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Abstract: The Wang-Landau algorithm (Wang and Landau (2001)) is a recent

Monte Carlo method that has generated much interest in the Physics literature

due to some spectacular simulation performances. The objective of this paper is

two-fold. First, we show that the algorithm can be naturally extended to more

general state spaces and used to improve on Markov Chain Monte Carlo schemes

of more interest in Statistics. In a second part, we study asymptotic behaviors

of the algorithm. We show that with an appropriate choice of the step-size, the

algorithm is consistent and a strong law of large numbers holds under some fairly

mild conditions. We have also shown by simulations the potential advantage of the

WL algorithm for problems in Bayesian inference.
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1. Introduction

Although the idea of Monte Carlo computation has been around for more
than a century, its first real scientific use occurred during the World War II when
the first generation computer became available. Nick Metropolis coined the name
“Monte Carlo” for the method when he was at Los Alamos National Labs and it
quick evolved to an active research area due to the active involvements of leading
physicists in the Labs. Ever since then, physicists have been at the forefront of
the methodological research in the field. One of their latest additions is an algo-
rithm proposed by F. Wang and D. P. Landau (Wang and Landau (2001)). The
Wang-Landau (WL) algorithm has been successfully applied to some complex
sampling problems in physics. The algorithm is closely related to multicanoni-
cal sampling, a method due to B. A. Berg and T. Neuhaus (Berg and Neuhaus
(1992)). Briefly, if π is the probability measure of interest, the idea behind mul-
ticanonical sampling is to obtain an importance sampling distribution by parti-
tioning the state space along the energy function (−log π(x)) and re-weighting
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appropriately each component of the partition so that the modified distribution
π∗ spends equal amount of time in each component, i.e., uniform in the energy
space. The method is often criticized for the difficulty involved in computing the
weights. The main contribution of the WL algorithm is in proposing an efficient
algorithm that simultaneously computes the balancing weights and samples from
the re-weighted distribution.

The objective of this paper is to take a more probabilistic look at the WL
algorithm and to explore its potential for Monte Carlo simulation problems of
more direct interest to statisticians. We achieve this goal by proposing a general
state space version of the algorithm. Then we show that the WL algorithm offers
an effective strategy to improve on simulated tempering and trans-dimensional
MCMC.

From a probabilistic standpoint, the WL algorithm is an interesting exam-
ple of adaptive Markov Chain Monte Carlo (MCMC). Adaptive MCMC is an
approach to Monte Carlo simulation where the transition kernel of the algorithm
is sequentially adjusted over time in order to achieve some prescribed optimality.
Some early work on the subject includes Gilks, Roberts and Sahu (1998), An-
drieu and Robert (2001), and Haario, Saksman and Tamminen (2001). See also
Brockwell and Kadane (2005), and Mira and Sargent (2003). Early theoretical
analysis includes (Atchadé and Rosenthal (2005), Andrieu and Moulines (2006),
Andrieu and Atchade (2007), and Rosenthal and Roberts (2007)). We take a
similar path-wise approach to analyze the WL algorithm. The analysis of the
WL algorithm is not a straightforward application of the theory in the aforemen-
tioned papers because of the specific adaptive control involved. The key point is
the stability of the algorithm. We say that the WL algorithm is stable if no com-
ponent of the partition receives infinitely more visits than any other component
as n → ∞. On a stable sample path, and under appropriate conditions, we show
that the WL algorithm learns the optimal weights and satisfies a strong law of
large numbers (Theorem 4.1). In the specific cases of multicanonical sampling
and simulated tempering, which includes the original the WL algorithm, we show
that the algorithm is stable and that the aforementioned limit results hold.

It came to our attention after the first draft of this paper that a similar
extension of the WL algorithm has been proposed independently by F. Liang
and coworkers (see e.g., Liang, Liu and Carroll (2007)). Their approach differs
from the WL approach in that these authors took a more classic approach based
on stochastic approximation with step-sizes set deterministically.

Our proposed generalization to the WL algorithm is presented in Section
2. Some particular cases are discussed in Section 3. The theoretical analysis is
discussed in Section 4, but the proofs are postponed to Section 6 to facilitate the
flow of ideas.
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2. The Wang-Landau Algorithm

In multicanonical sampling, we are given a state space X and a probabil-
ity measure π. X is then partitioned as X = ∪Xi, where Xi ∩ Xj = φ and
π is re-weighted in each component Xi. An abstract way to do the same and
much more is the following. We start with (Xi,Bi, λi) i = 1, . . . , d, a finite
family of measure spaces where λi is a σ-finite measure. We introduce the
union space X =

⋃d
i=1 Xi × {i}. We equip X with the σ−algebra B gener-

ated by {(Ai, i), i ∈ {1, . . . , d}, Ai ∈ Bi} and the measure λ satisfying λ(A, i) =
λi(A)1Bi(A). Let hi : Xi → R be a non-negative measurable function and de-
fine θ∗(i) =

∫
Xi

hi(x)λi(dx)/Z where Z =
∑d

i=1

∫
Xi

hi(x)λi(dx). We assume that
θ∗(i) > 0 for all i = 1, . . . , d, and consider the following probability measure on
(X ,B):

π∗(dx, i) ∝ hi(x)
θ∗(i)

1Xi(x)λi(dx). (2.1)

Our objective is to sample from π∗. The problem of sampling from such a
distribution arises in a number of different Monte Carlo strategies. For example,
and as explained above, if π is a probability measure of interest on some space
(X ,B, λ), we can partition X along the energy function − log(π) and re-weight
π by π(Xi) in each component Xi. The sampling problem then becomes of the
form (2.1). This powerful strategy appeared first in the Physics literature as
multicanonical sampling (Berg and Neuhaus (1992)). This is discussed in some
more details is Section 3.1.

Sampling from (2.1) also arises naturally when optimizing the simulated tem-
pering algorithm (Marinari and Parisi (1992), and Geyer and Thompson (1995)).
In simulated tempering, the states space X is not partitioned but, instead, some
auxiliary distributions π2, . . . , πd are introduced (take π1 = π). These distribu-
tions are chosen close to π but easier to sample from. For good performances,
one typically imposes that all the distributions have the same weight. Taking
each probability space (X ,B, πi) as a component in the formalism above leads to
a sampling problem of the form (2.1). Multicanonical sampling and simulated
tempering have been combined in Atchadé and Liu (2006) giving an algorithm
which can also be framed as (2.1). Sampling from (2.1) can also be an efficient
strategy to improve on trans-dimensional MCMC samplers for Bayesian inference
with model uncertainty. This is detailed in Section 3.3.

The main obstacle in sampling from π∗ is that the normalizing constants
θ∗ are not known. The contribution of the Wang-Landau algorithm (Wang and
Landau (2001)) is an efficient algorithm that simultaneously estimates θ∗ and
sample from π∗. The algorithm was introduced in a discrete setting with the π∗
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being uniform in i. In this work we extend the algorithm to general state spaces
and to arbitrary probability measures. To carry on the discussion in our general
framework, we introduce the family of probability measures {πθ, θ ∈ (0,∞)d}
on (X ,B, λ) defined by:

πθ(dx, i) ∝ hi(x)
θ(i)

1Xi(x)λi(dx). (2.2)

We assume that for all θ ∈ (0,∞)d, we have at our disposal a transition
kernel Pθ on (X ,B) with invariant distribution πθ. Note that πθ and Pθ remain
unchanged if we multiply the vector θ by a positive constant. How to build such
Markov chain Pθ typically depends on the particular instance of the algorithm.
We give some examples later.

The structure of the WL algorithm is as follows. We start out with some
initial value (X0, I0) ∈ X , φ0 ∈ (0,∞)d, and set θ0(i) = φ0(i)/

∑d
j=1 φ0(j),

i = 1, . . . , d. Here θ0 serves as an initial guess of θ∗. At iteration n + 1, we
generate (Xn+1, In+1) by sampling from Pφn(Xn, In; ·) and update φn to φn+1,
which is used to form θn+1(i) = φn+1(i)/

∑
j φn+1(j). The updating rule for φn

is fairly simple. For i ∈ {1, . . . , d}, if Xn+1 ∈ Xi (equivalently, if In+1 = i), then
φn+1(i) = φn(i)(1 + ρ) for some ρ > 0; otherwise φn+1(i) = φn(i). This leads to
a first version of the WL algorithm.

Algorithm 2.1. (The Wang-Landau algorithm I). Let {ρn} be a sequence of
decreasing positive numbers. Let (X0, I0) ∈ X be given. Let φ0 ∈ Rd be such that
φ0(i) > 0, and set θ0(i) = φ0(i)/

∑
j φ0(j), i = 1, . . . , d. At some time n ≥ 0,

given (Xn, In) ∈ X , φn ∈ Rd, θn ∈ Rd:

(i) sample (Xn+1, In+1) ∼ Pθn(Xn, In; ·);
(ii) for i = 1, . . . , d, set φn+1(i) = φn(i)(1+ ρn1{In+1=i}) and θn+1(i) = φn+1(i)/∑

j φn+1(j).

It remains to choose the sequence {ρn}. As we show below, {θn} as defined
by Algorithm 2.1 is a stochastic approximation process driven by {(Xn, In)}.
The general guidelines in the literature to choose {ρn} are: ρn > 0,

∑
ρn = ∞,

and
∑

ρ1+ε
n < ∞ for some ε > 0, often ε = 1. The typical choice is ρn ∝ n−1.

In practice, more careful choices are often necessary for good performance. To
the best of our knowledge, there is no general, satisfactory way of choosing the
step-size in stochastic approximation. Interestingly, Wang-Landau came up with
a clever, adaptive way of choosing {ρn} that works very well in practice. We
describe their approach next, again in more probabilistic terms.

Let vn,k(i) denote the proportion of visits to Xi × {i} between times n + 1
and k. That is, vk,n(i) = 0 for k ≤ n and for k ≥ n + 1, vn,k(i) = [1/(k −
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n)]
∑k

j=n+1 1{Ij = i}. Let c ∈ (0, 1) be a parameter to be specified by the user.
We introduce two additional random sequences {κn} and {an}. Initially, κ0 = 0.
For n ≥ 1, define

κn = inf
{

k > κn−1 : max
1≤i≤d

∣∣∣∣vκn−1,k(i) −
1
d

∣∣∣∣ ≤ c

d

}
, (2.3)

with the usual convention that inf ∅ = ∞. We need another sequence {γn} of
positive decreasing numbers, representing “stepsizes”. Then, {an} represents the
index of the element of the sequence {γn} used at time n : a0 = 0, if k = κj

for some j ≥ 1, then ak = ak−1 + 1, otherwise ak = ak−1. In words, we start
Algorithm 2.1 with a step-size equal to γ0 and keep using it until time κ1 when
all the components are visited equally well. Only then do we change the step-size
to γ1 and keep it constant until time κ2 etc. . . Combining this with Algorithm
2.1, we get the following.

Algorithm 2.2. (The Wang-Landau algorithm II). Let {γn} be a sequence of
decreasing positive numbers. Let (X0, I0) ∈ X be given. Set a0 = 0, κ = 0,
c ∈ (0, 1), φ0 ∈ Rd such that φ0(i) > 0, and θ0(i) = φ0(i)/

∑
j φ0(j), i = 1, . . . , d.

At some time n ≥ 0, given (Xn, In) ∈ X , φn ∈ Rd, θn ∈ Rd, an and κ:

(i) sample (Xn+1, In+1) ∼ Pθn(Xn, In; ·);
(ii) for i = 1, . . . , d, set φn+1(i) = φn(i)(1 + γan1{In+1=i}) and θn+1(i) = φn+1(i)

/
∑

j φn+1(j);

(iii) if maxi |vκ,n+1(i) − (1/d)| ≤ c/d then set κ = n + 1 and an+1 = an + 1,
otherwise an+1 = an.

Remark 2.1.
1. The performances of Algorithm 2.2 depends very much on the choice of {γn}

and c. We show that the choice γn ∝ n−1 guaranties the convergence of the
algorithm but, in practice, this type of step-size can be overly slow. The user
might then consider γn ∝ a−n (a > 1) originally proposed by Wang-Landau,
but we were not able to obtain the convergence of the algorithm for summable
step-sizes. A good compromise is to start the sampler with γn ∝ a−n until
γn < ε (e.g., ε = 10−5) and then switch to γn = n−1. There is a bias-variance
trade-off involved in the choice of c. For c close to 0, Algorithm 2.2 will have
a low bias (in estimating θ∗) but a high variance. Such values of c are more
suitable for γn ∝ a−n whereas for larger values of c, the bias will be high with
a low variance. For c = d − 1, we get a standard stochastic approximation
algorithm with deterministic step-size for which a step-size that sums to ∞ is
necessary for convergence. We found empirically from our simulations that c

in the range 0.4 − 0.2 yields reasonably good samplers.
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2. In the actual implementation of the algorithm, it is not necessary to re-
normalize φn into θn as in (ii). In fact, for computational stability, we
recommend carrying out the recursion on a logarithmic scale: log φn(i) =
log φn−1(i) + log(1 + γan−1)1{In=i}.

3. Another interesting feature of Algorithm 2.2 is that Step (iii) can serve as a
stopping rule: we stop the simulation when γan get smaller than some pre-
specified value.

4. Under some regularity conditions, if f : X → R issome function of interest
that is π-integrable and {(Xn, In, θn)} is as described in Algorithm 2.2, we
will show below that

1
n

n∑
k=1

f(Xk, Ik) → π∗(f), a.s. as n → ∞.

If we denote by πi the distribution on Xi with density with respect to λi

proportional to hi(x)1Xi(x), we can estimate integrals with respect to πi as
well: ∑n

k=1 f(Xk, Ik)1Xi(Xk)∑n
k=1 1Xi(Xk)

→ πi(f(·, i)), a.s. as n → ∞.

Now if we denote by π the distribution on X whose density with respect to λ

is proportional to hi(x) on Xi, the ratio π(x, i)/π∗(x, i) is dθ∗(i) and integrals
with respect to π can also computed by importance sampling:

d

n

n∑
k=1

f(Xk, Ik)θk(Ik) → π(f), a.s. as n → ∞.

Various methods for recycling Monte Carlo samples can be implemented as
well. All these results follow from Theorem 4.1.

3. Some Applications

In this section, we detail briefly some applications of the general algorithm to
multicanonical sampling, simulated tempering, and trans-dimensional MCMC.

3.1. Multicanonical sampling

Multicanonical sampling is a powerful algorithm proposed by Berg and
Neuhaus (1992). It holds the potential of improving on mixing times of classical
MCMC algorithms. It fits naturally in the framework above, but the imple-
mentation can be tedious. Assume that we want to sample from a probability
measure π(dx) ∝ h(x)λ(dx) on some probability space (Σ,A, λ). We use the
energy function E(x) = − log(h(x)) to build a d-component partition (Xi)i of Σ,
Xi = {x ∈ Σ : Ei−1 < E(x) ≤ Ei}, where −∞ ≤ E0 < E1 < · · · < Ed ≤ ∞
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are predefined values. Let θ∗(i) = π(Xi) and assume θ∗(i) > 0. As above, we
introduce the union space X =

⋃
Xi × {i}. The idea of multicanonical sampling

is to sample from

π∗(dx, i) ∝ h(x)
θ∗(i)

1Xi(x)λ(dx),

which is of the form (2.1). There is a simpler formulation of the algorithm. Since
the component of the partition to which a point x belongs can be obtained from x

itself, multicanonical sampling is equivalent to sampling from π∗ on (Σ,A) given
by

π∗(dx) ∝
d∑

i=1

h(x)
θ∗(i)

1Xi(x)λ(dx), (3.1)

and the union space formalism is not needed. After sampling from π∗ in (3.1),
a straightforward importance sampling estimate allows one to recover π. The
algorithm tries to break the barriers in the energy landscape of the distribution
by re-weighting each component Xi. Clearly, the success depends heavily on a
good choice of the energy rings E0, . . . , Ed. This typically requires some prior
information on π or some pilot simulations. We point out that, although the
energy function E is a natural candidate to utilize to partition the space, the
idea can be extended to other functions.

In the description of multicanonical sampling given above, taking Σ as a
discrete space, π the uniform distribution on X , and Xe = {x ∈ Σ : E(x) = e},
e ∈ {e ∈ R : E(x) = e for some x ∈ Σ} yields the Wang-Landau algorithm of
(Wang and Landau (2001)).

3.2. Simulated tempering

The method can be applied to the simulated tempering of Marinari and Parisi
(1992) and Geyer and Thompson (1995) by taking (Xi,Bi, λi) ≡ (X1,B1, λ1) and
hi = h1/ti , 1 = t1 < · · · < td. Simulated tempering is a well-known Monte
Carlo strategy for sampling from difficult target distributions. Assume that the
distribution of interest is π1(dx) ∝ h(x)λ(dx). Typically for large temperature t,
h1/t is a more well-behaved distribution for which faster mixing Markov chains
can be built. In simulated tempering, we try to take advantage of these faster
mixing chains by targeting the distribution

πθ(dx, i) =
h1/ti(x)

θ(i)
1Xi(x)λ1(dx), (3.2)

on the union space (X ,B, λ). A MCMC sampler Pθ with invariant distribution
πθ is readily designed. Typically Pθ takes the form

Pθ((x, i);A × {j}) = Bx,θ(i, j)P [j](x,A), (3.3)
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where Bx,θ is a transition kernel on {1, . . . , d} with invariant distribution
(hj(x)/θ(j))(

∑
i hi(x)/ θ(i))−1 and P [i] a transition kernel on (X1,B1) with in-

variant distribution proportional to hi(x)λ(dx). Typically, one takes Bx,θ(i, j) =
(hi(x)/θ(i))(

∑
i hi(x)/θ(i))−1. Another common choice is to take Bx,θ as a

Metropolis-Kernel on {1, . . . , d} with proposal q(i, j). By standard importance
sampling techniques, we can convert samples from the higher temperature dis-
tributions to estimate π1. The method holds for any θ ∈ Rd, θ(i) > 0, but the
choice of θ can significantly impact the efficiency. Heuristically it seems that, to
improve on mixing, we need a θ that allows samples from fast converging distri-
butions (but close to π); but since π1 is the distribution of interest, for statistical
efficiency, we need a θ that favors π1. One easy way to resolve this trade-off is
to choose θ such that all the distributions are equally visited. For this we need
to choose θ(i) = θ∗(i) ∝

∫
hi(x)λ1(dx) and sample from

π∗(dx, i) ∝ h1/ti(x)
θ∗(i)

1Xi(x)λ1(dx).

This can be done with Algorithm 2.2.

Example 1. We compare a plain simulated tempering with weight θ(i) ≡ 1
and the Wang-Landau simulated tempering described above for sampling from
a multimodal bivariate Gaussian mixture distribution. The target distribution
given below was taken from Liang and Wong (2001)

π(x) =
1

2πσ2

20∑
i=1

ωi exp
{
− 1

2σ2
(x − µi)′(x − µi)

}
, (3.4)

where σ = 0.1 and ωi ≡ 0.05. The µi’s are listed in Table 1. The distribution is
highly multimodal and it is clear that a plain Random Walk Metropolis algorithm
for this distribution does not mix in a reasonable time. Simulated tempering can
be particularly efficient in such situations. We compare two strategies: a plain
simulated tempering where θ(i) ≡ 1 in (3.2) and the WL adaptation of simulated
tempering as described above. We use the temperature scale 1 < 7.7 < 31.6 <

100.
Table 2 presents the mean squared errors (MSEs) of the two methods in

estimating the first two moments of the two components of π. We can see that
the WL version is about three-four times more efficient than the plain version
in terms of MSE. The estimates are based on 30 independent replications of the
samplers. We ran each sampler for 100, 000 iterations. In applying Algorithm
2.2, we used γn = 1/n and c = 0.3.



THE WL ALGORITHM IN GENERAL STATE SPACES 217

Table 1. The 20 means of the two-dimensional Gaussian mixture.

i µi1 µi2 i µi1 µi2 i µi1 µi2 i µi1 µi2

1 2.18 5.76 6 3.25 3.47 11 5.41 2.65 16 4.93 1.50
2 8.67 9.59 7 1.70 0.50 12 2.70 7.88 17 1.83 0.09
3 4.24 8.48 8 4.59 5.60 13 4.98 3.70 18 2.26 0.31
4 8.41 1.68 9 6.91 5.81 14 1.14 2.39 19 5.54 6.86
5 3.93 8.82 10 6.87 5.40 15 8.33 9.50 20 1.69 8.11

Table 2. Mean Square Errors of the plain and the WL simulated tempering
algorithms. Based on 30 independent replications with 100, 000 iterations of
each sampler.

E (X1) E (X2) E (X2
1 ) E (X2

2 )
Plain ST 0.113 0.132 11.201 12.501
WL-ST 0.029 0.041 2.818 4.023
Ratio 3.89 3.25 3.97 3.11

3.3. Application to trans-dimensional MCMC

It is often the case in Statistics that many alternative models are considered
for the same data. One is then interested in issues like model comparison, model
selection, and averaging. Let f(Data|k, xk) be the likelihood of model k with
parameter xk. Assume that we have a finite number d of models and that xk ∈
(Xk,Bk, λk). Let X =

⋃d
i=1 Xi × {i} be the union space equipped as above with

the σ-algebra B and the σ-finite measure λ. (X ,B, λ) is the natural space to
consider when dealing both with model uncertainty and parameter estimation.
In the Bayesian framework, a prior density (with respect to λ) p(xk, k) in (X ,B) is
specified for (xk, k). The posterior distribution of (xk, k) is therefore π(xk, k) ∝
hk(xk) = f(Data|k, xk)p(xk, k). In this framework, one is often interested in
the Bayes factor of model i to model j defined as Bij := θ∗(i)p(j)/(θ∗(j)p(i)),
where θ∗(i) ∝

∫
Xi

π(xi, i)λi(dxi) and p(i) =
∫

p(xi, i)λi(dxi). Trans-dimensional
MCMC is a set of specialized MCMC algorithms to sample from distributions
like π defined on spaces of variable dimensions. The reversible-jump algorithm
of Green (Green (1995)) is the most popular such sampler.

In the spirit of the WL algorithm, an alternative to sampling directly from
π is to sample from the distribution

π∗(dxi, i) ∝
hi(xi)
θ∗(i)

1Xi(x)λi(dxi). (3.5)

By such re-weighting, we give the same posterior weight to all the models. The
WL algorithm then offers an effective strategy to sample from π∗ and we recover
π by importance sampling. This strategy can improve on the mixing of the
sampler
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Figure 1. Marginal posterior distribution of models. (a) estimate from the
plain WL-RJMCMC; (b) estimate from the RJMCMC; (c) true posterior
distribution. Estimates were based on 10×106 iterations for the plain RJM-
CMC and 2 × 106 iterations for the WL-RJMCMC.

Example 2. We set Xi = Ri for i = 1, . . . , 20, and consider the following rather
trivial trans-dimensional target distribution:

π(xi, i) ∝ a−1
i e−|xi|2/2,

where we let ai = 1 for i 6= 4, and a4 = (2π)−16/2. In this distribution, xi ∈ Ri,
the i-dimensional Euclidean space, and π(xi, i) restricted to Ri is proportional to
the standard normal distribution. We are interested in the marginal distribution
p(i) of i. This distribution, as shown in Figure 1, is bimodal with modes at 4
and 20.

We pretend that this distribution is intractable and sample from it using a
Birth-and-Death Reversible-Jump MCMC. For the fixed-dimensional move, we
use a Random Walk Metropolis kernel with a Gaussian proposal with covari-
ance matrix σpIi, σp = 0.1. We implement a Birth-and-Death move for the
trans-dimensional jump. Given (x, i), we randomly select j ∈ {i − 1, i + 1} with
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respective probability ωi,i−1, ωi,i+1. We choose ωi,i+1 = 1/2 with the usual cor-
rection at the boundaries. If j = i+1, we propose y = (xi, u) where u ∼ N(0, σ2)
with σ = 0.1. We accept (y, j) with probability min(1, A), where

A =
π(y, j)
π(x, i)

ωji

ωij

√
2πσeu2/2σ2

.

Similarly if j = i − 1, we write x = (y, u′) with u′ ∈ R and propose (y, j). This
value is then accepted with probability min(1, A) with

A =
π(y, j)
π(x, i)

ωji

ωij

1√
2πσ

e−u′2/2σ2
.

This vanilla RJMCMC sampler fails to sample from π. Depending on its
starting point, the sampler typically found one of the two modes and got stuck
there even after 10 millions iterations (see Figure 2a). In contrast, the WL algo-
rithm provided a reasonable estimate of the distribution in only 2 millions iter-
ations. In this example, computationally, each WL iteration step costs roughly
that for 1.2 step of the vanilla sampler. For the WL approach we used c = 0.4
and γn = 2−n until 10−4 before switching to γn = n−1.

4. Some Theoretical Results

We look at some theoretical aspects of the algorithm. We investigate the
convergence of θn to θ∗ and a strong law of large numbers for {(Xn, In)}. The
difficulty comes in proving that the algorithm is stable in the following sense.

Definition 4.1. Let vn(i) be the occupation measure of Xi by time n : vn(i) =
(1/n)

∑n
k=1 1{Ik=i}. The Wang-Landau algorithm is said to be stable if

max
i,j

lim sup
n→∞

n(vn(i) − vn(j)) < ∞, a.s.. (4.1)

This is an essential property of the algorithm. When the algorithm is stable,
we show that all the stopping times κl defined in Algorithm 2.2 are finite and the
step-size γan will gradually converges to 0. Moreover (Theorem 4.1 below) on a
path where the algorithm is stable, θn → θ∗ and a strong law of large numbers
holds for (1/n)

∑n
k=1 f(Xk, Ik). Then, we derive some verifiable conditions under

which the algorithm is shown to be stable. To maintain the flow of ideas, some
of the proofs are postponed to Section 6.

4.1. Ergodicity

Let Θ = {θ ∈ Rd :
∑d

i=1 θ(i) = 1, θ(i) ∈ (0, 1), i = 1, . . . , d} and
((X0, I0), θ0) ∈ X × Θ be the initial state of the algorithm. This initial state
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is considered fixed but arbitrary. Let {γn} be the step-size sequence. Let Pr be
the distribution of the process {Xn, In, θn} started at (X0, I0, θ0) with step-size
sequence {γn}, and let E be the expectation with respect to Pr. To simplify the
notation, we omit explicit mention of the dependence of Pr on (X0, I0, θ0) and
{γn}. All statements made almost surely are with respect to Pr. For θ ∈ Rd,
|θ| denotes the Euclidean norm of θ. For any ε ∈ (0, ε∗), where ε∗ = mini θ

∗(i),
let Θε = {θ ∈ Θ, θ(i) ≥ ε, i = 1, . . . , d}. Our main assumption is that the
family {Pθ, θ ∈ Θε} is Lipschitz and uniformly V -ergodic. See e.g., Andrieu and
Moulines (2006) for some examples of MCMC samplers where these assumptions
hold. Before stating them, we need some notation. For any functions f : X → R
and W : X → [1,∞) we take |f |W := supx∈X [(|f(x)|)/(W (x))], and introduce
the set of W -bounded functions LW := {f meas., f : X → R, |f |W < ∞}. A
transition kernel on (X ,B) operates on measurable real-valued functions f as
Pf(x) =

∫
P (x, dy)f(y), and the product of two transition kernels P1 and P2 is

the transition kernel P1P2(x,A) =
∫

P1(x, dy)P2(y,A). For two transition kernels
P1 and P2, |||P1 − P2|||W , the W -distance between P1 and P2 is

|||P1 − P2|||W := sup
|f |W≤1

|P1f − P2f |W .

(A1) There is a measurable function V : X −→ [1,∞), a set C ⊂ X , and a
probability measure ν on (X ,B) such that ν(C) > 0, with the following
property. For all ε ∈ (0, ε∗), we can find constants λε ∈ (0, 1), bε ∈ [0,∞),
βε ∈ (0, 1] and integer n0,ε such that:

inf
θ∈Θε

P
n0,ε

θ (x,A) ≥ βεν(A)1C(x), x ∈ X , A ∈ B; (4.2)

sup
θ∈Θε

PθV (x) ≤ λεV (x) + bε1C(x), x ∈ X . (4.3)

The inequality (4.3) of (A1) is the so-called drift condition and (4.2) is the
so-called minorization condition.

(A2) For all α ∈ [0, 1], for all ε ∈ (0, ε∗), there exists K = K(α, ε) < ∞ such
that, for all θ, θ′ ∈ Θε,

|||Pθ − Pθ′ |||V α ≤ K
∣∣θ − θ′

∣∣ , (4.4)

where V is defined in (A1).

(A3) {γn} is non-increasing, γn > 0,
∑

γn = ∞, and γn = O(n−1) as n → ∞.
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For B > 0, we introduce the stopping time:

τ(B) := inf
{

k ≥ 0 : max
i,j

k(vk(i) − vk(j)) > B
}

, (4.5)

with the usual convention that inf ∅ = ∞. τ(B) is the first time that one compo-
nent accumulates B visits or more than some other component. Thus, Definition
4.1 is precisely equivalent to τ(B) = ∞ for some B. With this in mind, the next
results says essentially that if the algorithm is stable, and (A1-3) hold, then it is
ergodic.

Theorem 4.1. Let (A1−3) hold and B > 0 be given. Then

(i)
|θn − θ∗|1{τ(B)>n} → 0, a.s. as n → ∞. (4.6)

(ii) For any function f ∈ LV 1/2, writing f̄ = f − π∗(f), we have

1
n

n∑
k=1

f̄(Xk, Ik)1{τ(B)>k−1} → 0, a.s. as n → ∞. (4.7)

Proof. See Section 6.2.

4.2. Checking (A1–2)

We impose the drift condition and the minorization condition (A1) uniformly
for θ ∈ Θε, not uniformly for θ ∈ Θ. This is an important point. Indeed, and
as we see now, a drift and minorization condition uniformly-in-θ for θ ∈ Θε is
almost always true as soon as one Pθ satisfies these conditions (Proposition 4.1),
whereas a minorization and drift condition uniformly-in-θ for θ ∈ Θ is almost
never true.

Indeed, suppose that each Pθ is a Metropolis-Hastings kernel with invari-
ant distribution πθ and proposal kernel Q. That is Pθf(x, i) = Mθf(x, i) +
rθ(x, i)f(x, i), where

Mθf(x, i) =
d∑

j=1

∫
Xj

min
(

1,
θ(i)
θ(j)

R(y, j; x, i)
)

f(y, j)Q(x, i; dy, j),

rθ(x, i) = 1 −
d∑

j=1

∫
Xj

min
(

1,
θ(i)
θ(j)

R(y, j; x, i)
)

Q(x, i; dy, j),

and R(x, i; y, j) the Radon-Nikodym density of π(dx, i)Q(x, i; dy, j) with respect
to π(dy, j)Q(y, j; dx, i).
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With θ = (1, . . . , 1), we use π (resp. P and M) to denote πθ (resp. Pθ and
Mθ). The next result states that we only need to check that P is geometrically
ergodic to obtain (A1-2).

Proposition 4.1. Suppose there is a measurable function V : X −→ [1,∞), a
set C ⊂ X , a probability measure ν on (X ,B) such that ν(C) > 0, and constants
λ ∈ (0, 1), b ∈ [0,∞), β ∈ (0, 1] and finite integer n0 such that Mn0(x,A) ≥
βν(A)1C(x), x ∈ X , A ∈ B, and PV (x) ≤ λV (x) + b1C(x), x ∈ X . Then
(A1−2) hold.

Proof. See Section 6.1.

4.3. Stability

Theorem 4.1 asserts that under (A1−3), the WL algorithm converges to the
right limit on stable paths. This raises the question of checking the stability of
the algorithm, difficult in general. The next theorem gives some easily checked
conditions under which the algorithm is stable.

Theorem 4.2. The WL algorithm is stable under either of the following two
conditions.

(a) There exist ε ∈ (0, 1), K ∈ (0,∞) and integer n0 ≥ 0 such that for any i, j ∈
{1, . . . , d} and θ ∈ Rd, θ(i)/θ(j) > K implies that Pn0

θ ((x, i),Xj × {j}) ≥ ε

for all x ∈ Xi.
(b) There exists ε ∈ (0, 1), such that for any j ∈ {1, . . . , d} and θ ∈ Rd, θ(j) ≤

min1≤i≤d θ(i) implies Pθ((x, i),Xj × {j}) ≥ ε for all x /∈ Xi and all i 6= j.

Proof. See Section 6.3.

4.4. Application to multicanonical sampling

Consider the multicanonical sampling of Section 3.1. Suppose that Pθ is
the Independence-Sampler with proposal distribution Q(dx) = q(x)λ(dx) and
invariant distribution πθ(dx) ∝

∑d
i=1(h(x)/θ(i))1Xi(x)λ(dx). Assume that the

function ω(x) ∝ h(x)/q(x) is bounded with supremum ω0. Then clearly, for all
x ∈ Xi,

Pθ(x,Xj) ≥ min
(

1,
θ(i)
θ(j)

)∫
Xj

min
(

1,
ω(y)
ω0

)
Q(dy) ≥ εj ,

as soon as θ(i) ≥ θ(j), taking εj =
∫
Xj

min(1, [(ω(y))/(ω0)])Q(dy) > 0 (since
π(Xi) > 0). Thus for any i, j ∈ {1, . . . , d}, i Ã j and, by Theorem 4.2, the WL
algorithm is stable. Now, since ω is bounded, each Pθ satisfies a drift condition
and a minorization condition, which implies (A1−2) by Proposition 4.1.
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Similarly, if Pθ is a Random Walk Metropolis with proposal kernel q(y − x)
we have

Pθ(x,Xj) ≥ min
(

1,
θ(i)
θ(j)

)∫
Xj

min
(

1,
π(y)
π(x)

)
q(y − x)dy.

It follows that if X is compact and π, q are positive and continuous, then i Ã j

for all i, j. Under the same assumption, (A1−2) also hold.

Corollary 4.1. In the case of multicanonical sampling of Section 3.1, assume
one of

(i) Pθ is an independent-Metropolis sampler with proposal distribution Q(dx) =
q(x)λ(dx) and ω ∝ h/q is bounded;

(ii) Pθ is a RWM sampler with proposal q(y−x); X is compact, and π and q are
positive and continuous.

Then the algorithm is stable and, under (A3),

|θn − θ∗| → 0; and
1
n

n∑
k=1

f(Xk) → π∗(f) a.s. as n → ∞

for any bounded measurable function f .

4.5. Application to simulated tempering

Theorems 4.1. and 4.2. can also be applied to the WL version of simu-
lated tempering as described in Section 3.2. We consider the simulated tem-
pering algorithm with kernel Pθ((x, i);A × {j}) = Bx,θ(i, j)P [j](x,A) where
Bx,θ(i, j) ∝ hj(x)/θ(j) and P [j] is a transition kernel (not necessarily Metorpolis-
Hastings) with invariant distribution hj . The following corollary is easily proved
and omitted.

Corollary 4.2. Suppose that X1 is compact, h positive and continuous, and {γn}
satisfies (A3). Suppose that there exist ε > 0, a probability measure ν and an
integer n0 such that ν(Xi) > 0 and (P [i])n0(x,A) ≥ εν(A), i ∈ {1, . . . , d}. Then

|θn − θ∗| → 0; and
1
n

n∑
k=1

f(Xk, Ik) → π∗(f) a.s. as n → ∞

for any bounded measurable function f .

5. Discussion and Open Problems

In this paper, we propose an extension of the WL algorithm to general state
spaces. The WL algorithm differs from other adaptive Markov Chain Monte
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Carlo algorithms based on stochastic approximation by the adaptive nature of
its step-size. We have shown through examples that the algorithm can be used
effectively to improve on simulated tempering and trans-dimensional MCMC
algorithms. We have also studied the asymptotic behavior of the WL algorithm.
We have shown that on stable sample paths, and with an appropriate step-size,
θn converges to θ∗ and a strong law of large numbers holds. Finally, when the
state space is compact we have shown that, in most cases, the algorithm is stable
and the aforementioned limit results apply.

Two main questions have remained unanswered. The first concerns the sta-
bility of the algorithm in unbounded state spaces. Second, in order to exploit
the full potential of the algorithm, a more precise understanding of its efficiency
is needed. In particular, we need to understand how the rate of convergence and
the asymptotic variances of the algorithm are related to the parameter c and
step-size γn. We are currently investigating some of these questions.

6. Proofs

The techniques used here can be found in various forms in Benveniste,
Métivier and Priouret (1990), Delyon (1996), and Andrieu, Moulines and Priouret
(2005). Throughout, Cε denotes a generic constant whose value can be differ-
ent from one equation to another. The key result in the proof of Theorem 4.1
is Lemma 6.6, which states that the weighted sum of the noise process in the
stochastic approximation followed by {θn} is summable.

6.1. Proof of Proposition 4.1

Lemma 6.1. Under the conditions of Proposition 4.1, (A2) holds.

Proof. Let ε ∈ (0, ε∗) and α ∈ (0, 1]. For θ ∈ Θε, |f | ≤ V α, and (x, i) ∈ X , we
have Pθf(x, i) = Mθf(x, i) + f(x, i)(1 − Mθe(x, i)), where e(x, i) ≡ 1, and

Mθf(x, i) =
d∑

j=1

∫
Xj

min
(

1,
θ(i)
θ(j)

r(y, j; x, i)
)

f(y, j)Q(x, i; dy, j).

As a consequence, for θ2, θ1 ∈ Θε, |||Pθ2 − Pθ1 |||V α ≤ |||Mθ2 − Mθ1 |||V α +|||Mθ2−
Mθ1 |||TV , where |||P |||TV = |||P |||V with V ≡ 1. For (x, i) ∈ X , the function
θ → Mθf(x, i) is differentiable and:

d∑
j=1

∣∣∣∣ ∂

∂θj
Mθf(x, i)

∣∣∣∣ ≤ Cε

d∑
j=1

M |f | (x, i).

(A2) then follows by the Mean Value Theorem and the drift condition on P .
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Next we show that for any ε ∈ (0, ε∗), the family (Pθ)θ∈Θε) satisfies a uniform
(in θ) drift condition.

Lemma 6.2. Under the conditions of Proposition 4.1, (A1) holds.

Proof. The minorization is immediate. Since min(1, ab) ≥ min(1, a)min(1, b)
for a, b > 0, Pθ(x, i; A) ≥ Mθ(x, i; A) ≥ (1/ε)M0(x, i;A) ≥ β/εν(A)1C(x, i).

The argument to show the uniform drift is fairly simple, and we only sketch
it here. Let Bθ,r = Θε∩B(θ, r) the open ball of Θε with center θ ∈ Θε and radius
r > 0. It follows from Lemma 6.1 that by choosing r > 0 small enough, if Pθ

satisfies a drift condition toward a small set C, then the family {Pθ′ , θ′ ∈ Bθ,r}
satisfies a uniform (in θ′) drift condition toward C. Therefore, starting from P ,
we can find an open coverage of Θε by the Bθ,r such that, on each such Bθ,r, a
uniform drift toward C holds. Since Θε is compact it admits a finite coverage by
the Bθ,r and, using the maximum of the constants of the drift condition toward
C for each such ball, we get a uniform drift toward C for {Pθ, θ ∈ Θε}.

6.2. Proof of Theorem 4.1.

We start with some preliminary remarks. For any ε ∈ (0, ε∗) and α ∈ (0, 1], it
is known from Markov chain theory that (A1) implies the existence of Cε,α < ∞,
ρε,α ∈ (0, 1) and bε as in (A1), such that

sup
θ∈Θε

|||Pn
θ − πθ|||V α ≤ Cε,αρn

ε,α, (6.1)

sup
θ∈Θε

πθ(V ) ≤ bε. (6.2)

For a proof, see e.g., Baxendale (2005) and the references therein. Define ξ(ε) =
inf{k ≥ 0 : θk /∈ Θε}. An easy calculation using (A1) gives that

E
[
V (Xn, In)1{ξ(ε)>n}

]
= E

[
V (Xn, In)1Θε(θ0) · · ·1Θε(θn)

]
≤ λn

ε V (X0, I0) +
bε

(1 − λε)

from which we deduce that

sup
n

E
(
V (Xn, In)1{ξ(ε)>n}

)
< ∞. (6.3)

The proof of the theorem is based on some nice properties of solutions of
the so-called Poisson equation. These solutions allow us to obtain a martingale
approximation to the process

∑n
k=1 f(Xk, Ik). For f ∈ LV α , α ∈ (0, 1] and

θ ∈ Θε, let

hθ =
∞∑

k=0

P k
θ

(
f − πθ(f)

)
. (6.4)
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hθ solves the Poisson equation f − πθ(f) = hθ − Pθhθ. By (A1), hθ exists and
hθ ∈ LV α . For f ∈ LV α and θ, θ′ ∈ Θε, writing f̄θ = f − πθ(f), we have

|πθ(f) − πθ′(f)| =
∣∣∣πθ

[
P k

θ f̄θ′

]∣∣∣
=

∣∣∣∣∣∣πθ

[
P k

θ′(f̄θ′)
]

+
k∑

j=1

πθ

[
P k−j

θ (Pθ − Pθ′)P
j−1
θ′ (f̄θ′)

]∣∣∣∣∣∣
≤ Cε

(
ρk

ε +
∣∣θ − θ′

∣∣ k∑
j=1

ρj−1
ε

)
,

using (A1−2), from which we deduce that there exists a finite constant Cε such
that

sup
f∈LV α

|πθ(f) − πθ′(f)| ≤ Cε

∣∣θ − θ′
∣∣ . (6.5)

The constant Cε is not necessarily the same from one equation to the other.
Similarly, with P̄θ as the operator Pθ − πθ, we have∣∣∣P k

θ f̄θ − P k
θ′ f̄θ′

∣∣∣ =
∣∣∣P̄ k

θ f − P̄ k
θ′f

∣∣∣
=

∣∣∣∣∣∣
k∑

j=1

P̄ k−j
θ (Pθ − Pθ′)P̄

j−1
θ′ f

∣∣∣∣∣∣
≤ Cε

∣∣θ − θ′
∣∣ kρk−1

ε V α,

using (A1−2). This, together with (6.5), implies the existence of a finite constant
Cε such that for all α ∈ (0, 1], θ, θ′ ∈ Θε,

|hθ − hθ′ |V α + |Pθhθ − Pθ′hθ′ |V α ≤ Cε

∣∣θ − θ′
∣∣ . (6.6)

In our analysis, we mainly see {θn} as a stochastic approximation sequence. The
recursion on {θn} has

θn+1(i) =
φn+1(i)∑d

e=1 φn+1(e)

=
φn(i) + γanφn(i)1{In+1=i}∑d

e=1 φn(e) + γanφn(In+1)

= θn(i)
1 + γan1{In+1=i}

1 + γanθn(In+1)
= θn(i) + γanHi(θn, In+1) + γ2

an
ri,n(θn, In+1), (6.7)

where Hi(θ, I) = θ(i)(1{I=i}−θ(I)) and ri,n(θ, I) = −θ(i)θ(I)[(1{I=i}−θ(I))/(1+
γanθ(I))].
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The mean field function hi(θ) = πθ(Hi) is

hi(θ) =
θ∗(i) − θ(i)∑d
j=1 θ∗(j)/θ(j)

. (6.8)

Lemma 6.3. Under (A3), let B > 0 be given and c0 = 2Bd/c. Then on
{τ(B) > n}, an ≥ bn/c0c. Moreover

∑
γan = ∞, and

∑
γ2

an
1{τ(B)>n} < ∞

almost surely.

Proof. On {τ(B) > n}, for any k < k′ ≤ n, and for any i ∈ {1, . . . , d},
(vk,k′(i) − 1/d) ≤ 2B/(k′ − k). Therefore if lc0 ≤ n < τ(B), κl ≤ n. That is,
an ≥ bn/c0c on {τ(B) > n}.

Since {γn} is non-increasing and an ≤ n,
∑

γan ≥
∑

γn = ∞. On the other
hand

∑
γ2

an
1{τ(B)>n} ≤ Cc0

∑
n−2 < ∞.

For any ε > 0, we introduce the stopping time ξ(ε) := inf{k ≥ 0 : θk /∈ Θε}.
We need the following result. The proof is omitted.

Lemma 6.4. Let {γn, n ≥ 0} be a non-increasing sequence of positive number
and {vn, n ≥ 0} be a sequence of numbers such that |

∑N
k=0 vk| ≤ B for all N ≥ 0.

Then |
∑N

k=0 γkvk| ≤ γ0B for all N ≥ 0.

The following lemma relates τ(B) and ξ(ε).

Lemma 6.5. Under (A3), for any B > 0 we can find ε ∈ (0, ε∗) such that
τ(B) ≤ ξ(ε).

Proof. Take ε = (1 + (d − 1)eBγ0)−1 > 0. Without any loss, we assume that
ε < ε∗ and ε ≤ mini θ0(i). We need to show that mini θn(i) > ε for all n <
τ(B). But θn(i) = (1+

∑
j 6=i[(φn(j))/(φn(i))])−1. It is thus enough to show that

φn(j)/φn(i) ≤ eBγ0 for all i 6= j and for any n < τ(B). But

φn(j)
φn(i)

= exp
( ∞∑

p=0

γp

(
Nκp,n∧κp+1(j) − Nκp,n∧κp+1(i)

))
,

where Nl,m(i) = 0 if m ≤ l and Nl,m(i) =
∑m

q=l+1 1Xi(Xq) otherwise (Nl,m(i)
is the number of visits to Xi from time l + 1 to m). For any n < τ(B),
|
∑P

p=0(Nκp,n∧κp+1(i) − Nκp,n∧κp+1(j))| ≤ B for all P ≥ 0. Lemma 6.4 thus
implies that φn(i)/φn(j) ≤ eγ0B.

Lemma 6.6. Under (A1−3), let B > 0 be given. Let {γ′
n} be a sequence that

satisfies (A3) such that
∑

γbn/acγ
′
bn/ac < ∞ for all a > 0. For θ ∈ Θ, Let

Hθ : X → R be a measurable function such that Hθ ∈ LV 1/2. Then
∞∑

k=0

γ′
ak

1{τ(B)>k}

[
Hθk

(Xk+1, Ik+1) − πθk
(Hθk

)
]

< ∞, a.s.. (6.9)
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Proof. Let ε > 0 as in Lemma 6.5. From (A1) there is a function hθ ∈ LV 1/2

that solves the Poisson equation hθ − Pθhθ = Hθ − πθ(Hθ) for all θ ∈ Θε. Using
this we can write

n∑
k=0

γ′
ak

1{τ(B)>k}

[
Hθk

(Xk+1, Ik+1) − πθk
(Hθk

)
]

=
n∑

k=0

γ′
ak

1{τ(B)>k}

(
U

(1)
k+1 + U

(2)
k+1 + U

(3)
k+1

)
,

where

U
(1)
k+1 = hθk

(Xk+1, Ik+1) − Pθk
hθk

(Xk, Ik),

U
(2)
k+1 = Pθk

hθk
(Xk, Ik) − Pθk+1

hθk+1
(Xk+1, Ik+1),

U
(3)
k+1 = Pθk+1

hθk+1
(Xk+1, Ik+1) − Pθk

hθk
(Xk+1, Ik+1).

Clearly Mn =
∑n

k=0 γ′
ak

1{τ(B)>k}U
(1)
k+1 is a martingale; using Lemma 6.3,

(6.3) and since hθ and Pθhθ ∈ LV 1/2 , we have

E (M2
n) ≤ Cε

n∑
k=0

E
[
(γ′

ak
)21{τ(B)>k}V (Xk+1, Ik+1)

]
≤ Cε

n∑
k=0

(γ′
bk/c0c)

2E
[
1{τ(B)>k}V (Xk+1, Ik+1)

]
≤ Cε

∞∑
k=0

(γ′
bk/c0c)

2 < ∞.

By Doob’s Convergence Theorem for martingales,
∑∞

k=0 γ′
ak

1{τ(B)>k}U
(1)
k+1 is fi-

nite a.s.
On {τ(B) = l} (l < ∞),

∑∞
k=0 γ′

ak
1{τ(B)>k}U

(2)
k+1 =

∑l−1
k=0 γ′

ak
U

(2)
k+1, which is

finite almost surely. On {τ(B) = ∞}, we can write

1{τ(B)=∞}

n∑
k=0

γ′
ak

1{τ(B)>k}U
(2)
k+1

= γ′
a0

Pθ0hθ0(X0, I0) − γ′
an

1{τ(B)=∞}Pθn+1hθn+1(Xn+1, In+1)

+
n−1∑
k=0

(
γ′

ak+1
− γ′

ak

)
1{τ(B)=∞}Pθk+1

hθk+1
(Xk+1, Ik+1).
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Now E [(γ′
an

1{τ(B)=∞}Pθn+1hθn+1(Xn+1, In+1))2] ≤ Cε(γ′
bn/c0c)

2 and
∑

(γ′
bn/c0c)

2 <

∞, thus γ′
an

1{τ(B)=∞}Pθn+1hθn+1(Xn+1, In+1) converges a.s. to 0, and

n−1∑
k=0

∣∣∣(γ′
ak+1

− γ′
ak

)1{τ(B)=∞}Pθk+1
hθk+1

(Xk+1, Ik+1)
∣∣∣

≤ Cε

∞∑
k=0

(γ′
ak

− γ′
ak+1

)1{τ(B)=∞}V
1/2(Xk+1, Ik+1).

Since ak only changes at the stopping times κi, we have

E
[ ∞∑

k=0

(γ′
ak

− γ′
ak+1

)1{τ(B)=∞}V
1/2(Xk+1, Ik+1)

]

= E
[ ∞∑

k=1

(γ′
k−1 − γ′

k)1{τ(B)=∞}V
1/2(Xκk+1, Iκk+1)

]

=
∞∑

k=1

(γ′
k−1 − γ′

k)E
[
1{τ(B)=∞}V

1/2(Xκk+1, Iκk+1)
]

≤ Cε

∞∑
k=1

(
γ′

k−1 − γ′
k

)
≤ Cεγ

′
0.

By Lebesgue’s Dominated Convergence Theorem, we can conclude that

E
[ ∣∣∣∣∣

∞∑
k=0

(γ′
ak+1

− γ′
ak

)1{τ(B)=∞}Pθk+1
hθk+1

(Xk+1, Ik+1)

∣∣∣∣∣
]

< ∞.

This is sufficient to conclude that
∑∞

k=0 γ′
ak

1{τ(B)>k}U
(2)
k+1 is finite almost surely.

Using (6.6);

n∑
k=0

γ′
ak

1{τ(B)>k}

∣∣∣U (3)
k+1

∣∣∣ ≤ Cε

∞∑
k=0

γ′
ak

γak
1{τ(B)>k}V

1/2(Xk+1, Ik+1)

≤ Cε

∞∑
k=0

γ′
bn/c0cγbn/c0c1{τ(B)>k}V

1/2(Xk+1, Ik+1),

and

E

[ ∞∑
k=0

γ′
bn/c0cγbn/c0c1{τ(B)>k}V

1/2(Xk+1, Ik+1)
]
≤ Cε

∞∑
k=0

γ′
bn/c0cγbn/c0c < ∞



230 YVES F. ATCHADÉ AND JUN S. LIU

by (6.3). With Lebesgue’s Dominated Convergence Theorem, we deduce that

E
[ ∞∑

k=0

γ′
ak

1{τ(B)>k}

∣∣∣U (3)
k+1

∣∣∣ ]
≤ Cε

∞∑
k=0

γ′
bn/c0cγbn/c0c < ∞,

which implies that
∑n

k=0 γ′
ak

1{τ(B)>k}U
(3)
k+1 converges almost surely to a finite

limit. This completes the proof of the lemma.

We are now in position to prove Theorem 4.1. We start with (i).

Proposition 6.1. Under (A1−3), let B > 0 be given. Then |θn − θ∗|1{τ(B)>n}
→ 0 with probability one as n → ∞.

Proof. The idea of the proof is borrowed from Delyon (1996). We saw in
(6.7) that θn+1 = θn + γanH(θn, In+1) + γ2

an
rn, where H = (H1, . . . ,Hd), rn =

(rn,1, . . . , rn,d), Hi(θ, I) = θ(i)(1{I=i} − θ(I)) and ri,n = −θ(i)θ(I)[(1{I=i} −
θ(I))/(1 + γanθ(I))]. We note that |H| ≤ 1 and |rn| ≤ 1. Let ε ∈ (0, ε∗) be
such that τ(B) ≤ ξ(ε) (Lemma 6.5). We recall that the mean field function
of the recursion is hi(θ) = (θ∗(i) − θ(i))/

∑d
j=1[(θ

∗(j))/(θ(j))]. We introduce
θ′n = θn+

∑∞
j=n γaj1{τ(B)>j}[H(θj , Ij+1)−h(θj)]. From Lemma 6.6, |θ′n − θn| → 0

almost surely. {θ′n} satisfies the recursion

θ′n+1 = θ′n + γanh(θn) + γan1{τ(B)≤n}

[
H(θn, In+1) − h(θn)

]
+ γ2

an
rn.

We can then deduce that∣∣θ′n+1−θ∗
∣∣2 1{τ(B)>n}

=
∣∣θ′n − θ∗

∣∣2 1{τ(B)>n} + 2γan

〈
θ′n − θ∗, h(θn)

〉
1{τ(B)>n} + γan1{τ(B)>n}r

′
n

≤ (1−2εγan)
∣∣θ′n−θ∗

∣∣2 1{τ(B)>n} + γan1{τ(B)>n}

(
r′n+

〈
θ′n−θ∗, h(θn)−h(θ′n)

〉 )
,

where r′n → 0 almost surely as n → ∞. Since θn remains in the compact Θε, h is
continuous and since |θ′n − θn| → 0, it follows that 〈θ′n − θ∗, h(θn) − h(θ′n)〉 → 0.
We can summarize the situation like this. Writing Un = |θ′n − θ∗|2 1{τ(B)>n}, we
have

Un+1 ≤ (1 − 2εγan)Un + γanr
′′
n, (6.10)

where r
′′
n → 0 as n → ∞. This implies that Un → 0 which, given Lemma 6.6,

proves the Proposition.
To see why Un → 0, let δ > 0 be given. Take n0 > 0 such that for n ≥ n0,∣∣∣r′′

n

∣∣∣ ≤ 2εδ and (1 − 2εγan)1{τ(B)>n} > 0. Then for n ≥ n0, (Un+1 − δ) ≤
(1− 2εγan)(Un − δ)+2εγan(r

′′
n/2ε− δ) ≤ (1− 2εγan)(Un − δ), which implies that

lim sup(Un − δ) ≤ 0 and, since δ > 0 is arbitrary, we conclude that limUn = 0.
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Proposition 6.2. Under (A1−3), let B > 0 be given. For any function f ∈
LV 1/2, denoting f̄ = f − π∗(f), we have:

1
n

n∑
k=1

f̄(Xk, Ik)1{τ(B)>k−1} → 0, a.s. as n → ∞. (6.11)

Proof. In view of Proposition 6.1 and (6.5), we only need show that

1
n

n∑
k=1

(
f(Xk, Ik) − πθk−1

(f)
)
1{τ(B)>k−1} → 0 a.s.. (6.12)

Kronecker’s Lemma applied to (6.9) of Lemma 6.6 with γ′
n = 1/n, Hθ = f

yields (6.12).

6.3. Proof of Theorem 4.2

Proof. Assume that [a] hold. Define αk = (1 + γ0)(1+n0)k and suppose that
lim supn→∞ n(vn(i) − vn(j)) = ∞. This implies the existence of an increas-
ing sequence of integers {nk, k ≥ 1} such that nk(vnk

(i) − vnk
(j)) > αk and

(Xnk
, Ink

) ∈ Xi × {i}, but (Xnk+n0 , Ink+n0) /∈ Xj × {j} for all k ≥ 1. Clearly,
nk(vnk

(i)− vnk
(j)) > αk implies that θnk

(i)/θnk
(j) converges to +∞. But, since

i leads to j, we can then find ε > 0 and k0 such that, for k ≥ k0,

Pr
[
(Xnk+n0 , Ink+n0) /∈ Xj × {j}|Fnk

, (Xnk
, Ink

) ∈ Xi × {i},

nk(vnk
(i) − vnk

(j)) > αk

]
≤ (1 − ε).

Thus Pr(lim supn→∞ n(vn(i) − vn(j)) = ∞) ≤ limk→∞(1 − ε)k = 0.

Assume that [b] hold. Define αk = (1 + γ0)2k and suppose that lim supn→∞
n(maxi vn(i) − minj vn(j)) = ∞. Then we can find i0 ∈ {1, . . . , d} and an
increasing sequence of integers {nk, k ≥ 1} such that minj vn(j) = vn(i0),
nk(maxj vnk

(j) − vnk
(i0)) > αk, (Xnk

, Ink
) /∈ Xi0 × {i0} and (Xnk+1, Ink+1) /∈

Xi0 × {i0} for all k ≥ 1. Then we can proceed as above and conclude.
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Université Paris Dauphine, Ceremade 0125.
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