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Abstract: Ferré and Yao (2005, 2007) proposed a method to estimate the Effective

Dimension Reduction space in functional sliced inverse regression. Their approach

did not require the inversion of the variance-covariance operator of the explanatory

variables, and it allowed them to get
√

n consistent estimators in the functional

case. In those papers there is a mistake. In this note we show that, in general, the

approach does not give an estimator of the SIR subspace. We also give necessary

and sufficient conditions for this to be true.
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1. Introduction

For notation and background we refer to Ferré and Yao (2005, 2007) and
Forzani and Cook (2007). Recall that we are dealing with the (multivariate or
functional) SIR model:

Y = g(βT
1 X, . . . , βT

d X, ε), (1.1)

and that the linearity condition is assumed. It is also known that under the
linearity condition the SIR subspace, the span of the Γ-orthonormed non-zero
eigenvectors of Γ−1Γe, where Γe = Cov (E (X|Y )) and Γ = Cov (X), form a
subspace of the SIR subspace (Li (1991)) for the finite-dimensional case and
Dauxois, Ferré and Yao (2001) for the functional case). Here Γ is a Hilbert-
Schmidt operator and the inverse can be defined in its range. From now on R(B)
denotes the range of an operator B, which is the set of functions B(f) with f

belonging to the domain T (B) of the operator B. Ferré and Yao (2007) claimed
that under (1.1),

R(Γ−1Γe) = R(Γ−
e Γ). (1.2)

We will prove in Theorem 1 that (1.2) is equivalent to the requirement that

Γ = PΓeΓPΓe + QΓeΓQΓe , (1.3)
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and we will show with an example in Section 3 that (1.3) is not in general true
under the model (1.1).

We prove later that (1.2) implies R(Γ−1Γe) = R(Γe) and therefore if (1.2)
were true, it would be not necessary to invert any matrix to get a consistent
estimator of the SIR subspace and the problem of consistency would be, using
the result by Dauxois et al. (2001), almost trivial even for the infinite dimensional
case. The authors argued that the examples they treated (simulated or real)
suggest that their approach leads to convenient solutions. But it should be noted
that even if the central subspace is far away from the approximated one, the
angle between the linear combination of the predictors and the estimate one is
not necessarily large, and that may be the case for their examples.

Following Shao, Cook and Weisberg (2007) the SIR subspace is equal to
the central subspace SY |X (the central subspace is the smallest subspace S such
that Y and X are independent conditionally to the projection of X on S), if the
linearity of the predictors and an associated coverage condition both hold. Under
these two conditions and as a consequence of the results of this paper, for model
(1.1), SY |X = span(Cov (E (X|Y ))) if and only if (1.3) is true.

2. Equivalence

The following lemma gives a necessary and sufficient condition for (1.2).

Theorem 1. Given a Hilbert-Schmidt operator Γ and a finite rank operator Γe,
(1.2) is equivalent to (1.3).

That (1.3) implies (1.2) is trivial. The other implication follows from Lemmas
1, 2 and 3.

Lemma 1. If (1.2) holds then R(Γe) = R(Γ−1Γe).

Proof. Given a set B ⊂ L2[0, 1], denote by B⊥ its orthogonal complement using
the usual interior product in L2[a, b]. The closure of the set B, denoted by B̄, will
be the smallest closed set (using the topology defined through the usual interior
product) containing B. For an operator B from L2[a, b] into itself, let B∗ denote
its adjoint operator, again using the usual interior product.

Let {β1, . . . , βD} denote the D eigenfunctions, with eigenvalues nonzero, of
Γ−

e Γ. If (1.2) is true then span(β1, . . . , βD) = R(Γ−1Γe) = R(Γ−
e Γ) ⊂ R(Γ−

e ).
By definition of the generalized inverse (Groetsch (1977)) we have R(Γ−

e ) =
N(Γe)⊥ = R(Γ∗

e) = R(Γe) = R(Γe) where A∗ is the adjoint of A and we use
the facts that Γe is self-adjoint and that R(Γe) has dimension D and therefore
is closed. Since R(Γe) has dimension D, the result follows.

Lemma 2. Under (1.2) we have R(ΓΓe) ⊂ R(Γe).
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Proof. Since Γ is one to one, R(Γ) = L2[a, b]. On the other hand, by hypothesis,
R(Γe) ⊂ T (Γ−1). From the definition of the inverse of an operator (Groetsch
(1977)) we have that ΓΓ−1 = Id in T (Γ−1), where Id indicates the identity
operator. Now, take v ∈ R(ΓΓe). Then v = ΓΓew for some w ∈ L2[a, b] and
therefore Γ−1v = Γew = Γ−1Γeh for some h ∈ L2[a, b] (this last follows from
Lemma 1). Since Γ−1 is one to one (in its domain) we get v = Γeh ∈ R(Γe).

In mathematical terms, R(ΓΓe) ⊂ R(Γe) implies that R(Γe) is an invari-
ant subspace of the operator Γ (see Conway (1990, p.39)). This implies that Γ
has a spectral decomposition with eigenfunctions that live in R(Γe) or its or-
thogonal complement, as indicated formally in the following lemma. The finite-
dimensional form of the lemma was stated by Cook, Li and Chiaromonte (2007).

Lemma 3. Suppose (1.2) is true. Then Γ has a spectral decomposition with
eigenfunctions on R(Γe) or R(Γe)⊥.

Proof. Let v be an eigenvector of Γ associated to the eigenvalue λ > 0. Since
R(Γe) is closed (being finite-dimensional), v = u + w with u ∈ R(Γe) and w ∈
R(Γe)⊥. Since from Lemma 2, Γu ∈ R(Γe) and Γw ∈ R(Γe)⊥, we have that
u and w are also eigenvectors of Γ if both u and w are different from zero.
Otherwise v belongs to R(Γe) or R(Γe)⊥.

Now, let {vi}∞i=1 be a spectral decomposition of Γ, countable since Γ is
compact in L2[0, 1]. From what was said above, vi = ui + wi with ui and wi

eigenvectors in R(Γe) and R(Γe)⊥, respectively. Now consider {ui : ui 6= 0} and
{wi : wi 6= 0}. Clearly they form a spectral decomposition of Γ with eigenfunc-
tions on R(Γe) or R(Γe)⊥.

3. Example

Let us take the model considered by Cook (2007):

X|(Y = y) = µ + ανy + ∆1/2ε, (3.1)

where µ = E(X), α ∈ Rp×d and ∆ is any positive definite matrix p × p. This is
a particular case of (1.1). Using their notation we have Γe = α Cov (νY )αT and
Γ = Var (X) = ∆+α Cov (νY )αT . In this case the SIR subspace is R(Γ−1Γe) =
R(∆−1α), and it was proven by Cook (2007) that for (3.1) the minimal sufficient
reduction is given by R(∆−1α) = R(Γ−1α). Therefore the central subspace
and the SIR subspace coincide giving that R(β) = R(Γ−1Γe) = R(∆−1α). If
Ferré and Yao’s conclusion were true we get for model (3.1) that R(Γ−1α) =
R(Γ−1Γe) = R(Γe) = R(α), but if we take p = 2, α = (1, 0)T , Cov (νy) = 1

and ∆ =
(

1 1
1 4

)
in (3.1), we have R(Γ−1Γe) = span((1,−0.25)T ) and R(Γe) =
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span((1, 0)T ), clearly two different subspaces. This example shows that (1.2) it is
not necessarily true for (1.1). Moreover, (1.2) is true for this model if and only if
R(Γ−1α) = R(α) and, using (1.3), that implies Γ = ααTΣααT +α0α

T
0 Σα0α

T
0 ,

where α0 is an orthogonal completion of α. Since ∆ = Γ − α Cov (νy)αT , this
is equivalent to saying that (1.2) is true if and only if ∆ reduces α, and this
implies a very specific structure for ∆, and not any positive definite matrix.
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