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Abstract: Amongst resolvable incomplete block designs, affine resolvable designs are

optimal in many conventional senses. However, different affine resolvable designs

for the same numbers of treatments and replicates, and the same block size, can

differ in how well they estimate elementary treatment contrasts. An aberration

criterion is employed to distinguish the best of the affine resolvable designs for this

task. Methods for constructing the best designs are detailed and an extensive online

catalog is compiled.
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1. Introduction

An oft-sought property of incomplete block designs is resolvability: an in-
complete block design for v treatments in blocks of size k (< v) is resolvable if
the blocks can be partitioned into sets containing each treatment exactly once.
The sets of this partition may be used to accommodate a second blocking factor,
orthogonal to treatments, and containing the first. Quite naturally, the sets, or
“large” blocks, are termed replicates, the number of which is denoted by r. Ex-
amples of the use of resolvable designs are abundant and may be found in several
of the papers cited forthwith.

One special class of resolvable designs has received special attention, for good
reason. Suppose any two blocks from distinct replicates of a resolvable design
intersect in the same number of treatments, call this number µ. Such a design
is said to be affine resolvable (Bose (1942)). Using s to denote the number of
small blocks per replicate in a resolvable design, and b the total number of small
blocks, then v = ks and b = rs. For an affine resolvable design, the number µ is
necessarily µ = k/s, and so v = µs2 and k = µs. That k is a multiple of s is the
limitation imposed by affineness relative to all resolvable designs. The advantage
gained is a host of very nice statistical properties.

Bailey, Monod and Morgan (1995) established Schur-optimality of affine re-
solvable designs amongst all resolvable designs with the same v, r, and k. Thus
an affine resolvable design minimizes (i) the average variance of any complete set
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of orthonormal treatment contrasts, which is proportional to the average vari-
ance of the v(v − 1)/2 pairwise treatment contrasts (i.e., is A-optimal); (ii) the
largest variance over all normalized treatment contrasts (i.e., is E-optimal); (iii)
the volume of the confidence ellipsoid for any v − 1 orthonormal treatment con-
trasts (i.e., is D-optimal). Moreover, the treatment contrasts estimation space is
especially simple for an affine resolvable design, there being just two canonical
efficiency factors 1 and (r − 1)/r.

Given these excellent statistical properties, one might think that every affine
resolvable design with the same v, r, and k should be equally efficacious. Inspec-
tion of the variances of the elementary treatment contrasts, however, shows this
notion to be false, for the distribution of these variances depends on the partic-
ular affine resolvable design selected. The purpose of this paper is to identify
the best of the affine resolvable designs for estimation of elementary contrasts.
Section 2 formalizes the notion of “best,” provides two representations of affine
resolvable designs useful in finding best designs, and constructs a family of best
designs based on orthogonal Latin squares. Section 3 provides a full solution in
up to five replicates having two blocks per replicate. The known best designs for
up to 200 treatments are compiled in an online catalog, as discussed in Section 4.
Section 5 includes additional discussion and examples.

2. Minimum PV Aberration

Though not generally partially balanced, affine resolvable designs share an
important property with the partially balanced incomplete block designs. This
property, stated next as a lemma, is the key to ordering the designs in terms of
how well they estimate elementary contrasts. For a given affine resolvable design,
let λij be the number of small blocks containing both treatments i and j. For
any resolvable design write pij for the pairwise variance Var(τ̂i − τj).

Lemma 1. (Bailey, Monod and Morgan (1995)) The pairwise variance pij when
using an affine resolvable design is a linear function of λij. Specifically,

pij =
2[r − λij + k(r − 1)]

kr(r − 1)
σ2, (2.1)

where σ2 is the plot variance.

The best affine resolvable design for estimating elementary treatment con-
trasts is one that, in some appropriate sense, makes the v(v − 1)/2 quantities
pij in (2.1) small. Lemma 1 says that, equivalently, the quantities λij should be
made large in a correspondingly appropriate sense. Since every resolvable design
has

∑
i

∑
j>i λij = bk(k − 1)/2, the average pairwise variance for every affine
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resolvable design is the same (and, as mentioned in Section 1, is minimal over all
resolvable designs). If the collection of pij (or λij) for an affine design is thought
of as a uniform distribution on its points, then the problem is one of selecting
among distributions with the same mean. The statistically meaningful route is to
consider the tails of these distributions. Specifically, minimizing the number of
poorly estimated elementary contrasts is achieved by selecting a design for which
the left tail of its λij distribution is dominant in a natural sense. This motivates
the following definition.

Definition 1. For any affine resolvable design d, let ηdu = |(i, j) : i < j and
λij = u| and write ηd = (ηd0, ηd1, . . . , ηdr). Design d1 is said to have smaller
pairwise variance aberration (shortly, PV-aberration) than design d2 if, for some
t, ηd1t < ηd2t and ηd1u = ηd2u for u < t. If no affine design has smaller PV-
aberration than d, then d has minimum PV-aberration.

If a design has minimum PV-aberration, then it minimizes the maximal pij ,
that is, it is MV-optimal amongst all affine resolvable competitors. Minimal PV-
aberration is generally stronger than MV-optimality, however, for it examines
more than just the largest pij . When there are several MV-optimal designs, min-
imizing PV-aberration selects among them according to the next largest pairwise
variance, then the next, and so on, sequentially on the ordered pij .

The task of determining the best affine resolvable design for pairwise com-
parisons has been translated into a study of the ηdu, beginning with ηd0. Needed
now is a description of affine resolvable designs that lends itself to evaluating
these quantities. Two such descriptions will be given here, beginning with the
sometimes useful connection to orthogonal arrays.

Bailey, Monod and Morgan (1995) constructed affine resolvable designs based
on orthogonal arrays of strength two as follows. Begin with an orthogonal array
OA(v, r, s) having v rows, r columns, and s symbols in each column, such that the
rows of any two columns produce the s2 ordered pairs of symbols µ times each;
necessarily v = µs2. Placing treatment i in block m of replicate q if and only if the
mth symbol occurs in row i, column q, produces an affine resolvable design (v, r, k)
for k = v/s. This process is reversible, i.e., strength two orthogonal arrays and
affine resolvable designs are equivalent combinatorial objects (see Shrikhande and
Bhagwandas (1969) and Morgan (1996)). Now λij is the number of columns in the
orthogonal array for which rows i and j share the same symbol. These numbers
are the basis for the power moments of a fractional factorial design as defined
by Xu (2003). Good factorial designs are found by sequentially minimizing the
power moments (e.g., Theorem 2 of Xu (2003)); in a broad sense this says to
make the λij small. Thus the orthogonal arrays sought here are quite different
from those pursued in the fractional factorial literature.
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Figure 1. First two replicates of an arbitrary affine resolvable design.
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Figure 2. Affine resolvable design for s = 2 with 5 replicates.

The second description, here called the standard description, takes direct
advantage of the block intersection property. Fix any ordering of the repli-
cates, then the first two replicates produce a partition of the treatments into
sets S1, S2, . . . , Ss2 , each set of size µ (see Figure 1). Replicate x > 2 may then
be described in terms of subsets of sets of treatments appearing in replicate x−1,
as follows: for e = 1, . . . , s2 and x = 3, . . . , r, the set Sem1m2···mx−2 to be the sub-
set of Sem1m2···mx−3 that appears in block mx−2 of replicate x. This is displayed
for five replicates with s = 2 in Figure 2 where, for example, S11 is the subset
of S1 appearing in the first block of replicate three, S112 is the subset of S11

appearing in the second block of replicate four, and S1121 is the subset of S112 in
the first block of replicate five. Denote the number of treatments in Sem1m2···mx

by vem1m2···mx ≥ 0.
The two descriptions provide two paths for attacking the PV-aberration

problem. The standard description is employed for the remainder of this sec-
tion and throughout Section 3, providing a common framework for all of the
results obtained. Some of these, though not all, can also be derived with roughly
equivalent effort working with the OA formulation and OA identities. The OA
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description is taken up again in Section 4, allowing best designs to be plucked
from existing OA enumerations.

The standard description admits useful formulae for the ηdu. Write m =
(m1, . . . ,mr−2) where each mi ∈ {1, . . . , s}. Starting with s = 2 as an example,
if m and m′ differ in every coordinate, then members of S1m have never occurred
with members of S4m′ , and members of S2m have never occurred with members of
S3m′ . Observe that ηd0 simply counts the treatment pairs formed by each member
of S1m with each member of S4m′ , and each member of S2m with each member
of S3m′ . That is, ηd0 =

∑∑
(v1mv4m′ + v2mv3m′), the sums being over all m

and m′ such that the Hamming distance between m and m′ is h(m,m′) = r − 2.
Extending this perspective, for any subscript e, let B(e) be the collection of
subscripts for the sets among S1, . . . , Ss2 that are contained in a small block
with Se in either of the first two replicates (other than e itself). For instance,
B(1) = {2, . . . , s} ∪ {s + 1, 2s + 1, (s − 1)s + 1} (see Figure 1). Let A(e) be all
other subscripts (other than e itself). Following the same reasoning for general
s demonstrated for s = 2 above gives

ηd0 =
1
2

∑
e

∑
e′ ∈ A(e)

∑∑
m,m′�:

h(m,m′)=r−2

vemve′m′ , (2.2)

which is a special case of this more general expression for u = 0, 1, . . . , r − 1:

ηdu =
1
2

[ ∑
e

∑
e′ ∈ A(e)

∑∑
m,m′�:

h(m,m′)=r−2−u

vemve′m′ +
∑

e

∑
e′ ∈ B(e)

∑ ∑
m,m′�:

h(m,m′)=r−1−u

vemve′m′

+
∑

e

∑ ∑
m,m′�:

h(m,m′)=r−u

vemvem′

]
. (2.3)

The number of treatment pairs in a block in every replicate is ηdr =
∑

e

∑
m vem

(vem − 1)/2.
With these expressions in hand, methods for constructing minimum PV-

aberration designs can be obtained. A general method based on sets of mutually
orthogonal Latin squares (MOLS) is given next.

Let L1, . . . , Lr−2 be a set of r − 2 MOLS of order s, and let L0 be the s × s

array whose entries are the s2 sets of size µ exactly as displayed in the first
replicate of Figure 1. The first two replicates of an affine resolvable design are as
displayed in Figure 1. For each y = 1, . . . , r−2, block m of replicate y+2 contains
the sets of L0 that are in the same cells as the mth symbol of Ly. It is easy to
see that this produces an affine resolvable design with r replicates, since any two
blocks from different replicates intersect in exactly one of the sets S1, . . . , Ss2 .
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Not obvious, but proven next, is that this design, call it d∗, has minimum PV-
aberration. Examples of d∗ are given in the first paragraph of Section 3 and by
Example 1 of Section 5.

Theorem 1. The affine resolvable design d∗ has minimum PV-aberration.

Proof. It will be shown that only designs of the form d∗ minimize ηd0, and that
ηd∗ is the same vector regardless of the choice of orthogonal Latin squares. As
always the first two replicates of any affine resolvable design are as displayed in
Figure 1. To begin, consider r = 3. Then m in Sem is a singleton and ηd0 is

ηd0 =
1
2

∑
e

∑
e′∈A(e)

∑
m

∑
m′ 6=m

vemve′m′ =
1
2

∑
e

∑
e′∈A(e)

∑
m

vem(ve′ − ve′m)

=
1
2

∑
e

∑
e′∈A(e)

∑
m

vem(µ − ve′m) =
s2(s − 1)2

2
µ2 − 1

2

∑
e

∑
m

vem

( ∑
e′∈A(e)

ve′m

)

=
s2(s − 1)2

2
µ2 − 1

2

∑
e

∑
m

vem

(
(s − 1)µ − 1

2

∑
e′∈B(e)

ve′m

)
(by affineness of reps 1 and 3)

=
(s − 1)(s − 2)

2
µv +

1
4

∑
m

∑
e

∑
e′∈B(e)

vemve′m. (2.4)

From (2.4), ηd0 attains its minimum value if and only if vemve′m = 0 for every
m ∈ {1, . . . , s}, e ∈ {1, . . . , s2}, and e′ ∈ B(e). That is, ηd0 is minimized if and
only if any two treatments from distinct sets and in the same block in replicates
one or two, are in different blocks in replicate three. Now if the treatments in any
set Se are not all in the same block in replicate three, then the minimum cannot
be attained, for there are then at most s−2 blocks into which treatments from the
other s−1 sets occurring with Se in replicate one can be placed. Thus each block
in replicate three must consist of s of the sets S1, . . . , Ss2 , and e′ ∈ B(e) ⇒ Se

and Se′ are in different blocks in replicate three. This says precisely that the
minimum for ηd0 is uniquely attained when the blocks of replicate three are
disjoint transversals of L0, that is, when they are formed as in d∗.

For a design with two replicates the number of treatment pairs that have not
occurred in a block is ηd0 = (s − 1)2µv/2, and for three replicates the minimum
PV-aberration design has ηd0 = (s−1)(s−2)µv/2, a decrease of (s−1)µv/2 due
to the third replicate. It is easy to see that any choice of L1 to build d∗ gives
the same vector ηd∗ , which is ((s− 1)(s− 2)µv/2, 3(s− 1)µv/2, 0, s2µ(µ− 1)/2).
Thus for three replicates, only designs of form d∗ have minimum PV-aberration.

Moreover, it is now clear that for r ≥ 3, the absolute minimum of ηd0 is
achieved if and only if, relative to the first two replicates, each of replicates
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3, . . . , r independently decreases ηd0 by the maximal amount of (s − 1)µv/2.
This happens if and only if (i) for each of these replicates the blocks are disjoint
transversals of L0, and (ii) no two of the sets S1, . . . , Ss2 occur together in more
than one small block. Property (i) says that the replicates correspond to r − 2
Latin squares as in the construction for d∗, and property (ii) says those Latin
squares are orthogonal. Thus minimization of ηd0 requires a design of form d∗.
Regardless of the MOLS L1, . . . , Lr−2 employed to build d∗,

ηd∗ =
(

(s − 1)(s − r + 1)
2

µv,
(s − 1)r

2
µv, 0, . . . , 0,

1
2
(µ − 1)v

)
.

This is because any two treatments in the same set Se occur together in one
small block in every replicate, and any other two treatments, from sets Se and
Se′ say, occur together in no or one small block as Se and Se′ do the same. This
completes the proof.

3. Minimum PV-Aberration with Two Blocks per Replicate

Affine resolvable designs with two blocks per replicate are shown for up to
five replicates, in the standard representation, in Figure 2. The block intersection
number is µ = v/4, and so v must be a multiple of 4. This section will determine
the minimum PV-aberration designs for s = 2 and r ≤ 5.

For r = 2 the best (and only) affine design is the first two replicates in
Figure 2. To this add the replicate

Rep #3

S2

S3

S1

S4

(3.1)

to get the unique minimum-PV aberration design in three replicates, having
ηd0 = 0. In terms of the third replicate in Figure 2, this choice results from
selecting set sizes v11 = v41 = 0 and v21 = v31 = µ. This is an example of design
d∗ of Theorem 1.

Affine resolvability places a number of restrictions on the set sizes vem. These
restrictions may be written as a collection of linear equations, any solution to
which specifies an affine resolvable design, so long as that solution consists entirely
of nonnegative integers. For instance, there are eight set sizes for the third
replicate in Figure 2, but in fact only one is linearly independent: all designs
are specified by all values of v11 ∈ {0, . . . , µ/2}. While the numbers of sets, and
consequently the number of independent set sizes, grow with r, they are still
manageable for r ≤ 5. Minimum PV-aberration designs can be determined for
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these cases by solving the equations with the additional restriction that ηd0 be
minimized. When there are multiple solutions, these are compared on ηd1, then
ηd2, and so on. Details of this approach are presented in the subsections below
covering four and five replicates.

3.1. Four replicates with two blocks per replicate

For four replicates there are 24 set sizes v11, v21, . . . , v42 and v111, v121, . . .,
v422 (cf. Figure 2). Linear restrictions on these quantities arise from the basic
properties of any affine resolvable design for s = 2: each replicate contains all v

treatments, each block contains v/2 treatments, and any two blocks from different
replicates intersect in v/4 treatments. Let Bfg be the gth block in replicate f .
As previously mentioned, v11 determines all of the vem for the third replicate,
since

v

4
= |B11 ∩ B31| = v11 + v21 ⇒ v21 =

v

4
− v11

v

4
= |B21 ∩ B31| = v11 + v31 ⇒ v31 =

v

4
− v11 (3.2)

v

2
= |B31| =

∑
e

ve1 = v11 +
(v

4
− v11

)
+

(v

4
− v11

)
+ v41 ⇒ v41 = v11,

and ve1 + ve2 = v/4 for e = 1, . . . , 4. For the fourth replicate, in addition
to vem2 = vem − vem1 for e = 1, . . . , 4 and m = 1, 2, there are four independent
restrictions specified by v/4 = |B11∩B41| = |B21∩B41| = |B31∩B41| = |B32∩B41|.
These yield

v221 = v
4 − v111 − v121 − v211

v321 = v
4 − v111 − v121 − v311

v411 = v
4 − v111 − v211 − v311

v421 = 2v111 + v121 + v211 + v311 − v
4 .

(3.3)

There are thus five free variables v11, v111, v121, v211, v311. The determined vari-
ables above satisfy 0 ≤ v221 ≤ v22 = v11, 0 ≤ v321 ≤ v32 = v11, 0 ≤ v411 ≤ v41 =
v11, and 0 ≤ v421 ≤ v42 = v/4− v11. Thus the free variables, in addition to being
nonnegative integers, must satisfy

v
4 − v11 − v111 ≤ v121 + v211 ≤ v

4 − v111

v
4 − v11 − v111 ≤ v121 + v311 ≤ v

4 − v111

v
4 − v11 − v111 ≤ v211 + v311 ≤ v

4 − v111

v
4 − 2v111 ≤ v121 + v211 + v311 ≤ v

2 − v11 − 2v111

0 ≤ v111 ≤ v11
2 ,

(3.4)

the last line with no loss of generality, and likewise v11 ≤ v/8.
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The initial problem is to satisfy the constraints (3.4) while minimizing ηd0 =
v111v422 + v121v412 + · · ·+ v222v311. The best designs will be among those having
ηd0 = 0, whenever that value is achievable. The possibilities for ηd0 = 0 are
explored in the following two cases.

Case 1: v11 = 0. This says that the third replicate is the one displayed in (3.1).
The inequalities (3.4) give v111 = 0 and v121 = v211 = v311 = v/8. Thus the
fourth replicate is

Rep #4

S121

S211

S311

S421

S112

S222

S322

S412

(3.5)

with each set displayed in (3.5) being of size v/8.

Case 2: v11 > 0. Then (3.2) and v11 ≤ v/8 say that all the sets Se1 and Se2

are nonempty. If ηd0 = 0, then each of the pairs (S11, S42), (S21, S32), (S22, S31),
and (S12, S41) must occur in the same block of replicate four. For the first three
of these pairs this says that (v111, v421) = (0, 0) or (v11, v42), (v211, v321) = (0, 0)
or (v21, v32), and (v221, v311) = (0, 0) or (v22, v31). But v111 = v11 contradicts
the last inequality in (3.4), so v111 = v421 = 0. This leaves four combinations
to explore, each of which leads to a contradiction (e.g., there is no design with
v111 = v421 = v211 = v321 = v221 = v311 = 0), or to a design that is isomorphic
to that found in Case 1. To illustrate the latter, if (v211, v321) = (0, 0) and
(v221, v311) = (v22, v31) then replicate four must be

Rep #4

S12

S22

S31

S41

S11

S21

S32

S42

(3.6)

and v/4 = |B21 ∩ B41| = v12 + v31 = 2(v/4 − v11) ⇒ v11 = v/8, and so all sets
in (3.6) have size v/8. Now make new sets S∗

11 = S12, S∗
12 = S22, S∗

21 = S31,
S∗

22 = S41, S∗
31 = S32, S∗

32 = S42, S∗
41 = S11, and S∗

42 = S21. Then among
the blocks found here are B11 = (S11, S12, S21, S22) = (S∗

41, S
∗
11, S

∗
42, S

∗
12) =

(S∗
1 , S∗

4), B31 = (S11, S21, S31, S41) = (S∗
41, S

∗
42, S

∗
21, S

∗
22) = (S∗

2 , S∗
4), and B41 =

(S12, S22, S31, S41) = (S∗
11, S

∗
12, S

∗
21, S

∗
22) = (S∗

1 , S∗
2), showing that replicates one,

three, and four found here are identical to the first three replicates in Case 1, as
claimed.
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Table 1. Minimum PV-aberration designs for four replicates, two blocks per replicate.

v (v11, v111, v121, v211, v311) ηd = (ηd0, ηd1, ηd2, ηd3, ηd4)

v≡0 (mod 8)
“

0, 0,
v

8
,
v

8
,
v

8

” “

0,
3v2

16
,
3v2

16
,
v2

16
,
v(v − 8)

16

”

v≡4 (mod 8)
“ v − 4

8
, 0, 1,

v−4

8
,
v + 4

8

” “

v−6
2

, 3v2

16
−(v−5), 3v2

16
+3, v2

16
+(v−9),

v(v−8)
16

− (v−8)
2

”

Design variables not shown are determined by (3.2) and (3.3).

Cases 1 and 2 show that ηd0 = 0 is uniquely achieved in four replicates, but
only for v a multiple of 8. This solves the minimum PV-aberration problem for
v ≡ 0 (mod 8), but v ≡ 4 (mod 8) requires further work leaning more heavily on
the relations (3.2)−(3.4). Writing (2.2) in terms of the five free variables gives

ηd0 =
3v2

16
− 4x2

0 − z(v − 4x0) − (v − 4z)θ + 2
(

θ2 −
3∑

i=1

x2
i

)
(3.7)

where, for notational simplicity, z=v11, x0 = v111, x1 = v121, x2 = v211, x3 = v311

and θ = x1 + x2 + x3. The problem is to minimize (3.7) subject to (3.4). The
details are left to Appendix A, where again ηd0 is found to be uniquely (up to
isomorphism) minimized. In terms of the free variables, the best designs for four
replicates are specified in Table 1, along with their η-distributions.

3.2. Five replicates with two blocks per replicate

As seen in Figure 2, the fifth replicate is represented by 32 additional vari-
ables. Given the variables from replicate four, all those in the second block are
determined by those in the first block via vem2 = vem − vem1 (in this subsection
m = (m1,m2) and each mi ∈ {1, 2}). The sixteen first-block variables are subject
to the five linearly independent constraints v/4 = |B11 ∩ B51| = |B21 ∩ B51| =
|B31 ∩ B51| = |B41 ∩ B51| = |B42 ∩ B51|. These resolve to

v2221 =
v

4
− v1111 − v1121 − v1211 − v1221 − v2111 − v2121 − v2211

v3221 =
v

4
− v1111 − v1121 − v1211 − v1221 − v3111 − v3121 − v3211

v4121 =
v

4
− v1111 − v1121 − v2111 − v2121 − v3111 − v3121 − v4111 (3.8)

v4211 =
v

4
− v1111 − v1211 − v2111 − v2211 − v3111 − v3211 − v4111

v4221 = 3v1111 + 2v1121 + 2v1211 + v1221 + 2v2111 + v2121 + v2211 + 2v3111

+v3121 + v3211 + v4111 −
v

2
.
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Thus there are 11 free variables for replicate five, making a total of 16 free
variables in the standard representation of the five replicate design. While an
analytic solution in the fashion of Section 3.1 would appear to be unwieldy (to
say the least), judicious use of software makes a full solution feasible, as will be
seen.

The key insight is that very small values of ηd0 give an abundance of infor-
mation about the variables in replicate five. Write e′ = A(e), which here is a
singleton (e.g., A(1) = 4), and m′

i = 3−mi. Consider ηd0 = 0. The expression for
ηd0 in (2.2) is the sum of eight products v1m1m2m3v4m′

1m′
2m′

3
and eight products

v2m1m2m3v3m′
1m′

2m′
3
, which collectively contain each of the 32 variables once. If

ηd0 = 0 then every one of these products is zero, implying that at least 16 of
the replicate five variables are zero. If vem1 (say) is zero, then either vem = 0
(determining a replicate four parameter) or vem2 = vem (determining a replicate
five parameter in terms of a nonzero replicate four parameter). The former case
also forces vem2 = 0, while ve′m′1 and ve′m′2 may take any values subject only
to ve′m′1 + ve′m′2 = ve′m′ . The latter case forces ve′m′2 = ve′m′ and consequently
ve′m′1 = 0.

Here then is a route for determining all designs having ηd0 = 0:

1. Specify a subset of the 16 replicate four variables to be set to zero, all others
taken to be positive.

2. Given the selection in step 1, specify the corresponding information about the
replicate five variables (as given in the preceding paragraph). For each pair
(vem, ve′m′) neither of which is set to zero in step 1, this entails a selection
of which of the two pairs (vem1, ve′m′1) and (vem2, ve′m′2) is set to (0, 0), and
which is set to (vem, ve′m′).

3. Solve the system of equations comprised of the five constraints (3.8) and the
specifications in steps 1 and 2. Discard solutions violating nonnegative integer
requirements.

4. Repeat for each distinct selection of variables in step 1 and for each selection
of pairs set to (0, 0) in step 2.

This algorithm assumes 0 < v11 < v/4 so that all third replicate variables are
positive. For v11 = 0 (for which any design is isomorphic to a design with v11 =
v/4), the third replicate is that shown in (3.1) and ηd0 = 0 has been achieved if
there is any five replicate solution including (3.1). Section 3.1 established that
there was exactly one four replicate design including (3.1), making this a simple
case to handle separately. This, in fact, produces the five replicate solution for
v ≡ 0 (mod 8) shown in Table 2.

While any one iteration of this algorithm would be a straightforward task
with pen and paper, there are far too many iterations to complete manually.
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Table 2. Minimum PV-aberration designs for five replicates, two blocks per replicate.

v
(v11, v111, v121, v211, v311, v1111, v1121, v1211, v1221, v2111, v2121, v2211, v3111, v3121, v3211, v4111)

ηd = (ηd0, ηd1, ηd2, ηd3, ηd4, ηd5)

v≡0 (mod 8)

(0, 0,
v

8
,

v

8
,

v

8
, 0, 0,

v

8
, 0, 0,

v

8
, 0, 0,

v

8
, 0, 0)

(0,
v2

16
,

v2

4
,

v2

8
, 0,

v(v − 8)

16
)

v≡0 (mod 36)

(
v

12
, 0,

v

6
,

v

12
,

v

12
, 0, 0,

v

18
, 0,

v

12
,

v

36
, 0,

v

12
,

v

36
, 0,

v

36
)

(0,
119v2

1296
,
61v2

324
,
29v2

216
,
4v2

81
,
47v2

1296
−

v

2
)

v≡0 (mod 28)

(
v

14
, 0,

3v

28
,

v

14
,
3v

28
, 0,

v

14
,

v

28
,

v

14
,

v

14
, 0, 0,

v

28
, 0, 0,

v

14
)

(0,
75v2

784
,
5v2

28
,
55v2

392
,
5v2

98
,
27v2

784
−

v

2
)

v≡0 (mod 12)

(
v

12
, 0,

v

6
,

v

12
,

v

12
, 0, 0,

v

6
, 0, 0,

v

12
, 0, 0,

v

12
, 0,

v

12
)

(0,
5v2

48
,
5v2

36
,
5v2

24
, 0,

7v2

144
−

v

2
)

v≡4 (mod 8)

(
v + 4

8
, 1,

v − 4

8
,

v − 12

8
,

v − 12

8
, 1, 0, 0, 0,

v − 12

8
, 1, 0,

v − 12

8
, 0, 1, 1)

(1,
v2

16
+ v − 11,

v2

4
− 2v + 18,

v2

8
+ 2, 2v − 19,

v2

16
−

3v

2
+ 9)

Best design for given v is in first applicable row. For example, for v = 36 use second row (not fourth or fifth), for v = 72

use first row (not second or fourth). Design variables not shown are determined by (3.2), (3.3), and (3.8).

This is a task for a computer; symbolic software for linear algebra can perform
the iterations quickly and in full generality. It is a simple matter to write code to
generate the selections and feed each to a symbolic equations solver (this author
used Maple). Even with machine processing, the task would be too lengthy were
it not possible to significantly reduce the number of iterations relative to “all.”
Reductions are achieved by application of the basic, design-preserving symmetries
apparent in Figure 2:

• The blocks within replicate three can be reversed, as can those within replicate
four and those within replicate five.

• Sets S1 and S4 can be interchanged, as can sets S2 and S3.

• The pair of sets (S1, S4) can be interchanged with the pair (S2, S3).

These symmetries can be used in combination with other considerations to
great effect. For example, at most eight of the sixteen variables from replicate
four can be set to zero, for with v11 > 0, at most one of vem1, vem2 can be zero.
Of the four vem with the same e, at most two can be zero, and there are only two
ways in which two can be set to zero (otherwise the design becomes isomorphic
to one having v11 = 0). Applying the symmetries above, additional restrictions
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are: (i) #{m : v1m = 0}+ #{m : v4m = 0} ≥ #{m : v2m = 0}+ #{m : v3m = 0}
(otherwise interchange (S1, S4) with (S2, S3)), (ii) #{m : v1m = 0} ≥ #{m :
v4m = 0} (otherwise interchange S1 and S4), (iii) #{m : v2m = 0} ≥ #{m :
v3m = 0} (otherwise interchange S2 and S3), (iv) v111 = 0 (otherwise reverse
blocks within replicate three and/or replicate four).

Implementing this algorithm shows that, unlike for four replicates in
Section 3.1, there is not a unique solution to ηd0 = 0. Here solutions for the same
v are found having different ηd vectors, from which the best is selected in accord
with Definition 1. Results appear in Table 2.

Like for four replicates in Section 3.1, ηd0 cannot achieve zero for every v.
Setting ηd0 = 1, now exactly one of the products vem1ve′m′2 is nonzero, which can
be taken (using suitable symmetries) to be v1111v4222 = 1. Since then v1112v4221 =
0, this implies either v111 = 1 or v422 = 1, so (again using suitable symmetries)
take v111 = v1111 = v4222 = 1. With this change, the ideas above for solving
ηd0 = 0 are easily transferred, so the details will not be repeated. Results appear
in Table 2, completing the minimum PV-aberration problem for five replicates.

4. A Catalog of Minimum PV-Aberration Designs

The methods of Sections 2 and 3 provide best affine resolvable designs for
the ranges of r shown in Table 3. The values of s displayed are sufficient to cover
all numbers of treatments up to v = 200.

A further result based on deletion of replicates is easily added. Whenever
an affine resolvable design is a BIBD, all of its λij are identical so it trivially
has minimum PV-aberration. Removing any one replicate decreases some λij by
one, leaving the rest unchanged; this too is a minimum PV-aberration design.
Now an affine resolvable design is a BIBD whenever r = (µs2 − 1)/(s − 1) =
rmax. Recalling from Section 2 that each replicate in an affine resolvable design
corresponds to a column of an orthogonal array, further deletions can be used
with small s in accord with the following result.

Theorem 2. (Shrikhande and Bhagwandas (1969), and Vijayan (1976)) OA(v,
rmax −w, s) can be extended to OA(v, rmax, s) if (i) s = 2, w ≤ 4, or (ii) s = 3,
w ≤ 2.

Thus deletion of any two replicates from an affine resolvable BIBD with s = 2
or s = 3 produces a minimum PV-aberration design. For s = 2, the same result
holds for deletion of three replicates provided that the deleted replicates, when
considered as an affine resolvable design d, minimize aberration of the vector
(ηd3, ηd2, ηd1, ηd0). Likewise deletion of a four-replicate subdesign d requires min-
imizing aberration of (ηd4, ηd3, ηd2, ηd1, ηd0) over all 4-replicate affine resolvable
designs.
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Table 3. Solutions found for s ≤ 14.

s 2 3 4 5 6 7 8 9 10 11 12 13 14
r ≤ 5 4 5 6 3 8 9 10 4 12 7 14 5

So that they may be easily accessed for application, all of these designs
(for up to 200 treatments and 23 replicates) have been compiled in an online
catalog at designtheory.org, a website devoted to free storage and access to block
designs and many of their properties. The designs are stored there as xml files,
in external representation format (see Bailey, Cameron, Dobcsanyi, Morgan and
Soicher (2006)), along with lists of canonical efficiency factors, pairwise variances,
and much more. Mutually orthogonal Latin squares, needed for the construction
of d∗ in Theorem 1, can be found in Abel, Colbourn and Dinitz (2007).

Taking further advantage of the orthogonal array representation of an affine
resolvable design, best designs can be found whenever all nonisomorphic orthog-
onal arrays OA(v, r, s) for s symbols in v rows and r columns have been enu-
merated. OA enumeration has been pursued with some vigor of late, with the
following cases now completed: OA(12, r, 2) for r ≤ 11, OA(16, r, 2) for r ≤ 15,
and OA(20, r, 2) for r ≤ 19, all in Sun, Li and Ye (2008); OA(24, r, 2) for r ≤ 7,
OA(28, r, 2) for r ≤ 6, and OA(32, r, 2) for r ≤ 6, all in Angelopoulos, Evange-
laras, Koukouvinos and Lappas (2007); and OA(18, r, 3) for r ≤ 7 in Evangelaras,
Koukouvinos and Lappas (2007). All of these lists have been searched to deter-
mine a minimum PV-aberration design, and these designs have all been added
to the online catalog.

At this writing the catalog contains 522 designs, including all parameter
combinations with v ≤ 20 for which an affine resolvable design can exist. Be-
cause all of these designs are affine, they are excellent resolvable designs. Being
additionally optimized for estimation of pairwise contrasts will make them the
preferred choice in most applications.

5. Examples and Discussion

Two detailed examples are shown next, covering Theorem 1 and the methods
of Section 3. While both example designs can be downloaded from the web cat-
alog, numbers outside the catalog’s range require the techniques they illustrate.
Those interested in the analysis of data from affine resolvable designs are referred
to the thorough coverage of this topic in Caliński, Czajka and Pilarczyk (2009).
That paper includes examples of, and data from, applications of these designs in
agricultural trials.

Example 1. A four replicate, affine resolvable design with minimal PV-
aberration, for v = 18 treatments in blocks of size k = 6, can be found with
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Figure 3. A minimal PV-aberration design for 18 treatments in blocks of size 6.

the construction underlying Theorem 1. First write v = µs2 = 2(3)2. The 18
treatments are partitioned into s2 = 9 sets of µ = 2 treatments each: S1 =
{1, 2}, S2 = {3, 4}, . . . , S9 = {17, 18}. Placing the Si’s into blocks as displayed in
general form in Figure 1 gives the first two replicates of the design (Figure 3).

Finding the remaining two replicates requires 4− 2 = 2 mutually orthogonal
Latin squares of order s = 3. They are:

1 2 3
3 1 2
2 3 1

1 3 2
3 2 1
2 1 3

Superimpose the first of these squares on the first 3 × 3 square in Figure 1;
sets Si coincident with number j in this Latin square are placed in block j of
the third replicate. Thus the first block of the third replicate contains S1, S5,
S9, the second contains S3, S4, S8, and the third S2, S6, S7. Superimpose the
second Latin square on the first 3 × 3 square in Figure 1 to similarly get the
fourth replicate in Figure 3.

Example 2. A five replicate, affine resolvable design with minimal PV-
aberration, for v = 16 treatments in blocks of size k = 8, results from the cal-
culations in Section 3. The design can be built from the information in Table 2;
the values there tell the sizes of the subsets in the third through fifth replicates
shown in general form in Figure 2. The sets comprising the first two replicates are
S1 = {1, 2, 3, 4}, S2 = {5, 6, 7, 8}, S3 = {9, 10, 11, 12}, and S4 = {13, 14, 15, 16}.
Reading from the first row of Table 2, the relevant information for the third
replicate is v11 = 0. This says no part of S1 is in the first block of replicate three
so that S11 = ∅ and S12 = S1. The remainder of replicate three follows from
affineness with respect to the first two replicates; see Figure 4.

For the fourth replicate, Table 2 says v121 = v211 = v311 = 2. So any two
treatments from each of S12 = S1, S21 = S2, and S31 = S3 are placed in the first
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Figure 4. A minimal PV-aberration design for 16 treatments in blocks of size 8.

block of replicate four. It follows that v421 = 2 and that block, and consequently
the fourth replicate, is completed by any two treatments from S42 = S4.

With the fourth replicate in place, now use v1211 = v2121 = v3121 = 2 and,
from (3.8) and the zeros specified in Table 2, v4211 = 2. So S1211 = S121,
S2121 = S212, S3121 = S312, and S4211 = S421, determining the fifth replicate of
Figure 4.

The technique of Section 3, based on the standard representation introduced
in Section 2, becomes rapidly more demanding as either r or s grows. This is to be
expected, for the equivalent problem of searching all orthogonal arrays, beyond
the smallest cases, is notoriously difficult. Pushing on to r ≥ 6 for s = 2, or to
r ≥ 5 for s = 3, is likely to require additional knowledge as to how the problem
can be reduced, be it through exploiting additional symmetries, mathematical
derivation of additional restrictions on the variables vem that are consonant with
minimum aberration, or some combination of the two.
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Appendix: Minimizing ηd0 for (v, r,2) = (4 (mod 8),4,2)

Noting that x1, x2, and x3 are interchangeable (this corresponds in Figure 2
to permutations of blocks within replicates, and of sets within blocks of the first
two replicates), there is no loss of generality in taking x1 ≤ x2 ≤ x3 ≤ v/4 − z

(the last inequality from (3.2)). Minimizing (3.7) first for fixed z, x0, and θ, says
to maximize

∑3
i=1 x2

i for fixed θ. A simple majorization argument shows this
is accomplished by sequentially minimizing x1, and then x2. Since θ is fixed,
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minimizing x1 is equivalent to maximizing x2 +x3, and by the third line of (3.4),
x2 + x3 ≤ v/4 − x0. Putting x1 = θ + x0 − v/4 and x2 + x3 = v/4 − x0 in (3.7)
gives

ηd0 ≥
3v2

16
− 4x2

0 − z(v − 4x0) − (v − 4z)
(
x1 − x0 +

v

4

)
+2

[(
x1 − x0 +

v

4

)2
− x2

1 − x2
2 −

(v

4
− x0 − x2

)2
]

= −v2

16
− 4x2

0 − 4x2
2 + (v − 4x0)x2 + 4(z − x0)x1 + vx0 (A.1)

where, since x2 + x3 = v/4 − x0 and x1 ≤ x2 ≤ x3 ≤ v/4 − z,

0 ≤ x1 ≤ x2 ≤ 1
2

(v

4
− x0

)
(A.2)

and, from the first and third lines of (3.4),

v

4
− z − x0 − x2 ≤ x1 ≤ v

4
− x0 − z. (A.3)

Importantly, the RHS of (A.2) need not be an integer, though x2 must be; this
is why different solutions are found depending on the (mod 8) value of v. The
minimization proceeds in two steps.

Step 1 : minimize with x0 = 0. From (A.1) the quantity to be minimized is

H(z, x1, x2) = −v2

16
− 4x2

2 + vx2 + 4zx1 (A.4)

which, from (A.2) and (A.3), is subject to the constraints v/4−z−x2 ≤ x1 ≤ x2

for (v − 4z)/8 ≤ x2 ≤ (v − 4)/8. If z = 0 there are no feasible values for x2, so
z ≥ 1. Also z ≤ v/8 ⇒ z ≤ (v − 4)/8. Since (A.4) is linear in x1 with positive
slope,

H(z, x1, x2) ≥ H
(
z,

v

4
− z − x2, x2

)
= −v2

16
− 4x2

2 − 4z2 − 4zx2 + v(x2 + z) ≡ H̃(z, x2). (A.5)

Now H̃(z, x2) is concave in x2, so is minimized as a function of x2 at either
x2 = (v − 4)/8 or x2 = b(v − 4z)/8c, the latter value depending on the parity of
z. Thus three evaluations of (A.5) are required, each of which produces a concave
function of z, and which are then minimized by evaluating at the endpoints for
z. This produces the minimum value of v/2−3 for ηd0 when x0 = 0 at the values
(z, x0, x1, x2, x3) = (v11, v111, v121, v211, v311) = ((v−4)/8, 0, 1, (v−4)/8, (v+4)/8)
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and (1, 0, (v−4)/8, (v−4)/8, (v+4)/8). These yield the same ηd vectors; indeed,
it may be shown that they are isomorphic solutions.

Step 2 : minimize with x0 > 0. Now fix a positive integer value for x0. The
same sequence of evaluations is carried out as in Step 1, with the appropriate
endpoints as given by (A.2) and (A.3) (which are now a bit more complicated).
For x0 > 1 many of the evaluations do not require attending to the integer nature
of the endpoints as done in Step 1; this subcase is easily eliminated as inferior to
x0 = 0. Not surprisingly, x0 = 1 requires care in strictly adhering to the exact
integer endpoints, but it, too, produces a minimum larger than v/2 − 3. Thus
the unique minimum PV-aberration design was identified in Step 1, as listed in
Table 1.
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Caliński, T., Czajka, S. and Pilarczyk, W. (2009). On the application of affine resolvable designs
to variety trials. J. Statist. Appl., to appear.

Evangelaras, H., Koukouvinos, C. and Lappas, E. (2007). 18-run nonisomorphic three level
orthogonal arrays. Metrika 66, 31-37.

Morgan, J. P. (1996). Nested designs. In Design and Analysis of Experiments, Handbook of
Statistics 13 (Edited by S. Ghosh and C. R. Rao), 939-976. North Holland, Amsterdam.

Shrikhande, S. S. and Bhagwandas. (1969). On embedding of orthogonal arrays of strength two.
In Combinatorial Mathematics and its Applications; Proceedings of the Conference Held
at the University of North Carolina at Chapel Hill, April 10−14, 1967, (Edited by R. C.
Bose and T. A. Dowling), 256-273. University of North Carolina Press, Chapel Hill.

Sun, D., Li, W. and Ye, K. (2008). An algorithm for sequentially constructing non-isomorphic
orthogonal designs and its applications, Statist. Appl. 6, 144-158.

Vijayan, K. (1976). Hadamard matrices and submatrices. J. Austral. Math. Soc. Ser. A 22,
469-475.

Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs.
Statist. Sinica 13 , 691-708.

Department of Statistics, Virginia Tech, Blacksburg, Virginia, 24061-0439, U.S.A.

E-mail: jpmorgan@vt.edu

(Received September 2008; accepted February 2009)

file:jpmorgan@vt.edu

	1. Introduction
	2. Minimum PV Aberration
	3. Minimum PV-Aberration with Two Blocks per Replicate
	3.1. Four replicates with two blocks per replicate
	3.2. Five replicates with two blocks per replicate

	4. A Catalog of Minimum PV-Aberration Designs
	5. Examples and Discussion
	Appendix: Minimizing

