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S1. Technical details

Proof of Theorem 2

We need to verify that C?(·, ·) thus defined is indeed a covariance kernel. To show this, it is enough
to show that for any finite set of spatial points s1, . . . , sm ∈ Rd, for any m ≥ 1, ((C(sl, sl′)))m

l,l′=1

is nonnegative definite. Since this is true from Theorem 1, and since given any valid covariance
function on Rd × Rd, there exists a mean-zero Gaussian spatial process Y (s) which yields the
same covariance function, the proof is completed by Skorohod’s Representation Theorem and Kol-
mogorov’s Consistency Theorem (Billingsley, 1999).

Proof of Theorem 3

Referring to Theorem 1, we only need to check the conditions on the functions {ρjj′ : 1 ≤ j, j′ ≤ N}
that ensure that the N ×N matrix R(ω) is positive definite (nonnegative definite). Note that since
ρjj′ = ρj′j ,

R(ω) =




1 ρ12(ω) · · · ρ1k(ω)
ρ12(ω) 1 · · · ρ2k(ω)
· · · · · ·

ρ1k(ω) ρ2k(ω) · · · 1




The proof is based on the following well-known inversion formula for partitioned non-singular
matrices: [

A B
C D

]−1

=
[

(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
,

where the condition for invertibility is that both A−BD−1C and D−CA−1B are invertible. If the
matrix is Hermitian, i.e., A∗ = A, B∗ = C, D∗ = D, then the necessary and sufficient condition for
positive definiteness (semidefiniteness) of the matrix on the LHS is that one of the following holds:

• A and D − CA−1B are positive definite (semidefinite);

• D and A−BD−1C are positive definite (semidefinite).

In order to prove Theorem 3, we apply the last condition for 2 × 2, 3 × 3 and 4 × 4 principal
submatrices of R(ω).



Without loss of generality we take j, k, l, m to be 1, 2, 3 and 4, respectively. Then condition
(i), viz. 1− |ρ12|2 > 0 is immediate.

For (ii), observe that we need

1−
[
ρ12

ρ13

]T [
1 ρ23

ρ32 1

]−1 [
ρ21

ρ31

]
= 1− 1

1− |ρ23|2
[
ρ12

ρ13

]T [
1 −ρ23

−ρ32 1

] [
ρ21

ρ31

]
> 0,

which translates into (ii) after a simplification. Note also that the quantity appearing in (ii) is
really the determinant of the 3×3 principal submatrix (corresponding to rows 1,2, and 3) of R(ω).

For (iii), we first consider the following scaler




ρ12

ρ13

ρ14




T 


1 ρ23 ρ24

ρ32 1 ρ34

ρ42 ρ43 1



−1 


ρ21

ρ31

ρ41




=
1

∆234




ρ12

ρ13

ρ14




T 


1− |ρ34|2 ρ23 − ρ24ρ43 ρ24 − ρ23ρ34

ρ32 − ρ34ρ42 1− |ρ24|2 ρ34 − ρ32ρ24

ρ42 − ρ43ρ32 ρ43 − ρ42ρ23 1− |ρ23|2







ρ21

ρ31

ρ41




where ∆234 = 1 − |ρ23|2 − |ρ24|2 − |ρ34|2 + 2Re(ρ23ρ34ρ42) is the determinant of the (2, 3, 4) sub-
matrix of R(ω). In order that the 4× 4 principal submatrix corresponding to (1, 2, 3, 4) is positive
definite (semidefinite) we need that the quantity in the display above is less than (≤) 1. Some
straightforward algebra yields condition (iii).

Expression for Γjj′(s; θ̃l, θ̃l′ , κ)

Γ12(s; θ̃l, θ̃l′ , κ) = Γ21(s; θ̃l′ , θ̃l, κ)

=
1

2
√

π

[
g1(α1, θ̃l, θ̃l′)e−g2(α1,eθl,eθl′ )‖s‖2 − βg1(α2, θ̃l, θ̃l′)e−g2(α2,eθl,eθl′ )‖s‖2

]
, (S1.1)

Γjj(s; θ̃l, θ̃l′ ; κ) =
1

2
√

π

1√
θ̃l + θ̃l′

exp

(
− θ̃lθ̃l′

θ̃l + θ̃l′
‖ s ‖2

)
, j = 1, 2. (S1.2)

where, for k = 1, 2, 1 ≤ l, l′ ≤ L,

g1(αk, θ̃l, θ̃l′) =

√
αk

αk(θ̃l + θ̃l′) + θ̃lθ̃l′
, g2(αk, θ̃l, θ̃l′) =

αkθ̃lθ̃l′

αk(θ̃l + θ̃l′) + θ̃lθ̃l′
.

S2. Gibbs sampling

Here we provide a detailed derivation of the posterior distributions that were used for the develop-
ments in Section 3.1. We focus on the parameters in model (12) - (15).

Let yT = (yT
1 ,yT

2 , . . . ,yT
N )T denote the vector of measurements arranged in sub-vectors corre-



sponding to each process and ordered by the location-vector s = (s(1), . . . , s(d)), with

s(i) = (s(i)
1 , . . . , s(i)

n )
T
, i = 1, . . . , d,

and

yj = (yj1, . . . , yjn)T , j = 1, . . . , N.

The vector of parameters for data from model (12) - (15)

θT = (c11, . . . , cNL, θ̃11, , . . . , θ̃NL, Σl, . . . ,Σl, {νjj′ 1 ≤ j < j′ ≤ N}, α1, α2, β, τ) (S2.3)

has the associated likelihood function

L(y|θ) ∝ |C?|− 1
2 exp

(
−1

2
yT C?−1y

)
, (S2.4)

where C? denotes the Nn × Nn matrix of the spatial variance-covariance matrix whose elements
are defined by (12) - (15). The developments in Section 3.1 now entail that the joint distribution
of y and θ is the product of L(y|θ) with the prior density

π(θ) = π(νjj′ , 1 ≤ j < j′ ≤ N)
∏L

l=1

(
π(Σl)

∏N

j<j′
j,j′=1

π(θ̃jl)π(cjl)
)

π(α1)π(α2)π(β).

The next step is to derive the posterior densities for each of the components of (S2.3) that will
allow us to carry out Bayesian inference via the Gibbs sampler (e.g., Robert and Casella, 2004,
Ch. 10). For this development we shall employ the symbol “\” to indicate removal of a particular
parameter or a group of parameters from θ.

We begin the marginalization process by noting that the posterior density for parameter τ is

π(τ |y, θ\τ) ∝ |C?|− 1
2 exp

(
−1

2
yT C?−1y

)
× exp (−bττ) τaτ−1.

The posterior distributions of αk, k = 1, 2 would follow the posterior density:

π(αk|y, θ\αk) ∝ |C?|− 1
2 exp

(
−1

2
yT C?−1y

)
exp (−bαk

αk) αk
aαk

−1.

For the posterior distribution of the local, process-dependent decay parameter θ̃jl, j = 1, . . . , N, l =
1, . . . , L, we obtain

π(θ̃jl|y,θ\θ̃jl) ∝ |C?|− 1
2 exp

(
−1

2
yT C?−1y

)
exp

(
−beθjl

θ̃jl

)
(θ̃jl)

aeθjl
−1

.

Similarly, the local process-dependent scale parameters cjl have a posterior distribution

π(cjl|y,θ\cjl) ∝ |C?|− 1
2 exp

(
−1

2
yT C?−1y

)
exp

(−bcjl
cjl

)
(cjl)

acjl
−1.

The posterior distribution of β is proportional to the likelihood in (S2.4) times the appropriate



indicator function corresponding to the specific range, since the prior specification of this parameter
is a Uniform distribution.

Since the mapping ν? → (N, diag(ν?)) is one-to-one, we view the prior (posterior) of N (equiv-
alently (νjj′)j<j′) as a marginal (corresponding to N) of the prior (posterior) of (N, (ν?

jj)
N
j=1). Note

also that the posterior distribution of ν? is

π(ν?|y, θ\N) ∝ |C?|− 1
2 exp

(
−1

2
yT C?−1y

)

× exp
(
−1

2
trace(ν̃−1ν?−1)

)
det(ν?)−(d+1)/2

In order to sample from the posterior distribution of N we just need to sample from the posterior
distribution of ν? and use the normalization N = diag(ν?)−

1
2 ν?diag(ν?)−

1
2 .

Finally, the posterior for Σl, l = 1, . . . , L can be deduced from

π(Σl|y, θ\Σl) ∝ |C?|− 1
2 exp

(
−1

2
yT C?−1y

)

× exp
(
−1

2
trace(Ψ−1Σl

−1)
)

det(Σl)
−(2+1)/2

S3. Sample realization from models for simulation



Model 1 Model 2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Model 3 Model 4

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Model 5 Model 6

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Model 7 Model 8

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Figure S3.1: Realization of the first coordinate process (Y1) under the 8 different models
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