r)/2(λ1, . . . , λr)√
λr+1 · · ·λp

∑
νr+1+···+νp≤m−1

∏
k

Γ(νk + 1/2)
Γ(1/2)νk!

=
H(p−r)/2(λ1, . . . , λr)Γ(p/2)√

λr+1 · · ·λpΓ(r/2)Γ((p − r + 2)/2)
,

and (A.2) holds in this case as well.

A.3. Lemma

Lemma 1. Let for r = 2, λi = λi(AT Σ−1A), i = 1, 2, where the p × 2 matrix A

with elements ai is such that AT A = I. Then for λ1 6= λ2,

∂λ1

∂σ−2


=
1

λ1 − λ2
eT
 A

(
−λ2I + AT Σ−1A

)
AT e,

∂λ2

∂σ−2


=
1

λ1 − λ2
eT
 A

(
λ1I − AT Σ−1A

)
AT e,

where e,  = 1, . . . , p, denote the basis vectors.

The proof follows by solving simultaneous equations for the derivatives in
Lemma 1 obtained by differentiation of the two identities,

tr(AT Σ−1A) = tr(AAT Σ−1) =
∑



a2
1 + a2

2

σ2


,

det(AT Σ−1A) =
∑
,k

(a1ak2 − a2ak1)2

2σ2
 σ

2
k

.

In Section 4, Gp−2 = supΣ H2
(p−2)/2(λ1, λ2)/[(λ1λ2)p−1 det(Σ)], so that a sta-

tionary point (σ2
1, . . . , σ

2
p) satisfies the equation

∂

∂σ−2


[
2 log H(p−2)/2(λ1, λ2) − (p − 1) log(λ1λ2) − log det(Σ)

]
= σ2

 −
∑

i

hi
∂λi

∂σ−2


= 0,

where hi = −2∂ log H(p−2)/2/∂λi + (p − 1)/λi, i = 1, 2. Lemma 1 implies that
σ2

 = eT
 AFAT e, with (λ1 − λ2)F = (h2λ1 − h1λ2)I + (h1 − h2)AT Σ−1A. It is

easy to check that the vector of eigenvalues of F coincides with h.
If AT Σ−1A = OΛOT is the spectral decomposition with the diagonal matrix

Λ =diag(λ1, λ2), and an orthogonal matrix O, then F = ODOT , where O is the
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same orthogonal matrix and the diagonal matrix D is formed by the eigenvalues
of F .

Thus our optimization problem can be separated into two parts. The first
consists in minimization of

∏
 eT

 AODOT AT e over all orthogonal matrices O

for a fixed diagonal matrix D = D(λ1, λ2), and the second in the maximization
in λ1, λ2 of H2

(p−2)/2(λ1, λ2) (λ1λ2)1−p [minO
∏

 eT
 AODOT AT e]−1. This fact

holds for any r.

A.4. Proof of Theorem 5.1

When Q = I, det(WS−1W T ) det(XT X)2 = det(XT S−1X). Our goal is to
find the matrix S = UT LU with an orthogonal p × p U and a diagonal L, say,
diag(L) = (`1, . . . , `p), 0 ≤ `1 ≤ · · · ≤ `p, minimizing the last factor in (5.1),
which for ηj = λj(SΠΣ0Π) can be written as

Hr/2(η1, . . . , ηp)
[det(S) det(XT S−1X)]r/[2(p−r)]

.

The function Hr/2(η1, . . . , ηp) is Schur convex, so that

Hr/2(η1, . . . , ηp) ≥ Hr/2( diag (LUΠΣ0ΠUT )).

For the minimizer of the denominator U , the matrix UΠΣ0ΠUT is diagonal with
non-zero elements ξk = λk(ΠΣ0Π), k = r + 1, . . . , p.

Let UXi1...ir denote the minor of the matrix UX corresponding to the rows
indexed by i1, · · · , ir, so that by the Cauchy-Binet formula,

∑
UX2

i1...ir
= r!

det(XT X), and

det(XT S−1X) = det(XT UT L−1UX) =
1
r!

∑
i1,··· ,ir

UX2
i1...ir`

−1
i1

· · · `−1
ir

.

For the orthogonal matrix U , which maximizes det(XT S−1X), one must have
UX2

i1...ir
= 0, if i1, · · · , ir is not a permutation of indices 1, . . . , r. In other

words, the matrix UX has only zeros in the last p − r rows, i.e., the matrix
UXXT UT is a block-diagonal matrix formed by XT X in the upper left position,
and zero blocks elsewhere. Since ΠX = 0, the matrices XXT and ΠΣ0Π act on
orthogonal subspaces, and an orthogonal matrix U that diagonalizes ΠΣ0Π and
reduces XXT to such a form, exists.

This matrix simultaneously minimizes the denominator and maximizes the
numerator,

Hr/2(η1, . . . , ηp) = Hr/2(0, . . . , 0, `r+1ξr+1, . . . , `pξp)
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=
[Γ(p/2)]2

Γ((p − r)/2)Γ((p + r)/2)
Hr/2(`r+1ξr+1, . . . , `pξp),

and det(XT S−1X) = det(XT X)
∏r

i=1 `−1
i . Therefore,

inf
S

Hr/2(η1, . . . , ηp)
[det(S) det(XT S−1X)]r/[2(p−r)]

= min
`r+1,...,`p

Hr/2(0, . . . , 0, `r+1ξr+1, . . . , `pξp)
[det(XT X)

∏p
k=r+1 `k]r/[2(p−r)]

=
[Γ(p/2)]2

Γ((p − r)/2)Γ((p + r)/2)
min

t1,...,tp−r

Hr/2(t1, . . . , tp−r)

(
∏p−r

1 ti)r/[2(p−r)]

[ ∏p
r+1 ξk

det(XT X)

]r/[2(p−r)]

.

It follows from Theorem 2, (2.13) in Carlson (1966) that

Hr/2(t1, . . . , tp−r) ≥ (
p−r∏
1

ti)r/[2(p−r)],

so that the minimal value of the ratio in t1, . . . , tp−r is 1, and the minimizing
matrix S can be taken to be any positive multiple of the generalized (Moore-
Penrose) inverse of ΠΣ0Π. Then the eigenvalues ηi are zero (multiplicity r) or
one (multiplicity p − r), and (5.2) holds.
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