
Statistia Sinia 20 (2010): Supplement 1EMPIRICAL LIKELIHOOD ESTIMATION FOR SAMPLESWITH NONIGNORABLE NONRESPONSEFang Fang, Quan Hong, and Jun ShaoGE Consumer Finane, Eli Lilly and Company, andUniversity of Wisonsin-Madison and East China Normal UniversityAbstrat: Nonresponse is very ommon in survey sampling. Nonignorable nonre-sponse, a response mehanism in whih the response probability of a survey variableY depends diretly on the value of Y regardless of whether Y is observed or not,is the most diÆult type of nonresponse to handle. The population mean estima-tors ignoring the nonrespondents typially have heavy biases. This paper studiesan empirial likelihood-based estimation method, with samples under nonignor-able nonresponse, when an observed auxiliary ategorial variable Z is available.The likelihood is semiparametri: we assume a parametri model on the responsemehanism and the onditional probability of Z given Y , and a nonparametrimodel on the distribution of Y . When the number of Z ategories is not small,a pseudo empirial likelihood method is applied to redue the omputational in-tensity. Asymptoti distributions of the proposed population mean estimators arederived. For variane estimation, we onsider a bootstrap proedure and its on-sisteny is established. Some simulation results are provided to assess the �nitesample performane of the proposed estimators.Key words and phrases: Empirial likelihood, Pseudo likelihood, Nonignorable non-response, Sample survey, Semiparametri likelihood, Strati�ed samples.1. IntrodutionNonresponse is a ommon phenomenon in sample surveys. Let Y be a vari-able of interest having nonrespondents and Z be a ovariate with no nonresponse.If the propensity P (Æ = 1jY;Z), where Æ is the response indiator for Y , dependsnot only on Z and observed Y , but also on unobserved Y , then the nonresponsemehanism is nonignorable. Nonignorable nonresponse reates a great hallengein the estimation of the mean of Y based on inomplete survey data. Ignoringthe dependene of nonresponse probability on unobserved Y typially leads toheavy bias.



2 FANG FANG, QUAN HONG AND JUN SHAOGreenlees, Reee, and Zieshang (1982) studied maximum likelihood estima-tors for survey data with nonignorable nonresponse, based on a parametri modelon the propensity P (Æ = 1jY;Z) and a parametri (normal) model on L(Y jZ),the distribution of Y onditional on Z. However, parametri models (espeiallynormal models) on L(Y jZ) for survey data are often not valid. In fat, Greenlees,Reee, and Zieshang (1982) admitted that the normality assumption on L(Y jZ)was not valid for the data in their example, even though their method was betterthan the method of ignoring the fat that nonresponse was nonignorable.On the other hand, it is impossible to develop a pure nonparametri methodthat produes a onsistent estimator of the mean of Y in the presene of nonignor-able nonresponse. Thus, some semiparametri methods assuming a parametrimodel on one of P (Æ = 1jY;Z) and L(Y jZ) have been proposed in the literature.Tang, Little, and Rahunathan (2003) developed a likelihood method by assum-ing a parametri model on L(Y jZ); they assumed that P (Æ = 1jY;Z) = P (Æ =1jY ) but otherwise is nonparametri. Qin, Leung, and Shao (2002) proposed anempirial likelihood method by assuming a parametri model on P (Æ = 1jY;Z)and a nonparametri model on L(Y jZ); the resulting estimator of the mean of Yis similar to the estimator obtained by weighting eah respondent by the inverseof an estimated propensity P (Æ = 1jY;Z) (Robins, Rotnitzky, and Zhao (1994)).For survey data, �nding a suitable parametri model for P (Æ = 1jY;Z) is muheasier than �nding an appropriate parametri model for L(Y jZ). However, theestimation of P (Æ = 1jY;Z) is still diÆult under a parametri assumption onP (Æ = 1jY;Z) beause of the presene of unobserved Y values.In many survey problems the ovariate Z is ategorial, e.g., age group, sex,rae, eduation level, type of industry et., while the main variable Y is ontinu-ous. If there is an appropriate parametri model on the onditional distributionL(ZjY ) given Y (e.g., the logisti model), then we an improve the approah inQin, Leung, and Shao (2002). The purpose of this paper is to study an empiriallikelihood approah under parametri models on P (Æ = 1jY;Z) and L(ZjY ) witha disrete Z, and under a nonparametri model on the distribution of Y . Ourapproah works for a strati�ed sampling design with a superpopulation withineah stratum, whih is ommonly used in pratie. Furthermore, we study apseudo empirial likelihood to redue the amount of omputation when the num-



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 3ber of Z ategories is not small. Although losing some eÆieny, the estimatorsbased on the pseudo empirial likelihood are still onsistent and asymptotiallynormal. Note that the same tehnique has been applied to the ase of ignorablenonresponse (Fang, Hong, and Shao (2009)).This paper is organized as follows. Setion 2 presents details on the samplingdesign and model, and gives results for estimation without imputation. In ad-dition to the derivation of empirial likelihood estimators, their onsisteny andasymptoti normality are established. Setion 3 disusses the pseudo empiriallikelihood estimators. Setion 4 onsiders variane estimation by bootstrapping.In Setion 5, we onsider two imputation methods related to the results in Se-tions 2 and 3. Setion 6 examines by simulation the �nite sample performaneof the proposed estimators, under some response patterns and models. The Ap-pendix ontains proofs or skethed proofs.2. Empirial Likelihood ApproahWe onsider the following sampling design ommonly used in suh businesssurveys as the Current Employment Survey onduted by the U.S. Bureau ofLabor Statistis (Wolter, Shao, and Hu� (1998)), the Transportation AnnualSurvey onduted by the U.S. Census Bureau (Census Bureau (1987)), and theFinanial Farm Survey onduted by Statistis Canada (Ranourt (1999)). The�nite population P is strati�ed into H (a �xed positive integer) strata and sam-ples are taken independently aross the strata. Within eah stratum, a largenumber of units are either independently sampled with replaement aordingto a probability sampling plan, or seleted as a simple random sample withoutreplaement with a negligible sampling fration. Aording to the sampling plan,survey weights f!ig are onstruted so that for any set of values fxig,ES  Xi2S !ixi! =Xi2P xi;where S is the sample and ES is the expetation with respet to sampling.Let Y be the variable of interest in the survey and Z be a ategorial ovariatetaking values in fz1; :::; zsg. We assume that values of (Y;Z) are iid from asuperpopulation within eah stratum, and are independent aross strata. Topresent the main idea, we �rst onsider the speial ase of one stratum so that



4 FANG FANG, QUAN HONG AND JUN SHAOthe subsript for stratum is omitted.Under the superpopulation model (within eah stratum), Y has an unknownnonparametri distribution F , and we assume a parametri probability funtionP (Z = zjY = y) = f(y; z; �); (1.1)where � is an unknown parameter vetor and f is a known funtion. For eahsampled unit, the Z value is always observed, but the Y value may be a nonre-spondent. We assume that the probability that an individual responds on Y andepend on both Y and Z aording to�(Y;Z; ) = P (Æ = 1jY;Z); (1.2)where Æ is the response indiator for Y, � is a known funtion, and  is anunknown parameter vetor.Without loss of generality, we assume that the �rst r sampled units arerespondents and the rest of n� r sampled units are nonrespondents. Thus, theobserved data set isf(Yi; Zi); i = 1; :::; rg [ fZi; i = r + 1; :::; ng:Let pi = dF (Yi) be the point mass that F plaes on Yi. For observed Yi, thelikelihood is �(Yi; Zi; )f(Yi; Zi; �)pi:For a nonrespondent Yi, the likelihood isZ [1� �(y; Zi; )℄f(y; Zi; �)dF (y):Together with the survey weights (see, e.g., Chen and Qin (1993)), we obtain thefollowing log-likelihood for the entire samplerXi=1 wi log(�(Yi; Zi; )f(Yi; Zi; �)pi)+ nXi=r+1wi log�Z [1� �(y; Zi; )℄f(y; Zi; �)dF (y)� ;



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 5where wi = !i=N and N is the �nite population size. The use of wi, instead of!i, does not hange the maximization of the log-likelihood over the parameters.Sine Z takes values z1; :::; zs, this log-likelihood an be written asrXi=1 wi log(�(Yi; Zi; )f(Yi; Zi; �)pi) + sXj=1 aj log(�j); (1.3)where aj =Pni=r+1wiIfZi=zjg, IA is the indiator funtion of the event A, and�j = P (Æ = 0; Z = zj) = Z [1� �(y; zj ; )℄f(y; zj ; �)dF (y):Note that �j is a funtion of , �, and F . Maximizing (1.3) over , �, and F isequivalent to maximizing (1.3) over , �, pi's, and �j 's subjet topi � 0; rXi=1 pi = 1; �j = rXi=1 pi[1� �(Yi; zj ; )℄f(Yi; zj ; �); j = 1; :::; s: (1.4)By introduing Lagrange multipliers, we an derive thatpi = wiN̂r +Psj=1 �j[(1 � �(Yi; zj ; ))f(Yi; zj ; �) � �j ℄ ; i = 1; :::; r; (1.5)where N̂r =Prk=1wk and �j 's are Lagrange multipliers satisfyingrXi=1 wi[(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j℄N̂r +Psj=1 �j[(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j℄ = 0; j = 1; :::; s: (1.6)Treating pi in (1.5) as a funtion of �, , � = (�1; :::; �s), and � = (�1; :::; �s),and substituting pi into (1.3), the pro�le log-likelihood with Lagrange multipliersis l(�; ; �; �) = rXi=1 wi log(�(Yi; Zi; )f(Yi; Zi; �)) + sXj=1 aj log(�j)+ rXi=1 wi log wiN̂r +Psj=1 �j [(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j℄! ;Di�erentiating l(�; ; �; �) with respet to �, �, �, and , and setting the partial



6 FANG FANG, QUAN HONG AND JUN SHAOderivatives to 0, we haveaj�j+ rXi=1 wi�jN̂r +Psj=1 �j [(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j℄ = 0; j = 1; :::; s; (1.7)rXi=1 wi[(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j℄N̂r +Psj=1 �j[(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j℄ = 0; j = 1; :::; s; (1.8)rXi=1 (wi� log f(Yi; Zi; �)�� � wiPsj=1 �j(1� �(Yi; zj ; ))�f(Yi; zj ; �)=��N̂r +Psj=1 �j [(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j℄)=0;(1.9)rXi=1 (wi� log�(Yi; Zi; )� + wiPsj=1 �j��(Yi; zj ; )=�f(Yi; zj ; �)N̂r +Psj=1 �j [(1� �(Yi; zj ; ))f(Yi; zj ; �) � �j℄)=0:(1.10)From (1.5), (1.7), and the fat that Pri=1 pi = 1, we have�j = �aj=�j ; j = 1; :::; s: (1.11)Let (�̂; ̂; �̂; �̂) be a solution to equations (1.8)-(1.11). The maximum empiriallikelihood estimator (MELE) of (�; ) is (�̂; ̂), and the MELE of F is the em-pirial distribution F̂ putting mass p̂i at Yi, i = 1; :::; r, where p̂i is given by (1.5)with (�; ; �; �) replaed by (�̂; ̂; �̂; �̂). If the parameter of interest is the �nitepopulation mean �Y =Pi2P Yi=N , its MELE is�̂Y = rXi=1 p̂iYi: (1.12)If the parameter of interest is the ell mean �Yj , the �nite population mean of Ygiven Z = zj, the MELE is�̂Yj = rXi=1 p̂if(Yi; zj ; �̂)Yi= rXi=1 p̂if(Yi; zj ; �̂): (1.13)Let � = (�; ; �), �̂ = (�̂; ̂; �̂), and �̂ = �̂=N̂r + J=(1 �Psj=1 �̂j), whereJ is the s-vetor of ones. The following result shows that (�̂; �̂) onverges to(�0; 0), where �0 = (�0; 0; �0) is the true value of (�; ; �). Also, �̂Y and �̂Yjare onsistent for �Y and �Yj, respetively. Furthermore, (�̂; �̂), �̂Y , and �̂Yj are



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 7asymptotially normal. The proof is given in the Appendix.Theorem 1. Assume the following.(i) The sample from the �nite population is seleted with replaement aordingto a probability sampling plan or seleted as a simple random sample without re-plaement. The values of (Y;Z) in the population is iid from a superpopulationaording to (1.1)-(1.2) with a nonparametri Y -marginal F .(ii) As n!1, N !1, n=N ! 0, maxi�N wi = O(1=n), and nPNi=1wi=N ! dfor some onstant d.(iii) f(y; z; �) and �(y; z; ) are twie ontinuously di�erentiable in � and for any y and z, and k� log f(y;z;�)�� k2, k� log �(y;z;)� k2, k�2f(y;z;�)����� k2, k�2�(y;z;)��� k2,k�f(y;zj ;�)�� k3, k��(y;zj ;)� k3, k[�f(y;zj ;�)�� ℄[�f(y;zk ;�)�� ℄�k2, k[��(y;zj ;)� ℄[��(y;zk ;)� ℄�k2,and k[�f(y;zj ;�)�� ℄[��(y;zk ;)� ℄�k2 are bounded by some integrable funtions in a neigh-borhood of �0 and 0, j; k = 1; :::; s.(iv) For any nonzero vetor  2 Rp+q, the value of �  � log f(y; zj ; �0)=��� log�(y; zj ; 0)=� !depends on j, where p and q are the dimensions of � and .(v) �0 is a unique root of E[g(Y; �)jÆ = 1℄ = 0 and E[g(Y; �0)g(Y; �0)� jÆ = 1℄ ispositive de�nite, where g = (g1; :::; gs)� andgj(y; �) = (1�Psk=1 �k) [(1� �(y; zj ; ))f(y; zj ; �)� �j ℄Psk=1 �(y; zk; )f(y; zk; �) : (1.14)(vi) �(y; z; ) has a positive lower bound.Then, there exists a sequene f�̂; �̂; n = 1; 2; :::g suh that as n!1,P (�̂ is a solution to (1.8)-(1.10))! 1; (1.15)pn �̂ � 0�̂ � �0 !!d N(0;�); (1.16)where the probability P and !d (onvergene in distribution) are with respetto the sampling and the superpopulation, and � is a positive de�nite matrix.Furthermore, if funtions ky �f(y;zj ;�)�� k2 and ky ��(y;zj ;)� k2 are bounded by some



8 FANG FANG, QUAN HONG AND JUN SHAOintegrable funtions in a neighborhood of �0 and 0 for eah j, thenpn( �̂Y � �Y )!d N(0; �2) and pn( �̂Yj � �Yj)!d N(0; �2j ); j = 1; :::; s; (1.17)where �2 and �2j are some onstants.In ondition (v), E[g(Y; �)jÆ = 1℄ = 0 has a unique root �0 is equivalentto �j = R [1 � �(y; zj ; )℄f(y; zj ; �)dF (y) is uniquely de�ned by (�; ), i.e., aondition of identi�ability of the � by (�; ).We now onsider the strati�ed sample desribed in the beginning of thissetion. If (�; ) in onditions (1.1) and (1.2) has di�erent values in di�erentstrata, then we an solve (1.7)-(1.10) within eah stratum to obtain an estimatorof (�; ) for eah stratum. If (�; ) is ommon for all strata, then onstraint (1.4)is within eah stratum, the sums in (1.7)-(1.8) are over eah stratum, and thesums in (1.9)-(1.10) are over all strata. In any ase, the marginal distributionof Y for stratum h is the empirial distribution putting mass p̂i at Yi with i instratum h; the estimator of �Y is the weighted average of estimators given by(1.12) over all strata with the weights Wh = Nh=N , where Nh is the populationsize for stratum h and N =PhNh; the estimator of �Yj is the ratio of the averagesof the numerators and denominators in (1.13) with the weights Wh. Theorem 1still holds if all onditions are given within eah stratum and nh=n overges to apositive onstant, where nh is the sample size in stratum h and n =Ph nh.3. Pseudo Empirial LikelihoodWhen s (the number of Z ategories) is not small, numerial solutions to(1.8)-(1.11) may be omputationally intensive. Hene, we apply the idea ofpseudo likelihood (Gong and Samaniego (1981)). That is, we substitute eah�j in (1.8)-(1.11) by a onsistent estimator ~�j . Note that onsistent estimatorsof �j's are easy to onstrut. For example, we may estimate �j by~�j = nXi=1 wiIfÆi=0;Zi=zjg. nXi=1 wi: (1.18)Let ~� = (~�j ; j = 1; :::; s), ~�j = �aj=~�j , and ~� = (~�1; :::; ~�s). Maximizingthe pseudo empirial likelihood l(�; ; ~�; ~�) over (�; ) results in the maximumpseudo empirial likelihood estimator (MPELE) ( ~�; ~). Note that the MPELE



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 9is di�erent from MELE sine ~� is not �̂. However, we an diretly establish theonsisteny and asymptoti normality of the MPELE.Let ~pi be the estimator of pi obtained by using (1.5) with �, , �j , and�j replaed by ~�, ~, ~�j, and ~�j , respetively. Beause the MPELE is used,Pri=1 ~pi 6= 1, although Pri=1 ~pi !p 1. The MPELE of �Y is~�Y = rXi=1 ~piYi. rXi=1 ~pi; (1.19)and the MPELE of �Yj is~�Yj = rXi=1 ~pif(Yi; zj ; ~�)Yi. rXi=1 ~pif(Yi; zj ; ~�): (1.20)Estimators under strati�ed sampling an be obtained as desribed in the end ofSetion 2, with the sums in (1.18) within eah stratum.The following result shows that the MPELE is onsistent and asymptotiallynormal.Theorem 2. Assume the onditions in Theorem 1. There exists a sequenef~�; ~; n = 1; 2; :::g suh that, as n!1,P  �l( ~�; ~; ~�; ~�)�(�; ) = 0!! 1 and pn ~� � �0~ � 0 !!d N(0;�p); (1.21)where �p is a positive de�nite matrix. Furthermore,pn( ~�Y � �Y )!d N(0; �2p) and pn( ~�Yj � �Yj)!d N(0; �2pj); j = 1; :::; s; (1.22)where �2p and �2pj are some onstants.4. Variane Estimation by BootstrappingIt is a ommon pratie in sample surveys to report a variane estimate foreah estimate of the parameter of interest. We fous on the most ommonly usedestimators, the mean estimators �̂Y , ~�Y in (1.12) and (1.19), and the ell meanestimators �̂Yj, ~�Yj in (1.13) and (1.20). Beause the formulation of these estima-tors is ompliated, it is diÆult to derive an analyti form of their asymptotivarianes, �2, �2j in (1.17), and �2p, �2pj in (1.22) . Thus, we apply the bootstrap



10 FANG FANG, QUAN HONG AND JUN SHAOmethod that onsists of the following steps. In the following, �̂ denotes any of �̂,̂, �̂, �̂, �̂Y , �̂Yj, ~�, ~, ~�, ~�Y , and ~�Yj.1. Within stratum h, draw a simple random sample of size nh with replaementfrom the set of sampled units (respondents or nonrespondents). Carry outthis proedure independently aross strata. For eah unit in the bootstrapsample, the bootstrap data are the Z and Y values (if the Y is missing, thebootstrap datum is treated as missing) and their survey weights.2. Compute �̂�, whih is the same as �̂ but with the original data replaed bythe bootstrap data generated in Step 1.3. Repeat the previous steps independently B times and obtain �̂�1; :::; �̂�B .Estimate the variane of �̂ by the sample variane of �̂�1; :::; �̂�B .The following result establishes the asymptoti validity of the bootstrap.Theorem 3. Assume the onditions in Theorem 1.(i) Let (1.8�)-(1.11�) be the bootstrap analog of (1.8)-(1.11). Then there exists asequene f�̂�; �̂�; n = 1; 2; � � � g suh that, as n!1,P�(�̂� is a solution to (1.8�)-(1.10�))!p 1; (1.23)pn �̂� � �̂�̂� � �̂ !!d� N(0;�); (1.24)where � is given in (1.16), P� denotes the bootstrap probability onditional onthe data, and #�n !d� # means P�(#�n 2 B) � P (# 2 B) !p 0 for any Borel setB. Furthermore,pn( �̂Y � � �̂Y )!d� N(0; �2) and pn( �̂Y �j � �̂Yj)!d� N(0; �2j ); (1.25)where �2 and �2j are de�ned in (1.17).(ii) Let ~�� = (~��1; :::; ~��s ), with ~��j being the bootstrap analog of ~�j in (1.18). Thenthere exists a sequene f~��; ~�; n = 1; 2; � � � g suh that, as n!1,P� �l�( ~��; ~�; ~��; ~��)�(�; ) = 0!!p 1 and pn ~�� � ~�~� � ~ !!d� N(0;�p); (1.26)



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 11where �p is given in (1.21). Further,pn( ~�Y � � ~�Y )!d� N(0; �2p) and pn( ~�Y �j � ~�Yj)!d� N(0; �2pj); (1.27)where �2p and �2pj are de�ned in (1.22).5. ImputationImputation is often arried out for pratial reasons (Kalton and Kasprzyk(1986)). After imputation, estimates of parameters are omputed by treatingimputed values as observed data and using the standard formulas for the aseof no nonresponse. In this setion we onsider imputation for the estimationof the population mean �Y and the population ell mean �Yj. Let Ŷi = Yi if Yiis a respondent and Ŷi be an imputed value if Yi is a nonrespondent. Afterimputation, the population mean �Y and ell mean �Yj are estimated by�̂YI = nXi=1 wiŶi; (1.28)�̂YjI = nXi=1 wiŶiIfZi=zjg. nXi=1 wiIfZi=zjg; (1.29)respetively. Under strati�ed sampling, (1.28)-(1.29) should be modifed as de-sribed at the end of Setion 2.The naive mean imputation method imputes eah nonrespondent with Z =zj by the ell sample mean Pri=1wiYiIfZi=zjgÆPri=1 wiIfZi=zjg. The naive ran-dom imputation method imputes eah nonrespondent with Z = zj by a randomsample with replaement from respondents with Z = zj , where eah Yi withZi = zj has probability wiIfZi=zjg=Pri=1wiIfZi=zjg to be seleted, i = 1; :::; r.The population mean estimators based on the naive imputation methods are in-onsistent sine they do not onsider the di�erene between the respondents andthe nonrespondents.Using the MELE estimators developed in Setion 2, we onsider the followingtwo imputation proedures.1. Empirial Likelihood Mean Imputation. For eah nonrespondent with Z =zj , the imputed Y value isPri=1 p̂i[1� �(Yi; zj ; ̂)℄f(Yi; zj ; �̂)YiPri=1 p̂i[1� �(Yi; zj ; ̂)℄f(Yi; zj ; �̂) :



12 FANG FANG, QUAN HONG AND JUN SHAO2. Empirial Likelihood Random Imputation. Eah nonrespondent with Z =zj is imputed by a random sample with replaement from all respondents,where the probability of eah Yi to be seleted isp̂i[1� �(Yi; zj ; ̂)℄f(Yi; zj ; �̂)Pri=1 p̂i[1� �(Yi; zj ; ̂)℄f(Yi; zj ; �̂) :For strati�ed sampling, imputation should be arried out within eah stratum.Similarly, using the MPELE estimators developed in Setion 3, we an de-velop Pseudo Empirial Likelihood Mean Imputation and Random Imputation.They are similar to the Empirial Likelihood Mean Imputation and Random Im-putation that we desribed above. We just need to replae �̂, ̂, and p̂i by ~�, ~,and ~pi, respetively.The following result shows that the estimators of �Y and �Yj based on thesefour imputation proedures are onsistent and asymptotially normal.Theorem 4: Under the onditions of Theorem 1, for empirial likelihood meanimputation, empirial likelihood random imputation, pseudo empirial likelihoodmean imputation, or pseudo empirial likelihood random imputation,pn( �̂YI � �Y )!d N(0; �2I ); and pn( �̂YjI � �Yj)!d N(0; �2jI); j = 1; :::; s;where �2I and �2jI are some onstants.The asymptoti varianes �2I and �2jI do not have simple analyti forms.Variane estimation an be arried out using the bootstrap proedure desribedin Setion 4. It should be emphasized that, to address the variability aused byimputation, nonrespondents in eah bootstrap data set must be imputed usingthe bootstrap data and the same imputation method as that used to impute theoriginal data set, as suggested by Shao and Sitter (1996).6. Simulation ResultsIn this setion, we report on simulation of the �nite-sample properties of theMELE, MPELE, the empirial likelihood imputation, and the pseudo empiriallikelihood imputation. We reated a �nite population similar to the Current Es-tablishment Survey onduted by the U.S. Bureau of Labor Statistis. We hosefour di�erent industries as four strata with sizes N1 = 3370; N2 = 2910; N3 =



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 135430, and N4 = 4110. The variable Y is the total pay for eah establishmentand values of Y in stratum h were generated from a superpopulation Fh. Theform of Fh was hosen to be the gamma distribution and F1 = �(43; 0:20),F2 = �(42; 0:19), F3 = �(38; 0:20), and F4 = �(50; 0:17), where �(a; b) denotesthe gamma distribution with shape parameter a and sale parameter b. Theparameters in Fh's were hosen to math the mean and variane of a data setfrom the Current Establishment Survey.The ovariate Z 2 f1; 2; 3; 4; 5g was generated by the logisti modelP (Z = jjY = y) = expf�j + �5yg1 +P4k=1 expf�k + �5yg ; j = 1; 2; 3; 4;P (Z = 5jY = y) = 11 +P4k=1 expf�k + �5yg ;where �k, k = 1; 2; 3; 4; 5, are unknown parameters whose values in the simulationare 0:25, 0:5, 0:75, 1, and �0:1, respetively.The sampling plan was strati�ed simple random sampling. In eah stratum,the sampling fration was 0.05. For eah sampled unit, the Y respondent wasgenerated aording to the response probability funtionP (Æ = 1jY = y; Z = j) = expf�10� j + yg1 + expf�10 � j + ygwith a parameter  = 1:8 or 2, orP (Æ = 1jY = y; Z = j) = expf10 + j + yg1 + expf10 + j + ygwith  = �1:4. The following table lists the response rate for eah Z and themean response rate E[P (Æ = 1jZ)℄. 1.8 2 -1.4P (Æ = 1jZ = 1) 0.888 0.951 0.457P (Æ = 1jZ = 2) 0.803 0.910 0.621P (Æ = 1jZ = 3) 0.697 0.842 0.751P (Æ = 1jZ = 4) 0.560 0.749 0.856P (Æ = 1jZ = 5) 0.469 0.675 0.908E[P (Æ = 1jZ)℄ 0.651 0.804 0.756



14 FANG FANG, QUAN HONG AND JUN SHAOFor eah of the three , Table 1-3 respetively reports the relative bias (RB)and variane (VAR) of the MELE estimators in (1.12) and (1.13), the MPELEestimators in (1.19) and (1.20), the naive estimators that simply ignore nonre-spondents, and the imputation estimators in (1.28) and (1.29) based on empirial,pseudo empirial, or naive mean imputation and random imputation. We alsoreport their bootstrap variane estimators (Vboot) based on the bootstrap repli-ation size B = 200, the overage probabilities (CP) and the lengths (LEN) ofthe bootstrap on�dene intervals of the formpoint estimate� 1:96pVbootthat approximately have nominal overage probability 95%.Table 4 reports the mean and the variane (VAR) of the parameter estimates.Table 5 reports the ratios of the mean squared errors. Eah MPELE is omparedwith its ounterpart; that is, ~�Y in (1.19) is ompared with �̂Y in (1.12), ~�Yj in(1.20) is ompared with �̂Yj in (1.13), and �̂YI in (1.28) (or �̂YjI in (1.29)) withpseudo empirial likelihood mean (or random) imputation is ompared with �̂YIin (1.28) (or �̂YjI in (1.29)) with empirial likelihoodmean (or random) imputationdesribed in Setion 5.The omputation was done using MATLAB in a UNIX at the Department ofStatistis, University of Wisonsin-Madison. For eah  and a single simulation,it took about 12 seonds to ompute the MELE, MPELE, and imputed estimatesfor �Y and �Yl, l = 1; :::; 5. Beause of the bootstrap, however, eah simulationwith a given  took about 40 minutes. For eah , we ran the simulation 250times.The simulation results an be summarized as follows.1. In all ases, the proposed population mean and population ell mean esti-mators based on empirial likelihood or pseudo empirial likelihood (withimputation or not) performed well in terms of the relative bias (less than1%) and variane, while the naive methods had heavy relative biases up to10.31%.2. The bootstrap variane estimate for our proposed estimators worked well inmost ases in terms of its bias and the overage probability of the bootstrapon�dene interval. For the naive estimators, the overage probability of



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 15the on�dene interval was very low.3. Although the MPELE estimators required less omputational intensities,they were less eÆient in terms of larger MSE ompared with the MELEestimators. Most of the MSE ratios were greater than 1 (Table 5). For theestimators without imputation, the ratios were all greater than 5, and someof them were even greater than 20. The lengths of on�dene intervals ofthe MPELE estimators were all greater than those of the MELE estimators,espeially for the estimators without imputation.4. Although the varianes of the � and  parameter estimates were a little bitlarge, the estimation of the population mean and population ell means,whih is our major interest, was still good.AknowledgmentsThe authors wish to thank the referees for their omments and suggestions. JunShao's work was partially supported by the NSF Grants DMS-0404535 and SES-0705033.ReferenesCensus Bureau (1987). Nonertainty sample spei�ation. BSR-87 AtionMemo D.06, the U.S. Census Bureau.Chen, J. and Qin, J. (1993). Empirial likelihood estimation for �nite pop-ulation and the e�etive usage of auxiliary information. Biometrika 80,107-116.Fang, F., Hong, Q., and Shao, J, (2009). A pseudo empirial likelihood approahfor strati�ed samples with nonresponse. Annals of Statistis 37, 371-393.Gong, G. and Samaniego, F. (1981). Pseudo maximum likelihood estimation:theory and appliation. Annals of Statistis 9, 861-869.Greenlees, J.S., Reee, W.S., and Zieshang, K.Y. (1982). Imputation of miss-ing values when the probability of response depends on the variable beingimputed. Journal of the Amerian Statistial Assoiation 77, 251-261.Kalton, G. and Kasprzyk, D. (1986). The treatment of missing data. SurveyMethodology 12, 1-16.



16 FANG FANG, QUAN HONG AND JUN SHAOQin, J., Leung, D., and Shao, J. (2002). Estimation with survey data under non-ignorable nonresponse or informative sampling. Journal of the AmerianStatistial Assoiation 97, 193-200.Ranourt, E. (1999). Estimation with nearest-neighbor imputation at StatistisCanada. Proeedings of the Survey Researh Methods Setion, AmerianStatistial Assoiation, 446-451.Robins, J.M., Rotnitzky, A., and Zhao, L.P. (1994). Estimation of regressionoeÆients when some regressors are not always observed. Journal of Amer-ian Statistial Assoiation 89, 846-86.Shao, J. and Sitter, R.R. (1996). Bootstrap for imputed survey data. Journalof the Amerian Statistial Assoiation 91, 1278-1288.Tang, G., Little, R.J., and Raghunathan, T.E. (2003). Analysis of multivariatemissing data with nonignorable nonresponse. Biometrika 90, 747-764.Wolter, K., Shao, J., and Hu�, L. (1998). Variane estimation for the Cur-rent Employment Statistis Program. Proeedings of the Setion on SurveyResearh Methods. Amerian Statistial Assoiation, 775-780.AppendixThe proofs in this appendix are for the speial ase of one stratum. The proof for the aseof H > 1 is similar.Lemma 1: Let  (x; �) be a funtion satisfying E( (x; �)) = 0. Assume that E [ (x; �0) � (x; �0)℄is positive de�nite, � (x; �)=�� is ontinuous in a neighborhood of �0, k� (x; �)=��k andk (x; �)k3 are bounded by some integrable funtions in the neighborhood. Under the ondi-tions (i)-(ii) of Theorem 1, with probability 1, there exists a � suh that Pni=1 wi (xi;�)1+�� (xi;�) = 0.Furthermore, let l(�; �) = �Pni=1 wi logf1+ �� (xi; �)g, then in an Op(n�1=3) neighborhood of�0, � = �(�) is a funtion of �, and l(�; �(�)) attains its maximum value at some interior pointof the ball � � �0 � n�1=3.Proof. Consider the problem of maximizing Pni=1 wi log pi under the onstraints pi � 0,Pni=1 pi = 1, and Pni=1 pi (xi; �) = 0. Sine E( (x; �)) = 0, it follows from the arguments ofOwen (1990) that, as n ! 1, 0 is ontained in the onvex hull of f (xi; �); i = 1; :::; ng withprobability 1. For a given �, when 0 is inside of the onvex hull, a unique maximum exists,whih an be found via Lagrange multipliers as follows. LetH = nXi=1 wi log pi + �(1� nXi=1 pi)� nXk=1wk�� nXi=1 pi (xi; �)



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 17where � and � are Lagrange multipliers. Taking derivatives with respet to pi, we have�H�pi = wipi � �� nXk=1wk�� (xi; �) = 0:Then nXi=1 pi �H�pi = nXi=1 wi � � = 0;whih leads to pi = wi1 + �� (xi; �)� nXi=1 wiwith � satisfying nXi=1 wi (xi; �)1 + �� (xi; �) = 0:This proves the �rst onlusion for Lemma 1.Note that it is neessary that 0 � pi � 1, whih implies that � and � must satisfy 1 +�� (xi; �) � wi=Pni=1 wi for eah i. For �xed �, let D� = f� : 1 + �� (xi; �) � wi=Pni=1 wig;D� is onvex and losed, and it is bounded when 0 is inside the onvex hull of the  (xi; �)'s.Notie that ���n nXi=1 wi  (xi; �)1 + �� (xi; �)o = � nXi=1 wi (xi; �) �(xi; �)[1 + �� (xi; �)℄2is negative de�nite. By the inverse funtion theorem � = �(�) is a di�erentiable funtion. Let i =  i(xi; �). Sine 0 = nXi=1 wi  i1 + �� i = nXi=1 wi� i �  i �i1 + �� i ��;we have  nXi=1 wi i = k�k nXi=1 wi  i �i1 + �� i � k�k1 + k�k � nXi=1 wi i �i ;where  � = max1�i�n k ik = o(n1=3), a.s., by lemma 3 of Owen (1990) and the onditionEk (xi; �)k3 < 1. When k� � �0k = n�1=3, Pni=1 wi i = Op(n�1=3) and Pni=1 wi i �i =Op(1). Then k�k1 + k�ko(n1=3) = Op(n�1=3);and � = �(�) = Op(n�1=3): Furthermore, similar to the proof of Owen (1990), we have�(�) = h nXi=1 wi i �i i�1h nXi=1 wi ii+ op(n�1=3); k� � �0k = n�1=3:



18 FANG FANG, QUAN HONG AND JUN SHAOIt follows from the arguments of Qin and Lawless (1994) thatl(�; �(�)) < l(�0; �(�0)) in probability;if k � � �0 k= n�1=3. Then l(�; �(�)) attains its loal maximum value at some interior point ofthe ball � � �0 � n�1=3.Proof of Theorem 1. Let �j = �j=N̂r + (1 �Psj=1 �j)�1, � = (�1; :::; �s)� and g(Yi; �) bede�ned by (1.14). Then1 + ��g(Yi; �) = 1 + Psj=1 h (1�Psj=1 �j)�jPrk=1 wk + 1i [(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j ℄Psj=1 �(Yi; zj ; )f(Yi; zj ; �)= 1 + Psj=1 [(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j ℄Psj=1 �(Yi; zj ; )f(Yi; zj ; �)+Psj=1(1�Psj=1 �j)�j [(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j ℄Prk=1 wkPsj=1 �(Yi; zj ; )f(Yi; zj ; �)= Psj=1 [f(Yi; zj ; �)� �j ℄Psj=1 �(Yi; zj ; )f(Yi; zj ; �)+(1�Psj=1 �j)Psj=1 �j [(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j ℄Prk=1 wkPsj=1 �(Yi; zj ; )f(Yi; zj ; �)= 1�Psj=1 �jPsj=1 �(Yi; zj ; )f(Yi; zj ; �)+(1�Psj=1 �j)Psj=1 �j [(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j ℄Prk=1 wkPsj=1 �(Yi; zj ; )f(Yi; zj ; �)= (1�Psj=1 �j)fPrk=1 wk +Psj=1 �j [(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j ℄gPrk=1 wkPsj=1 �(Yi; zj ; )f(Yi; zj ; �)Then the funtion l(�; ; �; �) an be written asl(�; ; �; �)= rXi=1 wi log(�ifi) + sXj=1 aj log(�j) + rXi=1 wi log wi(1�Psj=1 �j)(1 + ��g(Yi; �))Prk=1 wk Psj=1 �ijfij= � rXi=1 wi logf1 + ��g(Yi; �)g+ rXi=1 wi log(�ifi)� rXi=1 wi log sXj=1 �ijfij!+ sXj=1 aj log(�j) + rXi=1 wi log(1� sXj=1 �j) + rXi=1 wi log wiPrk=1 wk ;where �i = �(Yi; Zi; ), fi = f(Yi; Zi; �), �ij = �(Yi; zj ; ), and fij = f(Yi; zj ; �). Thereforel(�; ; �; �) is equal to l(�; �) = l1(�; �) + l2(�) + l3(�)



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 19plus a term that does not depend on the parameters, wherel1(�; �) = � rXi=1 wi logf1 + ��g(Yi; �)g;l2(�) = rXi=1 wi log ��(Yi; Zi; )f(Yi; Zi; �)�� rXi=1 wi log � sXj=1 �(Yi; zj ; )f(Yi; zj ; �)�;l3(�) = sXj=1 aj log �j + rXi=1 wi log 1� sXj=1 �j! :Notie thatrXi=1 wigj(Yi; �)1 + ��g(Yi; �) = rXi=1 wi[(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j ℄Prk=1 wk +Psj=1 �j [(1� �(Yi; zj ; ))f(Yi; zj ; �)� �j ℄ rXk=1wk:Then onstraint (1.6) beomes rXi=1 wig(Yi; �)1 + ��g(Yi; �) = 0: (1.30)Sine E[g(Yi; �)jÆ = 1℄ = 0, it follows from (1.30) and Lemma 1 that in an Op(n�1=3) neighbor-hood, we an determine uniquely a di�erentiable impliit funtion� = �(�) = Op(n�1=3) if k � � �0 k� Op(n�1=3);and l1(�; �(�)) < l1(�0; �(�0)) in probability; (1.31)if � is in the set Bn = f� :k � � �0 k= n� 13 g:For l2(�; ) = l2(�), denote E as the onditional expetation of (Y; Z) given Æ = 1, whihis E = Xz2fz1;��� ;zsgZ ��(y; z; 0)f(y; z; �0)P (Æ = 1) dF (y):Then�l2(�0; 0)�� = rXi=1 wi �f(Yi; Zi; �0)=��f(Yi; Zi; �0) � rXi=1 wi Psj=1 �(Yi; zj ; 0) �f(Yi;zj ;�0)��Psj=1 �(Yi; zj ; 0)f(Yi; zj ; �0)!p P (Æ = 1)E �f(y; z; �0)=��f(y; z; �0) � P (Æ = 1)E Psj=1 �(y; zj ; 0) �f(y;zj;�0)��Psj=1 �(y; zj ; 0)f(y; zj ; �0)= 0By similar alulation, we an show that �l2(�0;0)� !p 0, �2l2(��;�)�(�;)2 !p �U , where (��; �) is



20 FANG FANG, QUAN HONG AND JUN SHAObetween (�; ) and (�0; 0), and U is de�ned asU =  U11 U12U�12 U22 ! ; (1.32)U11 = Z  Xj �jfj ��fj�� �2 � (Pj �j �fj�� )2Pj �jfj ! dF (y);U12 = Z  Xj �fj�� ��j�� � [Pj �j �fj�� ℄[Pj ��j� fj ℄�Pj �jfj ! dF (y);U22 = Z  Xj fj�j ���j� �2 � (Pj ��j� fj)2Pj �jfj ! dF (y);where �j = �(y; zj ; 0) and fj = f(y; zj ; �0). For any nonzero vetor  = (1; 2), by Cauhy'sinequality,�U = Z 8><>:X s�f � �1 �f�� +sf� � �2 ���!2 � �P� � �1 �f�� +P f � �2 ��� �2P�f 9>=>; dF (y) � 0If the equation holds, then �1 � log f(y;zj ;�0)�� + �2 � log �(y;zj ;0)� = (y) for j = 1; � � � ; s, a.s., whihontradits ondition (iv). Hene the equation does not hold and U is positive de�nite. Byentral limit theorem and delta method, we an show that pn �l2(�0;0)�(�;) is asymptotial normal.When � 2 Bn, we have (�; ) = (�0; 0) + n� 13 u� ; k u k� 1,l2(�)� l2(�0) = l2(�; )� l2(�0; 0)= n� 13 u� �l2(�0; 0)�(�; ) + 12n� 23 u� �2l2(��; �)�(�; )2 u= n� 23 �n 13 u� �l2(�0; 0)�(�; ) � 12u�Uu+ op(1)�Denote �min is the smallest eigenvalue of U . Sine U is positive de�nite, �min > 0. ThenP (k n 13 u� �l2(�0; 0)�(�; ) k� �min4 k u k) = P (k u�pn�l2(�0; 0)�(�; ) k� �min4 k u k n 16 )� P (k pn�l2(�0; 0)�(�; ) k� �min4 n 16 )! 1where the last onvergene holds sine pn �l2(�0;0)�(�;) is asymptotial normal and �min4 n 16 !1.Sine 12u�Uu � �min4 k u k� �min4 k u k� 0 and the last equation holds if and only if k u k=0,we have l2(�) � l2(�0) in probability if � 2 Bn; (1.33)and the equation holds if and only if k u k=0.



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 21For l3(�) = l3(�),�l3(�0)��j = aj�j0 � rXi=1 wi 11�Psj=1 �j0= nXi=r+1wi IfZi = zjg�j0 � rXi=1 wi 11�Psj=1 �j0!p E�(1� Æ)IfZ = zjg�j0 ��E Æ 11�Psj=1 �j0!= P (Æ = 0; Z = zj)�j0 � P (Æ = 1)1�Psj=1 P (Æ = 0; Z = zj)= 1� 1= 0By similar alulation we an show that�2l3(��)��2 !p �diag� 1�10 ; � � � ; 1�s0�� 11�Psj=1 �j0 JJ�where �� is between � and �0 and J is a olumn vetor of 1 with length s. By entral limittheorem and delta method, we an show that pn �l3(�0)�� is asymptotially normal. If we denotek � � �0 k= n� 13 v, then by similar arguments for l2(�), we an show thatl3(�) � l3(�0) in probability if � 2 Bn; (1.34)and the equation holds if and only if k v k=0.Therefore, by (1.31), (1.33)and (1.34), we show that, in the set Bn,l(�; �(�)) < l(�0; �(�0)) in probability.Beause l(�; �(�)) is ontinuous and di�erentiable, it must attain loal maximum at some point�̂ inside the ball with surfae Bn and �̂ and �̂ = �(�̂) satisfyQ1n(�̂; �̂) = 0; Q2n(�̂; �̂) = 0; (1.35)where Q1n(�; �) = rXi=1 wi g(Yi; �)1 + ��hg(Yi; �) ;Q2n(�; �) = rXi=1 wi (�g(Yi; �)=��)�1 + ��g(Yi; �) � � �l2(�)�� � �l3(�)�� :Notie that (1.35) is equivalent to that (�̂; �̂) is the solution to (1.8)-(1.11). This proves (1.15).



22 FANG FANG, QUAN HONG AND JUN SHAOThe onsisteny of (�̂; �̂) follows from the fat that Bn shrinks to �0 as n!1.Expanding Q1n(�̂; �̂), Q2n(�̂; �̂) at (�0; 0), we have0 = Q1n(�̂; �̂) = Q1n(�0; 0) + �Q1n(�0; 0)�� (�̂ � �0) + �Q1n(�0; 0)��� (�̂ � 0) + op(�n);0 = Q2n(�̂; �̂) = Q2n(�0; 0) + �Q2n(�0; 0)�� (�̂ � �0) + �Q2n(�0; 0)��� (�̂ � 0) + op(�n);where �n = k�̂ � �0k+ k�̂k. Then �̂�̂ � �0 ! = S�1n  �Q1n(�0; 0) + op(�n)�Q2n(�0; 0) + op(�n) ! ; (1.36)where Sn =  �Q1n��� �Q1n���Q2n��� �Q2n�� !!p S =  S11 S12S�12 S22 ! ; (1.37)S11 = �(1� sXj=1 �j0)E(gg� jÆ = 1);S12 = (1� sXj=1 �j0)E��g�� ����Æ = 1�� ;S22 = diag fU; V g ;V = diag� 1�10 ; � � � ; 1�s0�+ 11�Pj �j0 JJ� ;�j0 is the true value of �j , U is de�ned in (1.32), and J is a olumn vetor of 1 with length s.By entral limit theorem,pn Q1n(�0; 0)Q2n(�0; 0) !!d N(0; T ) = N  0; �T11 00 T22 !! ; (1.38)where T11 = dS11; T22 = diag fdU; dV g ;and d is de�ned in ondition (ii). Then by (1.36), (1.37) and (1.38), we onlude that (1.16)holds with � = S�1TS.Let k(�; �) =Pri=1 piYi. Then by Taylor expansion,�̂Y = k(�̂; �̂) = k(�0; 0) + �k(�?; �?)�� (�̂ � 0) + �k(�?; �?)�� (�̂ � �0); (1.39)where (�?; �?) is between (�̂; �̂) and (�0; 0). By the onvergene of (�̂; �̂), we an show that��k(�?;�?)�� ; �k(�?;�?)�� � is onsistent for a onstant vetor . Then by (1.36), (1.37), (1.38) and



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 23(1.39), we havepn( �̂Y � �Y ) = pn( �̂Y �EY ) + op(1)= pn k(�0; 0)� �S�1 Q1n(�0; 0)Q2n(�0; 0)!�EY!+ op(1) (1.40)= pnt nXi=1 wi�(xi; �0)!+ op(1); (1.41)where xi = (Æi; Yi; Zi),�(xi; �0) = (ÆiYi(1�Pj �j0)Pj �ijfij ; Æi; Æig(Yi; �0); Æi � log fi�� � Pj �ij �fij��Pj �ijfij ! ;Æi � log �i� � Pj ��ij� fijPj �ijfij ! ; (1� Æi)IfZi = zjg�j0 � Æi1�Pj �j0 �����j=1;��� ;s);fi = f(Yi; Zi; �0), �i = �(Yi; Zi; 0), fij = f(Yi; zj ; �0), �ij = �(Yi; zj ; 0), and funtion t isde�ned ast(�; �; �; �; &; %1; � � � ; %s) = �� � �S�1 f�;��;�&;�%1; � � � ;�%sg� �EYwith � being s-dimensional, � being p-dimensional, & being q-dimensional, and �, �, %1; � � � ; %sbeing real numbers. Denote �� = Pni=1 wi�(xi; �0) and E� = E(��). By entral limit theoremand Æ-method, pn �t(��)� t(E�)�!d N(0; �2); (1.42)where �2 = �t0(E�)� [dE��� �E�E�� ℄ �t0(E�)�� :Then by (1.41) and (1.42), we havepn� �̂Y � �Y � t(E�)�!d N(0; �2): (1.43)On the other hand, �̂Y � �Y !p 0 by (1.40) and the fat that k(�0; 0) !p EY . Then it follows(1.43) that t(E�) = 0 and pn( �̂Y � �Y )!d N(0; �2). The proof of pn( �̂Yj � �Yj) !d N(0; �2j ) issimilar. This shows (1.17) and ompletes the proof of Theorem 1.Proof of Theorem 2. Notie that l(�; ; ~�; ~�) = l2(�). By the proof of Theorem 1, (1.21)holds with �p = dU�1. (1.22) an be shown similarly to the proof of (1.17).Proof of Theorem 3. The proof is similar to the proof of Theorems 1 and 2, but we replaethe funtions and the parameters with their bootstrap analog. First of all, in Lemma 1, if we



24 FANG FANG, QUAN HONG AND JUN SHAOdenote fx�1; � � � ; x�ng as a bootstrap sample, sineE (g(x�; �0)) = E 1n nXi=1 g(xi; �0)! = E(g(x; �0)) = 0;we know that when k� � �0k = Op(n�1=3), as n ! 1, 0 is ontained in the onvex hull offg(x�i ; �); i = 1; � � � ; ng with probability 1. The bootstrap analog of Lemma 1 follows. Then,similar to the proof of Theorem 1, we an show (1.23) and (�̂�; �̂�) satis�esQ�1n(�̂�; �̂�) = 0; Q�2n(�̂�; �̂�) = 0;where Q�1n and Q�2n are the bootstrap analog of Q1n and Q2n. Then �̂� � �̂�̂� � �̂ ! = S�n�1 �Q�1n(�̂; �̂) + op(��n)�Q�2n(�̂; �̂) + op(��n) ! ; (1.44)where ��n = k�̂� � �̂k+ k�̂� � �̂k andS�n =  �Q�1n(�̂;�̂)��� �Q�1n(�̂;�̂)���Q�2n(�̂;�̂)��� �Q�2n(�̂;�̂)�� ! : (1.45)By Lemma 1 of Fang, Hong, and Shao (2008), S�n !p S, where S is given in (1.37), andpn Q�1n(�̂; �̂)�Q1n(�̂; �̂)Q�2n(�̂; �̂)�Q2n(�̂; �̂) !!d� N(0; T ); (1.46)where T is given in (1.38). Notie that Q1n(�̂; �̂) = 0 and Q2n(�̂; �̂) = 0. Then by (1.44), (1.45)and (1.46), we show (1.24). The proofs of (1.25), (1.26) and (1.27) are similar.Proof of Theorem 4. The proofs for the mean imputation estimators are similar to thatof Theorem 1. Conditional on the sample, the mean of the random imputation estimatorsare equal to the mean imputation estimators. Then the results for the random imputationestimators follow from those for the mean imputation estimators and Lemma 1 of Shenker andWelsh (1988).
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Table 1: For  = 1:8: Relative Bias (RB) in % and Variane (VAR) of the Estimators, Bootstrap Variane Estimates (Vboot), Coverage Probability (CP) in %, andLength (LEN) of 95% Con�dene IntervalMethod Naive MELE MPELERB VAR Vboot CP LEN RB VAR Vboot CP LEN RB VAR Vboot CP LENWithoutImputation Y 5.92 .0026 .0025 0 .19 .23 .0042 .0041 91.5 .24 .16 .0446 .0522 96.5 .84Y1 1.95 .0175 .0160 74.0 .49 .26 .0043 .0044 93.5 .25 .19 .0362 .0414 96.5 .75Y2 3.45 .0112 .0127 30.0 .44 .26 .0043 .0044 92.8 .25 .17 .0362 .0414 96.9 .75Y3 5.75 .0106 .0107 0 .40 .24 .0043 .0044 91.8 .25 .18 .0362 .0414 96.5 .75Y4 8.63 .0105 .0097 0 .38 .23 .0043 .0044 90.8 .25 .20 .0362 .0414 96.9 .75Y5 10.59 .0151 .0141 0 .46 .16 .0146 .0150 94.1 .47 .41 .1208 .1333 94.2 1.37MeanImputation Y 6.74 .0026 .0025 0 .19 .15 .0031 .0034 91.2 .22 .15 .0055 .0059 95.8 .29Y1 2.30 .0173 .0157 66.4 .48 .10 .0151 .0165 96.2 .50 .22 .0173 .0162 95.8 .50Y2 3.62 .0137 .0126 26.8 .43 .10 .0138 .0127 94.4 .43 .18 .0127 .0128 96.2 .44Y3 5.75 .0105 .0106 0 .40 .31 .0101 .0102 93.2 .39 .23 .0122 .0120 91.9 .42Y4 8.45 .0103 .0097 0 .38 .13 .0070 .0079 91.5 .34 .04 .0141 .0143 95.8 .45Y5 10.31 .0149 .0145 0 .46 .09 .0131 .0145 93.6 .47 .14 .0183 .0236 96.2 .58RandomImputation Y 6.72 .0032 .0030 0 .21 .13 .0033 .0037 91.0 .23 .12 .0058 .0062 95.4 .30Y1 2.24 .0194 .0169 70.8 .50 .08 .0154 .0170 95.7 .50 .19 .0176 .0166 95.8 .50Y2 3.64 .0124 .0142 30.8 .46 .10 .0147 .0134 94.0 .45 .20 .0138 .0135 96.9 .45Y3 5.70 .0124 .0125 1.2 .43 .29 .0109 .0111 91.5 .41 .16 .0135 .0130 94.6 .44Y4 8.47 .0117 .0118 0 .42 .12 .0081 .0092 91.5 .37 .00 .0155 .0156 96.2 .48Y5 10.26 .0185 .0175 0 .51 .04 .0163 .0168 94.0 .50 .10 .0213 .0258 96.5 .61
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Table 2: For  = 2: Relative Bias (RB) in % and Variane (VAR) of the Estimators, Bootstrap Variane Estimates (Vboot), Coverage Probability (CP) in %, and Length(LEN) of 95% Con�dene IntervalMethod Naive MELE MPELERB VAR Vboot CP LEN RB VAR Vboot CP LEN RB VAR Vboot CP LENWithoutImputation Y 3.61 .0021 .0020 0 .17 .18 .0026 .0026 94.8 .20 .13 .0243 .0323 94.6 .67Y1 .81 .0158 .0162 92.4 .49 .17 .0032 .0032 90.4 .22 .03 .0196 .0232 96.8 .57Y2 1.64 .0120 .0120 80.4 .42 .18 .0032 .0032 94.8 .22 .01 .0196 .0232 93.5 .57Y3 3.19 .0105 .0096 23.6 .38 .17 .0032 .0032 93.6 .22 .02 .0196 .0232 94.2 .57Y4 5.09 .0079 .0078 .4 .34 .20 .0032 .0032 94.8 .22 .04 .0196 .0232 94.6 .57Y5 6.58 .0108 .0103 0 .39 .15 .0118 .0116 95.6 .42 .26 .0752 .0915 94.2 1.14MeanImputation Y 3.96 .0022 .0021 0 .17 .14 .0026 .0024 94.4 .19 .06 .0035 .0035 96.2 .23Y1 1.11 .0153 .0161 88.8 .49 .12 .0171 .0168 94.8 .50 .18 .0169 .0165 94.6 .50Y2 1.79 .0118 .0119 76.8 .42 .17 .0124 .0126 95.2 .43 .05 .0132 .0126 93.5 .44Y3 3.21 .0105 .0095 22.0 .38 .13 .0097 .0098 94.4 .38 .27 .0108 .0104 95.0 .40Y4 4.97 .0080 .0078 .4 .34 .15 .0079 .0076 94.8 .34 .03 .0103 .0107 96.2 .40Y5 6.61 .0106 .0104 0 .39 .12 .0119 .0116 95.6 .42 .15 .0153 .0162 96.5 .49RandomImputation Y 3.94 .0026 .0023 0 .18 .12 .0027 .0025 94.4 .19 .08 .0036 .0037 95.8 .23Y1 1.15 .0159 .0167 87.6 .50 .12 .0176 .0169 95.2 .50 .18 .0172 .0167 94.6 .50Y2 1.78 .0126 .0128 79.6 .44 .18 .0129 .0129 95.2 .44 .08 .0136 .0129 94.6 .44Y3 3.20 .0116 .0106 26.8 .40 .12 .0105 .0103 94.8 .39 .26 .0110 .0108 94.2 .41Y4 4.92 .0096 .0091 .4 .37 .15 .0089 .0083 94.8 .35 .07 .0109 .0112 96.2 .41Y5 6.58 .0133 .0123 0 .43 .06 .0135 .0127 96.0 .44 .15 .0159 .0172 95.0 .50
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Table 3: For  = �1:4: Relative Bias (RB) in % and Variane (VAR) of the Estimators, Bootstrap Variane Estimates (Vboot), Coverage Probability (CP) in %, andLength (LEN) of 95% Con�dene IntervalMethod Naive MELE MPELERB VAR Vboot CP LEN RB VAR Vboot CP LEN RB VAR Vboot CP LENWithoutImputation Y -3.96 .0018 .0019 0 .17 .20 .0031 .0031 94.0 .21 .57 .1084 .1195 95.4 1.18Y1 -9.89 .0201 .0204 0 .55 .20 .0043 .0039 90.0 .24 .58 .1224 .1369 96.2 1.28Y2 -7.11 .0135 .0131 0 .44 .25 .0043 .0039 92.5 .24 .63 .1224 .1369 95.4 1.28Y3 -4.84 .0085 .0090 2.0 .37 .19 .0043 .0039 91.5 .24 .58 .1224 .1369 95.4 1.28Y4 -2.86 .0065 .0068 19.2 .32 .22 .0043 .0039 94.5 .24 .60 .1224 .1369 95.8 1.28Y5 -1.72 .0085 .0086 66.8 .36 .15 .0112 .0106 94.0 .40 .30 .0823 .0776 96.9 .96MeanImputation Y -4.57 .0018 .0019 0 .17 .25 .0027 .0028 92.7 .20 .15 .0054 .0059 94.2 .29Y1 -9.46 .0211 .0208 0.4 .55 .26 .0124 .0128 95.4 .44 .08 .0279 .0269 97.3 .60Y2 -6.81 .0132 .0130 0 .44 .36 .0112 .0113 94.2 .41 .03 .0180 .0190 97.3 .52Y3 -4.80 .0086 .0089 2.4 .36 .14 .0096 .0097 93.1 .38 .20 .0130 .0134 96.5 .44Y4 -2.97 .0067 .0068 17.2 .32 .26 .0070 .0078 94.6 .34 .16 .0098 .0100 95.4 .39Y5 -1.93 .0085 .0086 60.4 .36 .27 .0102 .0099 94.2 .38 .35 .0102 .0099 93.5 .39RandomImputation Y -4.58 .0022 .0022 0 .18 .24 .0031 .0031 93.8 .21 .17 .0059 .0063 95.0 .29Y1 -9.47 .0025 .0024 0.8 .60 .25 .0167 .0186 96.5 .53 .01 .0337 .0327 97.3 .67Y2 -6.83 .0152 .0155 0 .48 .30 .0132 .0142 93.5 .46 .08 .0218 .0222 96.9 .56Y3 -4.80 .0105 .0103 3.6 .39 .18 .0118 .0112 93.5 .41 .18 .0147 .0149 95.8 .47Y4 -2.95 .0076 .0075 20.0 .33 .23 .0086 .0084 95.0 .35 .15 .0106 .0106 94.2 .41Y5 -1.94 .0091 .0092 60.8 .37 .25 .0104 .0103 95.0 .39 .34 .0109 .0104 92.7 .40
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Table 4: The Mean(Mean) and the Variane (VAR) of the Parameter Estimates. The true values are �1 = 0:25, �2 = 0:5, �3 = 0:75, �4 = 1, and �5 = �0:1.MELE MPELE = 1:8  = 2  = �1:4  = 1:8  = 2  = �1:4Mean VAR Mean VAR Mean VAR Mean VAR Mean VAR Mean VAR�1 .2554 .4074 .2425 .2987 .2986 .3863 0.3935 2.1449 .1479 1.5564 .2592 .5873�2 .5173 .3873 .5216 .3025 .5644 .3883 0.6505 2.0736 .4004 1.4972 .4986 .6183�3 .7601 .3990 .7667 .2984 .8052 .3792 0.9012 1.9614 .6580 1.4382 .7515 .6906�4 1.0171 .3878 1.0136 .2945 1.0621 .3713 1.1373 1.8363 .9075 1.3843 .9882 .7577�5 -.1006 .0057 -.1015 .0041 -.1075 .0054 -.1164 .0214 -.0896 .0167 -.0994 .0127 1.7952 .0004 1.9960 .0005 -1.4038 .0002 1.8236 .0597 2.0350 .1310 -1.3912 .0163

Table 5: The Ratio of MSE: mse(MPELE)/mse(MELE).Without Imputation Mean Imputation Random ImputationY Y1 Y2 Y3 Y4 Y5 Y Y1 Y2 Y3 Y4 Y5 Y Y1 Y2 Y3 Y4 Y5 = 1:8 9.85 7.38 7.41 7.51 7.54 7.78 1.23 0.97 0.84 1.11 1.39 1.27 1.16 0.95 0.84 1.06 1.28 1.15 = 2 8.01 5.38 5.34 5.35 5.24 7.39 1.01 0.85 1.05 1.21 1.16 1.17 1.00 0.85 1.04 1.15 1.09 1.28 = �1:4 23.91 24.90 24.13 25.16 24.74 4.34 1.46 1.69 1.04 1.13 1.33 1.00 1.52 1.47 1.03 1.04 1.40 1.04


