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Abstract: Nonresponse is very common in survey sampling. Nonignorable nonre-

sponse, a response mechanism in which the response probability of a survey variable

Y depends directly on the value of Y regardless of whether Y is observed or not,

is the most difficult type of nonresponse to handle. The population mean estima-

tors ignoring the nonrespondents typically have heavy biases. This paper studies

an empirical likelihood-based estimation method, with samples under nonignor-

able nonresponse, when an observed auxiliary categorical variable Z is available.

The likelihood is semiparametric: we assume a parametric model on the response

mechanism and the conditional probability of Z given Y , and a nonparametric

model on the distribution of Y . When the number of Z categories is not small,

a pseudo empirical likelihood method is applied to reduce the computational in-

tensity. Asymptotic distributions of the proposed population mean estimators are

derived. For variance estimation, we consider a bootstrap procedure and its con-

sistency is established. Some simulation results are provided to assess the finite

sample performance of the proposed estimators.
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1. Introduction

Nonresponse is a common phenomenon in sample surveys. Let Y be a vari-
able of interest having nonrespondents and Z be a covariate with no nonresponse.
If the propensity P (δ = 1 | Y,Z), where δ is the response indicator for Y , depends
not only on Z and observed Y , but also on unobserved Y , then the nonresponse
mechanism is nonignorable. Nonignorable nonresponse creates a great challenge
in the estimation of the mean of Y based on incomplete survey data. Ignoring
the dependence of nonresponse probability on unobserved Y typically leads to
heavy bias.

Greenlees, Reece, and Zieschang (1982) studied maximum likelihood esti-
mators for survey data with nonignorable nonresponse, based on a parametric
model on the propensity P (δ = 1 | Y,Z) and a parametric (normal) model on
L(Y | Z), the distribution of Y conditional on Z. However, parametric models
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(especially normal models) on L(Y | Z) for survey data are often not valid. In
fact, Greenlees, Reece, and Zieschang (1982) admitted that the normality as-
sumption on L(Y | Z) was not valid for the data in their example, even though
their method was better than the method of ignoring the fact that nonresponse
was nonignorable.

On the other hand, it is impossible to develop a pure nonparametric method
that produces a consistent estimator of the mean of Y in the presence of non-
ignorable nonresponse. Thus, some semiparametric methods assuming a para-
metric model on one of P (δ = 1 | Y,Z) and L(Y | Z) have been proposed
in the literature. Tang, Little, and Raghunathan (2003) developed a likeli-
hood method by assuming a parametric model on L(Y | Z); they assumed that
P (δ = 1 | Y,Z) = P (δ = 1 | Y ) but otherwise is nonparametric. Qin, Leung and
Shao (2002) proposed an empirical likelihood method by assuming a parametric
model on P (δ = 1 | Y,Z) and a nonparametric model on L(Y | Z); the resulting
estimator of the mean of Y is similar to the estimator obtained by weighting each
respondent by the inverse of an estimated propensity P (δ = 1 | Y,Z) (Robins,
Rotnitzky and Zhao (1994)). For survey data, finding a suitable parametric
model for P (δ = 1 | Y,Z) is much easier than finding an appropriate parametric
model for L(Y | Z). However, the estimation of P (δ = 1 | Y,Z) is still difficult
under a parametric assumption on P (δ = 1 | Y,Z) because of the presence of
unobserved Y values.

In many survey problems the covariate Z is categorical, e.g., age group, sex,
race, education level, type of industry etc., while the main variable Y is continu-
ous. If there is an appropriate parametric model on the conditional distribution
L(Z | Y ) given Y (e.g., the logistic model), then we can improve the approach in
Qin, Leung and Shao (2002). The purpose of this paper is to study an empirical
likelihood approach under parametric models on P (δ = 1 | Y,Z) and L(Z | Y )
with a discrete Z, and under a nonparametric model on the distribution of Y . Our
approach works for a stratified sampling design with a superpopulation within
each stratum, which is commonly used in practice. Furthermore, we study a
pseudo empirical likelihood to reduce the amount of computation when the num-
ber of Z categories is not small. Although losing some efficiency, the estimators
based on the pseudo empirical likelihood are still consistent and asymptotically
normal. Note that the same technique has been applied to the case of ignorable
nonresponse (Fang, Hong and Shao (2009)).

This paper is organized as follows. Section 2 presents details on the sampling
design and model, and gives results for estimation without imputation. In ad-
dition to the derivation of empirical likelihood estimators, their consistency and
asymptotic normality are established. Section 3 discusses the pseudo empirical
likelihood estimators. Section 4 considers variance estimation by bootstrapping.
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In Section 5, we consider two imputation methods related to the results in Sec-
tions 2 and 3. Section 6 examines by simulation the finite sample performance
of the proposed estimators, under some response patterns and models. The
Appendix (available online at http://www.stat.sinica.edu.tw/statistica)
contains proofs or sketched proofs.

2. Empirical Likelihood Approach

We consider the following sampling design commonly used in such business
surveys as the Current Employment Survey conducted by the U.S. Bureau of La-
bor Statistics (Wolter, Shao and Huff (1998)), the Transportation Annual Survey
conducted by the U.S. Census Bureau (Census Bureau (1987)), and the Finan-
cial Farm Survey conducted by Statistics Canada (Rancourt (1999)). The finite
population P is stratified into H (a fixed positive integer) strata and samples
are taken independently across the strata. Within each stratum, a large num-
ber of units are either independently sampled with replacement according to a
probability sampling plan, or selected as a simple random sample without re-
placement with a negligible sampling fraction. According to the sampling plan,
survey weights {ωi} are constructed so that for any set of values {xi},

ES

(∑
i∈S

ωixi

)
=

∑
i∈P

xi,

where S is the sample and ES is the expectation with respect to sampling.
Let Y be the variable of interest in the survey and Z be a categorical covariate

taking values in {z1, . . . , zs}. We assume that values of (Y,Z) are i.i.d. from a
superpopulation within each stratum, and are independent across strata. To
present the main idea, we first consider the special case of one stratum so that
the subscript for stratum is omitted.

Under the superpopulation model (within each stratum), Y has an unknown
nonparametric distribution F , and we assume a parametric probability function

P (Z = z | Y = y) = f(y, z, β), (2.1)

where β is an unknown parameter vector and f is a known function. For each
sampled unit, the Z value is always observed, but the Y value may be a nonre-
spondent. We assume that the probability that an individual responds on Y can
depend on both Y and Z according to

φ(Y,Z, γ) = P (δ = 1 | Y,Z), (2.2)

where δ is the response indicator for Y, φ is a known function, and γ is an
unknown parameter vector.

http://www.stat.sinica.edu.tw/statistica
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Without loss of generality, we assume that the first r sampled units are
respondents and the rest of n − r sampled units are nonrespondents. Thus, the
observed data set is

{(Yi, Zi), i = 1, . . . , r} ∪ {Zi, i = r + 1, . . . , n}.

Let pi = dF (Yi) be the point mass that F places on Yi. For observed Yi, the
likelihood is

φ(Yi, Zi, γ)f(Yi, Zi, β)pi.

For a nonrespondent Yi, the likelihood is∫ [
1 − φ(y, Zi, γ)

]
f(y, Zi, β)dF (y).

Together with the survey weights (see, e.g., Chen and Qin (1993)), we obtain the
following log-likelihood for the entire sample

r∑
i=1

wi log
(
φ(Yi, Zi, γ)f(Yi, Zi, β)pi

)
+

n∑
i=r+1

wi log
(∫

[1−φ(y, Zi, γ)]f(y, Zi, β)dF (y)
)

,

where wi = ωi/N and N is the finite population size. The use of wi, instead of
ωi, does not change the maximization of the log-likelihood over the parameters.
Since Z takes values z1, . . . , zs, this log-likelihood can be written as

r∑
i=1

wi log
(
φ(Yi, Zi, γ)f(Yi, Zi, β)pi

)
+

s∑
j=1

aj log(πj), (2.3)

where aj =
∑n

i=r+1 wiI{Zi=zj}, IA is the indicator function of the event A, and

πj = P (δ = 0, Z = zj) =
∫ [

1 − φ(y, zj , γ)
]
f(y, zj , β)dF (y).

Note that πj is a function of γ, β, and F . Maximizing (2.3) over γ, β, and F is
equivalent to maximizing (2.3) over γ, β, pi’s, and πj ’s subject to

pi ≥ 0,
r∑

i=1

pi = 1, πj =
r∑

i=1

pi

[
1 − φ(Yi, zj , γ)

]
f(Yi, zj , β), j = 1, . . . , s. (2.4)

By introducing Lagrange multipliers, we can derive that

pi =
wi

N̂r +
∑s

j=1 λj [(1 − φ(Yi, zj , γ))f(Yi, zj , β) − πj ]
, i = 1, . . . , r, (2.5)
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where N̂r =
∑r

k=1 wk and λj ’s are Lagrange multipliers satisfying
r∑

i=1

wi[(1 − φ(Yi, zj , γ))f(Yi, zj , β) − πj ]
N̂r +

∑s
j=1 λj [(1 − φ(Yi, zj , γ))f(Yi, zj , β) − πj ]

= 0, j = 1, . . . , s. (2.6)

Treating pi in (2.5) as a function of β, γ, π = (π1, . . . , πs), and λ = (λ1, . . . , λs),
and substituting pi into (2.3), the profile log-likelihood with Lagrange multipliers
is

l(β, γ, π, λ) =
r∑

i=1

wi log
(
φ(Yi, Zi, γ)f(Yi, Zi, β)

)
+

s∑
j=1

aj log(πj)

+
r∑

i=1

wi log
(

wi

N̂r +
∑s

j=1 λj [(1 − φ(Yi, zj , γ))f(Yi, zj , β) − πj ]

)
,

Differentiating l(β, γ, π, λ) with respect to π, λ, β, and γ, and setting the partial
derivatives to 0, we have

aj

πj
+

r∑
i=1

wiλj

N̂r +
∑s

j=1 λj [(1 − φ(Yi, zj , γ))f(Yi, zj , β) − πj ]
= 0, j = 1, . . . , s, (2.7)

r∑
i=1

wi[(1 − φ(Yi, zj , γ))f(Yi, zj , β) − πj ]
N̂r +

∑s
j=1 λj [(1 − φ(Yi, zj , γ))f(Yi, zj , β) − πj ]

= 0, j = 1, . . . , s, (2.8)

r∑
i=1

{
wi∂ log f(Yi, Zi, β)

∂β
−

wi

∑s
j=1 λj(1−φ(Yi, zj , γ))∂f(Yi, zj , β)/∂β

N̂r+
∑s

j=1 λj [(1−φ(Yi, zj , γ))f(Yi, zj , β)−πj ]

}
= 0, (2.9)

r∑
i=1

{
wi∂ log φ(Yi, Zi, γ)

∂γ
+

wi

∑s
j=1 λj∂φ(Yi, zj , γ)/∂γf(Yi, zj , β)

N̂r+
∑s

j=1 λj [(1−φ(Yi, zj , γ))f(Yi, zj , β)−πj ]

}
= 0. (2.10)

From (2.5), (2.7), and the fact that
∑r

i=1 pi = 1, we have

λj = −aj

πj
, j = 1, . . . , s. (2.11)

Let (β̂, γ̂, π̂, λ̂) be a solution to equations (2.8)−(2.11). The maximum empirical
likelihood estimator (MELE) of (β, γ) is (β̂, γ̂), and the MELE of F is the empir-
ical distribution F̂ putting mass p̂i at Yi, i = 1, . . . , r, where p̂i is given by (2.5)
with (β, γ, π, λ) replaced by (β̂, γ̂, π̂, λ̂). If the parameter of interest is the finite
population mean Ȳ =

∑
i∈P Yi/N , its MELE is

ˆ̄Y =
r∑

i=1

p̂iYi. (2.12)
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If the parameter of interest is the cell mean Ȳj , the finite population mean of Y

given Z = zj , the MELE is

ˆ̄Yj =
∑r

i=1 p̂if(Yi, zj , β̂)Yi∑r
i=1 p̂if(Yi, zj , β̂)

. (2.13)

Let θ = (β, γ, π), θ̂ = (β̂, γ̂, π̂), and ν̂ = λ̂/N̂r + J/(1 −
∑s

j=1 π̂j), where
J is the s-vector of ones. The following result shows that (θ̂, ν̂) converges to
(θ0, 0), where θ0 = (β0, γ0, π0) is the true value of (β, γ, π). Also, ˆ̄Y and ˆ̄Yj

are consistent for Ȳ and Ȳj , respectively. Furthermore, (θ̂, ν̂), ˆ̄Y , and ˆ̄Yj are
asymptotically normal. The proof is given in the Appendix (available online at
http://www.stat.sinica.edu.tw/statistica).

Theorem 1. Assume the following.

(i) The sample from the finite population is selected with replacement according
to a probability sampling plan or selected as a simple random sample without
replacement. The values of (Y,Z) in the population is i.i.d. from a superpop-
ulation according to (2.1)−(2.2) with a nonparametric Y -marginal F .

(ii) As n → ∞, N → ∞, n/N → 0, maxi≤N wi = O(1/n), and n
∑N

i=1 wi/N → d

for some constant d.

(iii)f(y, z, β) and φ(y, z, γ) are twice continuously differentiable in β and γ

for any y and z, and functions ‖∂ log f(y, z, β)/∂β‖2, ‖∂ log φ(y, z, γ)/∂γ‖2,
‖∂2f(y, z, β)/∂β∂βτ‖2, ‖∂2φ(y, z, γ)/∂γ∂γτ‖2, ‖∂f(y, zj , β)/∂β‖3, ‖∂φ(y, zj,
γ)/∂γ‖3, ‖[∂f(y, zj , β)/∂β][∂f(y, zk, β)/∂β]τ‖2, ‖[∂φ(y, zj , γ)/∂γ][∂φ(y, zk,
γ)/∂γ]τ‖2, and ‖[∂f(y, zj , β)/∂β][∂φ(y, zk, γ)/∂γ]τ‖2 are bounded by some
integrable functions in a neighborhood of β0 and γ0, j, k = 1, . . . , s.

(iv)For any nonzero vector c ∈ Rp+q, the value of cτ

(
∂ log f(y, zj , β0)/∂β

∂ log φ(y, zj , γ0)/∂γ

)
depends on j, where p and q are the dimensions of β and γ.

(v) θ0 is a unique root of E[g(Y, θ) | δ = 1] = 0 and E[g(Y, θ0)g(Y, θ0)τ | δ = 1]
is positive definite, where g = (g1, . . . , gs)τ and

gj(y, θ) =
(1 −

∑s
k=1 πk)[(1 − φ(y, zj , γ))f(y, zj , β) − πj ]∑s

k=1 φ(y, zk, γ)f(y, zk, β)
. (2.14)

(vi) φ(y, z, γ) has a positive lower bound.
Then, there exists a sequence {θ̂, ν̂, n = 1, 2, . . .} such that as n → ∞,

P (θ̂ is a solution to (2.8)−(2.10) ) → 1, (2.15)

http://www.stat.sinica.edu.tw/statistica
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√
n

(
ν̂ − 0

θ̂ − θ0

)
→d N(0, Σ), (2.16)

where the probability P and →d (convergence in distribution) are with respect
to the sampling and the superpopulation, and Σ is a positive definite matrix.
Furthermore, if functions | y(∂f(y, zj , β))/(∂β)‖2 and
midy(∂φ(y, zj , γ))/ (∂γ)‖2 are bounded by some integrable functions in a
neighborhood of β0 and γ0 for each j, then

√
n( ˆ̄Y − Ȳ ) →d N(0, σ2) and

√
n( ˆ̄Yj − Ȳj) →d N(0, σ2

j ), j = 1, . . . , s,

(2.17)
where σ2 and σ2

j are some constants.

In condition (v), E[g(Y, θ) | δ = 1] = 0 has a unique root θ0 is equivalent
to πj =

∫
[1 − φ(y, zj , γ)]f(y, zj , β)dF (y) is uniquely defined by (β, γ), i.e., a

condition of identifiability of the π by (β, γ).
We now consider the stratified sample described in the beginning of this

section. If (β, γ) in conditions (2.1) and (2.2) has different values in different
strata, then we can solve (2.7)−(2.10) within each stratum to obtain an estimator
of (β, γ) for each stratum. If (β, γ) is common for all strata, then constraint (2.4)
is within each stratum, the sums in (2.7)−(2.8) are over each stratum, and the
sums in (2.9)−(2.10) are over all strata. In any case, the marginal distribution
of Y for stratum h is the empirical distribution putting mass p̂i at Yi with i in
stratum h; the estimator of Ȳ is the weighted average of estimators given by
(2.12) over all strata with the weights Wh = Nh/N , where Nh is the population
size for stratum h and N =

∑
h Nh; the estimator of Ȳj is the ratio of the averages

of the numerators and denominators in (2.13) with the weights Wh. Theorem 1
still holds if all conditions are given within each stratum and nh/n coverges to a
positive constant, where nh is the sample size in stratum h and n =

∑
h nh.

3. Pseudo Empirical Likelihood

When s (the number of Z categories) is not small, numerical solutions to
(2.8)−(2.11) may be computationally intensive. Hence, we apply the idea of
pseudo likelihood (Gong and Samaniego (1981)). That is, we substitute each πj

in (2.8)−(2.11) by a consistent estimator π̃j . Note that consistent estimators of
πj ’s are easy to construct. For example, we may estimate πj by

π̃j =

∑n
i=1 wiI{δi=0,Zi=zj}∑n

i=1 wi
. (3.1)
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Let π̃ = (π̃j , j = 1, . . . , s), λ̃j = −aj/π̃j , and λ̃ = (λ̃1, . . . , λ̃s). Maximizing
the pseudo empirical likelihood l(β, γ, π̃, λ̃) over (β, γ) results in the maximum
pseudo empirical likelihood estimator (MPELE) (β̃, γ̃). Note that the MPELE
is different from MELE since π̃ is not π̂. However, we can directly establish the
consistency and asymptotic normality of the MPELE.

Let p̃i be the estimator of pi obtained by using (2.5) with β, γ, πj , and
λj replaced by β̃, γ̃, π̃j , and λ̃j , respectively. Because the MPELE is used,∑r

i=1 p̃i 6= 1, although
∑r

i=1 p̃i →p 1. The MPELE of Ȳ is

˜̄Y =
∑r

i=1 p̃iYi∑r
i=1 p̃i

, (3.2)

and the MPELE of Ȳj is

˜̄Yj =
∑r

i=1 p̃if(Yi, zj , β̃)Yi∑r
i=1 p̃if(Yi, zj , β̃)

. (3.3)

Estimators under stratified sampling can be obtained as described in the end of
Section 2, with the sums in (3.1) within each stratum.

The following result shows that the MPELE is consistent and asymptotically
normal.

Theorem 2. Assume the conditions in Theorem 1. There exists a sequence
{β̃, γ̃, n = 1, 2, . . .} such that, as n → ∞,

P

(
∂l(β̃, γ̃, π̃, λ̃)

∂(β, γ)
= 0

)
→ 1 and

√
n

(
β̃ − β0

γ̃ − γ0

)
→d N(0, Σp), (3.4)

where Σp is a positive definite matrix. Furthermore,
√

n( ˜̄Y − Ȳ ) →d N(0, σ2
p) and

√
n( ˜̄Yj − Ȳj) →d N(0, σ2

pj), j = 1, . . . , s, (3.5)

where σ2
p and σ2

pj are some constants.

4. Variance Estimation by Bootstrapping

It is a common practice in sample surveys to report a variance estimate for
each estimate of the parameter of interest. We focus on the most commonly
used estimators, the mean estimators ˆ̄Y , ˜̄Y in (2.12) and (3.2), and the cell mean
estimators ˆ̄Yj , ˜̄Yj in (2.13) and (3.3). Because the formulation of these estima-
tors is complicated, it is difficult to derive an analytic form of their asymptotic
variances, σ2, σ2

j in (2.17), and σ2
p, σ2

pj in (3.5) . Thus, we apply the bootstrap
method that consists of the following steps. In the following, η̂ denotes any of β̂,
γ̂, π̂, ν̂, ˆ̄Y , ˆ̄Yj , β̃, γ̃, π̃, ˜̄Y , and ˜̄Yj .
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1. Within stratum h, draw a simple random sample of size nh with replacement
from the set of sampled units (respondents or nonrespondents). Carry out
this procedure independently across strata. For each unit in the bootstrap
sample, the bootstrap data are the Z and Y values (if the Y is missing, the
bootstrap datum is treated as missing) and their survey weights.

2. Compute η̂∗, which is the same as η̂ but with the original data replaced by
the bootstrap data generated in Step 1.

3. Repeat the previous steps independently B times and obtain η̂∗1, . . . , η̂∗B.
Estimate the variance of η̂ by the sample variance of η̂∗1, . . . , η̂∗B.

The following result establishes the asymptotic validity of the bootstrap.

Theorem 3. Assume the conditions in Theorem 1.

(i) Let (2.8∗)−(2.11∗) be the bootstrap analog of (2.8)−(2.11). Then there exists
a sequence {θ̂∗, ν̂∗, n = 1, 2, . . .} such that, as n → ∞,

P∗(θ̂∗ is a solution to (2.8∗)−(2.10∗)) →p 1, (4.1)

√
n

(
ν̂∗ − ν̂

θ̂∗ − θ̂

)
→d∗ N(0, Σ), (4.2)

where Σ is given in (2.16), P∗ denotes the bootstrap probability conditional
on the data, and ϑ∗

n →d∗ ϑ means P∗(ϑ∗
n ∈ B) − P (ϑ ∈ B) →p 0 for any

Borel set B. Furthermore,

√
n( ˆ̄Y ∗ − ˆ̄Y ) →d∗ N(0, σ2) and

√
n( ˆ̄Y ∗

j − ˆ̄Yj) →d∗ N(0, σ2
j ), (4.3)

where σ2 and σ2
j are defined in (2.17).

(ii) Let π̃∗ = (π̃∗
1, . . . , π̃

∗
s), with π̃∗

j being the bootstrap analog of π̃j in (3.1). Then
there exists a sequence {β̃∗, γ̃∗, n = 1, 2, . . .} such that, as n → ∞,

P∗

(
∂l∗(β̃∗, γ̃∗, π̃∗, λ̃∗)

∂(β, γ)
= 0

)
→p 1 and

√
n

(
β̃∗ − β̃

γ̃∗ − γ̃

)
→d∗ N(0, Σp),

(4.4)
where Σp is given in (3.4). Further,

√
n( ˜̄Y ∗ − ˜̄Y ) →d∗ N(0, σ2

p) and
√

n( ˜̄Y ∗
j − ˜̄Yj) →d∗ N(0, σ2

pj), (4.5)

where σ2
p and σ2

pj are defined in (3.5).
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5. Imputation

Imputation is often carried out for practical reasons (Kalton and Kasprzyk
(1986)). After imputation, estimates of parameters are computed by treating
imputed values as observed data and using the standard formulas for the case
of no nonresponse. In this section we consider imputation for the estimation
of the population mean Ȳ and the population cell mean Ȳj . Let Ŷi = Yi if Yi

is a respondent and Ŷi be an imputed value if Yi is a nonrespondent. After
imputation, the population mean Ȳ and cell mean Ȳj are estimated by

ˆ̄YI =
n∑

i=1

wiŶi, (5.1)

ˆ̄YjI =

∑n
i=1 wiŶiI{Zi=zj}∑n
i=1 wiI{Zi=zj}

, (5.2)

respectively. Under stratified sampling, (5.1)−(5.2) should be modifed as de-
scribed at the end of Section 2.

The naive mean imputation method imputes each nonrespondent with Z =
zj by the cell sample mean

∑r
i=1 wiYiI{Zi=zj}/

∑r
i=1 wiI{Zi=zj}. The naive ran-

dom imputation method imputes each nonrespondent with Z = zj by a random
sample with replacement from respondents with Z = zj , where each Yi with
Zi = zj has probability wiI{Zi=zj}/

∑r
i=1 wiI{Zi=zj} to be selected, i = 1, . . . , r.

The population mean estimators based on the naive imputation methods are in-
consistent since they do not consider the difference between the respondents and
the nonrespondents.

Using the MELE estimators developed in Section 2, we consider the following
two imputation procedures.

1. Empirical Likelihood Mean Imputation. For each nonrespondent with Z = zj ,
the imputed Y value is∑r

i=1 p̂i[1 − φ(Yi, zj , γ̂)]f(Yi, zj , β̂)Yi∑r
i=1 p̂i[1 − φ(Yi, zj , γ̂)]f(Yi, zj , β̂)

.

2. Empirical Likelihood Random Imputation. Each nonrespondent with Z = zj

is imputed by a random sample with replacement from all respondents, where
the probability of each Yi to be selected is

p̂i[1 − φ(Yi, zj , γ̂)]f(Yi, zj , β̂)∑r
i=1 p̂i[1 − φ(Yi, zj , γ̂)]f(Yi, zj , β̂)

.
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For stratified sampling, imputation should be carried out within each stratum.
Similarly, using the MPELE estimators developed in Section 3, we can de-

velop Pseudo Empirical Likelihood Mean Imputation and Random Imputation.
They are similar to the Empirical Likelihood Mean Imputation and Random Im-
putation that we described above. We just need to replace β̂, γ̂, and p̂i by β̃, γ̃,
and p̃i, respectively.

The following result shows that the estimators of Ȳ and Ȳj based on these
four imputation procedures are consistent and asymptotically normal.

Theorem 4. Under the conditions of Theorem 1, for empirical likelihood mean
imputation, empirical likelihood random imputation, pseudo empirical likelihood
mean imputation, or pseudo empirical likelihood random imputation,

√
n( ˆ̄YI − Ȳ ) →d N(0, σ2

I ), and
√

n( ˆ̄YjI − Ȳj) →d N(0, σ2
jI), j = 1, . . . , s,

where σ2
I and σ2

jI are some constants.

The asymptotic variances σ2
I and σ2

jI do not have simple analytic forms.
Variance estimation can be carried out using the bootstrap procedure described
in Section 4. It should be emphasized that, to address the variability caused by
imputation, nonrespondents in each bootstrap data set must be imputed using
the bootstrap data and the same imputation method as that used to impute the
original data set, as suggested by Shao and Sitter (1996).

6. Simulation Results

In this section, we report on simulation of the finite-sample properties of the
MELE, MPELE, the empirical likelihood imputation, and the pseudo empirical
likelihood imputation. We created a finite population similar to the Current
Establishment Survey conducted by the U.S. Bureau of Labor Statistics. We
chose four different industries as four strata with sizes N1 = 3, 370, N2 = 2, 910,
N3 = 5, 430, and N4 = 4, 110. The variable Y is the total pay for each establish-
ment and values of Y in stratum h were generated from a superpopulation Fh.
The form of Fh was chosen to be the gamma distribution and F1 = Γ(43, 0.20),
F2 = Γ(42, 0.19), F3 = Γ(38, 0.20), and F4 = Γ(50, 0.17), where Γ(a, b) denotes
the gamma distribution with shape parameter a and scale parameter b. The
parameters in Fh’s were chosen to match the mean and variance of a data set
from the Current Establishment Survey.

The covariate Z ∈ {1, 2, 3, 4, 5} was generated by the logistic model

P (Z = j | Y = y) =
exp{βj + β5y}

1 +
∑4

k=1 exp{βk + β5y}
, j = 1, 2, 3, 4,
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P (Z = 5 | Y = y) =
1

1 +
∑4

k=1 exp{βk + β5y}
,

where βk, k = 1, 2, 3, 4, 5, are unknown parameters whose values in the simulation
are 0.25, 0.5, 0.75, 1, and −0.1, respectively.

The sampling plan was stratified simple random sampling. In each stratum,
the sampling fraction was 0.05. For each sampled unit, the Y respondent was
generated according to the response probability function

P (δ = 1 | Y = y, Z = j) =
exp{−10 − j + γy}

1 + exp{−10 − j + γy}

with a parameter γ = 1.8 or 2, or

P (δ = 1 | Y = y, Z = j) =
exp{10 + j + γy}

1 + exp{10 + j + γy}

with γ = −1.4. The following table lists the response rate for each Z and the
mean response rate E[P (δ = 1 | Z)].

γ 1.8 2 -1.4
P (δ = 1 | Z = 1) 0.888 0.951 0.457
P (δ = 1 | Z = 2) 0.803 0.910 0.621
P (δ = 1 | Z = 3) 0.697 0.842 0.751
P (δ = 1 | Z = 4) 0.560 0.749 0.856
P (δ = 1 | Z = 5) 0.469 0.675 0.908
E[P (δ = 1 | Z)] 0.651 0.804 0.756

For each of the three γ, Table 1−3 respectively reports the relative bias (RB)
and variance (VAR) of the MELE estimators in (2.12) and (2.13), the MPELE
estimators in (3.2) and (3.3), the naive estimators that simply ignore nonre-
spondents, and the imputation estimators in (5.1) and (5.2) based on empirical,
pseudo empirical, or naive mean imputation and random imputation. We also
report their bootstrap variance estimators (Vboot) based on the bootstrap repli-
cation size B = 200, the coverage probabilities (CP) and the lengths (LEN) of
the bootstrap confidence intervals of the form

point estimate ± 1.96
√

Vboot

that approximately have nominal coverage probability 95%.
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Table 4 reports the mean and the variance (VAR) of the parameter estimates.
Table 5 reports the ratios of the mean squared errors. Each MPELE is compared
with its counterpart; that is, ˜̄Y in (3.2) is compared with ˆ̄Y in (2.12), ˜̄Yj in
(3.3) is compared with ˆ̄Yj in (2.13), and ˆ̄YI in (5.1) (or ˆ̄YjI in (5.2)) with pseudo
empirical likelihood mean (or random) imputation is compared with ˆ̄YI in (5.1)
(or ˆ̄YjI in (5.2)) with empirical likelihood mean (or random) imputation described
in Section 5.

The computation was done using MATLAB in a UNIX at the Department of
Statistics, University of Wisconsin-Madison. For each γ and a single simulation,
it took about 12 seconds to compute the MELE, MPELE, and imputed estimates
for Ȳ and Ȳl, l = 1, . . . , 5. Because of the bootstrap, however, each simulation
with a given γ took about 40 minutes. For each γ, we ran the simulation 250
times.

The simulation results can be summarized as follows.

1. In all cases, the proposed population mean and population cell mean esti-
mators based on empirical likelihood or pseudo empirical likelihood (with
imputation or not) performed well in terms of the relative bias (less than 1%)
and variance, while the naive methods had heavy relative biases up to 10.31%.

2. The bootstrap variance estimate for our proposed estimators worked well in
most cases in terms of its bias and the coverage probability of the bootstrap
confidence interval. For the naive estimators, the coverage probability of the
confidence interval was very low.

3. Although the MPELE estimators required less computational intensities, they
were less efficient in terms of larger MSE compared with the MELE estimators.
Most of the MSE ratios were greater than 1 (Table 5). For the estimators
without imputation, the ratios were all greater than 5, and some of them
were even greater than 20. The lengths of confidence intervals of the MPELE
estimators were all greater than those of the MELE estimators, especially for
the estimators without imputation.

4. Although the variances of the β and γ parameter estimates were a little bit
large, the estimation of the population mean and population cell means, which
is our major interest, was still good.
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