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Abstract: This article considers the problem of choosing optimal designs when both

blocking and foldover techniques are employed. Based on a general decomposi-

tion structure, the treatment and block split wordlength patterns of the combined

blocked design under a general foldover plan are defined. They are proved to be

independent of the choice of the block foldover plans. It is shown that, for an initial

unblocked design, a pair of blocking and foldover plans has minimum aberration

for the combined blocked design if and only if the foldover plan has minimum aber-

ration without consideration of blocking plans and the blocking plan has minimum

aberration without consideration of foldover plans. The clear effects in the com-

bined blocked designs are also characterized. Based on these theoretical results,

a catalogue of optimal blocking and foldover plans in terms of the aberration and

clear effect criteria is tabulated.
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1. Introduction

Two-level fractional factorial (FF) designs are commonly used in experimen-
tal investigations. An FF design is called regular if any two effects are either
orthogonal or aliased. This simple aliasing structure makes regular FF designs
popular in practice. In order to break the aliasing in two-level designs, a stan-
dard strategy is to augment a foldover design of the same size by exchanging
the signs of one or more columns of the initial design. A foldover plan refers to
the collection of columns whose signs are exchanged in the foldover design. For
detailed discussion on this technique, refer to Wu and Hamada (2000), and Box,
Hunter and Hunter (2005).

Typically, a classic foldover plan is to exchange the signs of all columns. This
plan is usually called a full foldover plan, by which we can increase the resolution
of the resulting combined design, consisting of the initial design and the foldover
design, from III to at least IV. Based on the minimum aberration (MA) criterion
(Fries and Hunter (1980)), Li and Mee (2002) and Li and Lin (2003) presented
all optimal foldover plans for regular two-level designs with small runs. Recently,
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Ye and Li (2003) provided some theoretical insight into the relationships between
an initial design and the resulting combined design under a general foldover plan.

Blocking, a fundamental technique in design of experiments, can effectively
improve the efficiency of an experiment by eliminating systematic variations due
to inhomogeneities of experimental units. How to block a design in an optimal
way is a problem of practical importance. For a given blocked regular two-level
design, Li and Jacroux (2007) searched by an algorithm the optimal treatment
foldover plans under two proposed optimality criteria, but provided no theo-
retical insight. Our research focuses on the optimal plans for regular two-level
designs when both blocking and foldover techniques are employed. Some general
theoretical properties are obtained and described.

The paper is organized as follows. Section 2 reviews the blocking schemes of
regular two-level designs and the related optimality criteria. Section 3 introduces
a general decomposition structure of a blocked regular two-level foldover design.
In Section 4 the treatment and block split wordlength patterns of the combined
blocked design are defined under a general foldover plan. The relationships be-
tween the treatment and block wordlength patterns of an initial design and its
combined blocked design are obtained in Section 5. The clear effects in the com-
bined blocked designs are also characterized. Based on these theoretical results,
a catalogue of optimal blocking and foldover plans in terms of the aberration
and clear effect criteria is tabulated and compared for 8, 16, 32 and 64-run initial
designs in Section 6. Section 7 concludes with some remarks.

2. Blocked Regular Two-level Designs and Related Optimality Criteria

A regular FF 2n−p design D is determined by p aliasing relations, which
generate p treatment defining words. The group formed by these p defining
words is called the treatment contrast subgroup, denoted by Gt. Every element
in Gt is called a word. The number of letters in a word is called its length.
Specifically, the identity I is a word of length 0. For i = 1, . . . , n, let Ai(D) be
the number of words of length i in Gt. Then the vector

Wt(D) = (A1(D), . . . , An(D)) (2.1)

is called the treatment wordlength pattern (TWP) of D. Since A1(D) = A2(D) =
0, for simplicity, only Ai(D)’s (i ≥ 3) of the TWP are displayed in this paper.
For any two 2n−p designs D1 and D2, D1 is said to have less aberration than
D2, denoted by Wt(D1) < Wt(D2), if Ar(D1) < Ar(D2), where r is the smallest
integer such that Ar(D1) 6= Ar(D2). If there exists no other design with less
aberration than D1, then D1 is said to have MA. Hereafter, all other MA criteria
are defined analogously based on the relevant wordlength pattern vectors.
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Arranging the 2n−p design D into 2k blocks is equivalent to selecting k inde-
pendent interactions v1, . . . , vk of the (n−p) independent factors as the k blocking
factors b1, . . . , bk, referred to as a blocking plan. We call v1b1, . . . , vkbk the k block
defining words. This blocked design is formally denoted by (2n−p : 2k) design Db.
The group formed by the p treatment defining words together with the k block
defining words is denoted by Gt+b. Let Gb⊗t = Gt+b \ Gt. Based on the usual
assumptions that the block-by-treatment interactions are negligible and that the
interactions between block factors are as important as the main effects of block
factors, every element in Gb⊗t represents a treatment effect confounded with a
block effect. For i = 1, . . . , n, let Ab

i(D
b) be the number of words containing i

treatment letters in Gb⊗t. Then the vector

Wb(Db) = (Ab
1(D

b), . . . , Ab
n(Db)) (2.2)

is called the block wordlength pattern (BWP) of the blocked design Db. For con-
venience, we rewrite At

i(D
b) = Ai(D) and Wt(Db) = Wt(D). For a given design

D, an MA blocking plan sequentially minimizes the components in Wb(Db). A
catalogue of the MA blocking plans for some two-level designs with small runs
can be found in Sun, Wu and Chen (1997).

Since there are two wordlength patterns for blocked FF designs, one should
combine the components of the two wordlength patterns into one combined
wordlength pattern according to an ordering scheme. Then an MA blocked design
sequentially minimizes the combined wordlength pattern. Along these lines, sev-
eral different combined wordlength patterns have been proposed by Sitter, Chen
and Feder (1997), Chen and Cheng (1999), Zhang and Park (2000) and Cheng
and Wu (2002). For detailed illustrations and comparisons on these criteria, refer
to Ai and Zhang (2004). Although the orderings are different, it is essential that
the number Ab

i is always put behind the number At
i for i = 1, . . . , n, based on

the popular effect hierarchy principle (Wu and Hamada (2000, Sec 3.5)).
As argued in Chen, Sun and Wu (1993), when there is no design with resolu-

tion V or higher, the MA criterion does not always lead to the best designs. To
address this problem, Wu and Chen (1992) introduced the concept of clear effect.
A main effect or two-factor interaction (2fi) is called clear if it is not aliased with
any other main effect or 2fi. For blocked designs, a main effect or a 2fi is clear if,
in addition, it does not confound with any block effect. For detailed discussion,
refer to Mukerjee and Wu (2006).

3. General Foldover Structure of A Blocked Regular Two-level Design

As in Mukerjee and Wu (2006), an FF 2n−p design D and its (2n−p : 2k)
blocked design Db, whose levels are denoted by the elements 0 and 1 in GF (2) =
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{0, 1}, can be expressed as D = R(C) and Db = R(C,B), where C and B are,
respectively, (n−p)×n and (n−p)×k matrices indicating the treatment factors
and the blocking factors, and R(C) denotes the row space of a matrix C over
GF (2). Moreover, rank(C) = n − p, rank(B) = k, and no column of C belongs
to the column space of B. Note that Chen and Hedayat (1996) called the matrix
C the factor representation of design D.

Now a foldover plan can be denoted by a (n+k)-dimensional row vector ξ =
(ξt, ξb) with elements 0 or 1, where ξt and ξb represent the foldover plans of the
treatment factors and blocking factors, respectively. For convenience, the factors
corresponding to 1 are called foldover factors with respect to the foldover plan ξ,
while those corresponding to 0 are referred to as unfoldover factors. Without loss
of generality, we assume that, for a blocked regular (2n−p : 2k) design Db, the first
(n − p) columns are independent columns and the remaining p + k columns are
additional columns, i.e., linear combinations of the first (n − p) columns. Then
the factor representation of design Db can be expressed as (C,B) = (I, C1, B),
where I is the identity matrix of order (n−p) and C1 is an (n−p)×p matrix. This
split structure is called the standard factor representation of Db. For a foldover
plan ξ = (ξt, ξb), the combined blocked design, denoted by Db∗, consisting of the
initial design and its foldover design, can be described as

Db∗ = R

(
I C1 B

ξt
1 ξt

2 ξb

)
= R

(
I C1 B

0T
n−p ξt∗

2 ξb∗

)
, (3.1)

where ξt = (ξt
1, ξ

t
2), ξt∗

2 = ξt
2 − ξt

1C1 and ξb∗ = ξb − ξt
1B. Therefore we only need

to consider the foldover plans of the treatment factors of the form ξt = (ξt
1, ξ

t
2)

with ξt
1 = 0. These foldover plans are called the core foldover plans by Li and

Lin (2003). Any other foldover plan must generate the same combined design as
one of the core foldover plans does. In particular, when ξ is a null vector, called
the null foldover plan, the combined blocked design reduces to two replicates of
the blocked design Db. For simplicity, only ξt

2 is displayed hereafter to represent
the foldover plans of the additional treatment factors.

Thus, for a (2n−p : 2k) blocked design with the standard factor representation
Db = R(I, C1, B), a vector z = (zT

1 , zT
2 , zT

3 ) with a similar dimensional partition
is a word of the combined blocked design under a treatment core foldover plan ξt

2

and a block foldover plan ξb if and only if z is a word of Db and ξt
2z2 + ξbz3 = 0

(mod 2). We will show in Section 4 that the treatment and block wordlength
patterns of the combined blocked design are both independent of the choice of
ξb when the implicit blocking factor is included.
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Example 1. Consider a (26−2 : 22) blocked design Db in which the six treatment
factors consist of the four independent columns 1, 2, 4, 8 and the two additional
columns 3 and 12, and the two blocking factors are columns 5 and 10. Note that
the related FF design is denoted by 6-2.3 in Chen et al. (1993). This blocked
design can be expressed as Db = R(I, C1, B), where

C1 =

(
1 1 0 0

0 0 1 1

)T

and B =

(
1 0 1 0

0 1 0 1

)T

.

The overall defining contrast subgroup Gt+b of design Db is expressed as R(S),
where

S =


1 1 0 0 1 0 0 0

0 0 1 1 0 1 0 0

1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1

 ,

in which a row vector represents a word. Its treatment and block wordlength
patterns are, respectively, Wt(Db) = (2, 0, 0, 1) and Wb(Db) = (0, 3, 6, 3).

Under the treatment core foldover plan ξt
2 = (1, 1) and the block foldover

plan ξb = (1, 0), the combined blocked design is a blocked (26−1 : 22) design Db∗,
whose Gt+b consists of the row vectors in R(W ) whose sum of the 5-, 6- and
7-components is 0 modulus 2. It is easily checked that Gt+b is of the form R(S∗)
with

S∗ =


1 1 1 1 1 1 0 0

0 1 1 0 1 0 1 0

0 1 0 1 0 0 0 1

 .

Consequently, the treatment and block wordlength patterns of Db∗ are, respec-
tively, Wt(Db∗) = (0, 0, 0, 1) and Wb(Db∗) = (0, 1, 4, 1).

4. Treatment and Block Split Wordlength Patterns

For a pair of treatment and block foldover plans (ξt
2, ξ

b), let rt = wt(ξt
2) and

rb = wt(ξb), where wt(u) is the number of nonzero elements of the vector u.
Then after permutations of treatment factors and blocking factors, a combined
blocked design can be decomposed as follows:

R

(
I C11 C12 B1 B2

0T
n−p 0T

p−rt
1T

rt
0T

k−rb
1T

rb

)
,
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where 0r and 1r are the r-dimensional column vectors of zeros and ones, re-
spectively. For the blocked design Db = R(C1, C2, B1, B2), both the treatment
factors and blocking factors are split into two parts according to whether it is
folded or not. Let Ai1,i2;j1,j2(D

b) be the number of words in the overall defining
contrast subgroup Gt+b of Db that consist of i1 factors in I ∪ C11, i2 factors
in C12, j1 factors in B1 and j2 factors in B2. A collection of these numbers
is called the split wordlength pattern of Db. Let At

i1,i2
(Db) = Ai1,i2;0,0(Db) and

Ab
i1,i2

(Db) =
∑

j1+j2≥1 Ai1,i2;j1,j2(D
b). The matrices [At

i1,i2
(Db)] and [Ab

i1,i2
(Db)]

are called, respectively, the treatment and block split wordlength patterns of Db

under the foldover plan (ξt
2, ξ

b).
Because of the sequential nature of a foldover plan, the combined design has

been explicitly classified into the initial design and the foldover design, i.e., there
exists an additional blocking factor which takes the value 0 for the first half and
1 for the other half. This blocking factor is called the implicit blocking factor.
In this way, the combined design is blocked into 2k+1 blocks. Its design matrix
has the form

Db∗ = R

(
I C11 C12 B1 B2 0n−p

0T
n−p 0T

p−rt
1T

rt
0T

k−rb
1T

rb
1

)
. (4.1)

Hereafter, we always consider the combined blocked designs with the implicit
blocking factor in the last column.

As before, let Ai1,i2;j1,j2,j3(D
b∗) be the number of words in the overall defining

contrast subgroup of Db∗ that consist of i1 factors in I ∪ C11, i2 factors in C12,
j1 factors in B1, j2 factors in B2, and j3 factor in the last blocking factor. It can
be easily checked that

Ai1,i2;j1,j2,j3(D
b∗) =

1
2

[
1 + (−1)i2+j2+j3

]
Ai1,i2;j1,j2(D

b). (4.2)

Thus, the treatment and block split wordlength patterns of Db∗ can be expressed
in terms of those of Db as follows:

At
i1,i2(D

b∗) = Ai1,i2;0,0,0(Db∗) =
1
2

[
1 + (−1)i2

]
At

i1,i2(D
b), (4.3)

Ab
i1,i2(D

b∗) =
∑

j1+j2+j3≥1

Ai1,i2;j1,j2,j3(D
b∗)

=
∑

j1+j2≥1

1∑
j3=0

Ai1,i2;j1,j2,j3(D
b∗) + Ai1,i2;0,0,1(Db∗)

=
∑

j1+j2≥1

Ai1,i2;j1,j2(D
b) +

1
2

[
1 − (−1)i2

]
Ai1,i2;0,0(Db)

= Ab
i1,i2(D

b) +
1
2

[
1 − (−1)i2

]
At

i1,i2(D
b). (4.4)
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Let E be the set of all nonnegative even numbers. Then the following two
relationships follow from formulas (4.3) and (4.4), respectively.

Theorem 1. The treatment and block split wordlength patterns of the blocked
design Db and its combined blocked design Db∗ under a foldover plan have the
relationships

At
i1,i2(D

b∗) = 1i2∈EAt
i1,i2(D

b), (4.5)

Ab
i1,i2(D

b∗) = Ab
i1,i2(D

b) + At
i1,i2(D

b) − 1i2∈EAt
i1,i2(D

b), (4.6)

where 1[·] takes on the value 1 or 0 depending on whether the condition [·] holds
or not.

Note that the above treatment and block split wordlength patterns of Db∗ are
both independent of the numbers j1 and j2. This implies that they are indepen-
dent of the split structure of the blocking factor columns and so are independent
of the choice of the block foldover plan ξb. In view of this, we hereafter only need
to consider the treatment core foldover plans and simply call them foldover plans
without consideration of the block foldover plans.

5. Characterization of Optimal Blocking and Foldover Plans

From Theorem 1, we can get the treatment and block wordlength patterns
of the combined design Db∗:

At
i(D

b∗) =
∑

i1+i2=i

At
i1,i2(D

b∗) =
∑

i2∈E,i2≤i

At
i−i2,i2(D

b), (5.1)

Ab
i(D

b∗) =
∑

i1+i2=i

Ab
i1,i2(D

b∗) = Ab
i(D

b) + At
i(D

b) − At
i(D

b∗). (5.2)

In order to compare and select optimal blocked designs, one usually arranges
the treatment and block wordlength patterns into a combined sequence based on
some ordering scheme and then sequentially minimizes this sequence among all
blocked designs with the same parameters. For a fixed blocked design Db, if
there exists a foldover plan for which the corresponding combined blocked design
has MA, then it is called a minimum aberration foldover plan for the combined
blocked design Db∗. We have the following conclusion.

Theorem 2. For a given blocked design Db, a foldover plan has minimum aber-
ration for the combined blocked design Db∗ if and only if it sequentially minimizes
At

i(D
b∗) for i = 3, . . . , k.

Although the orderings of the treatment and block wordlength patterns vary
with the optimality criteria, the validity of our results only requires that At

i(D
b∗)
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is always put ahead of Ab
i(D

b∗). Since all the optimality criteria reviewed in
Section 2 satisfy this requirement, all the results in this section hold true for
these criteria.

Note that for p = 1, there are only two distinct ways to generate a combined
design: the null foldover plan and the foldover plan. Because the combined design
under the foldover plan is the 2n full factorial design, it is an optimal foldover
plan. Theorem 2 implies that for a fixed initial blocked design, its MA foldover
plan is the MA foldover plan for the unblocked case. Therefore, we need only
consider the MA foldover plans for the unblocked cases, some of which can be
found in Li and Lin (2003).

For a given 2n−p FF design D, a blocking plan is said to have MA if it se-
quentially minimizes the block wordlength pattern Wb(Db) of the blocked design
Db. For the FF design D and a fixed foldover plan ξ, a blocking plan has MA if
it sequentially minimizes the block wordlength pattern Wb(Db∗) of the combined
blocked design Db∗. By noting that the last two terms on the right side of (5.2)
are fixed in this case, we have the following conclusion.

Theorem 3. For a 2n−p FF design D with a fixed foldover plan, a blocking plan
has MA if and only if it has MA for D without consideration of the foldover
plans.

As for the optimal blocking and foldover plans, which together ensure that
the combined blocked design of an FF design has MA, by combining Theorems
2 and 3 we have the following result.

Theorem 4. For a 2n−p FF design D, a pair of blocking and foldover plans has
MA for the combined blocked design Db∗ if and only if the foldover plan has MA
for the design D without consideration of the blocking plans, and the blocking
plan has MA for D without consideration of the foldover plans.

Next we consider the problem of efficient enumeration of the number of clear
effects in the combined blocked designs. First, we consider a 2n−p FF design
D. Let C = (I, C1) be its factor representation and ξt = (0T

n−p, ξ
t
2) be a core

foldover plan. Because a vector z is a word of a 2n−p design D = R(C) if and
only if Cz = 0, z is a word in the treatment defining contrast subgroup of the
combined design if and only if z is a word in the defining contrast subgroup of
design D and ξz = 0. Thus, we can get the treatment defining contrast subgroup
of the combined design from the defining contrast subgroup of design D and then
search for the clear effects without consideration of the blocking factors.

Furthermore, a treatment effect is confounded with a block effect in the initial
blocked (2n−p : 2k) design Db = R(C,B) if and only if a word z = (z1, z2) with
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n and k dimensional partition appears in Gb⊗t of Db. Based on the relationship
between the words of the blocked design Db and the combined blocked design
Db∗, the following conclusion can be obtained.

Theorem 5. A treatment effect is confounded with a block effect in the combined
blocked design Db∗ if and only if it is confounded with a block effect in the initial
blocked design Db.

Let M be the 2n−p × (k + 1) submatrix of design Db consisting of the k

blocking columns and a treatment effect column under consideration, which is
a main effect or a two-factor interaction. Ai and He (2006) showed that the
treatment effect is not confounded with any block effect if and only if the number
of null row vectors of M is exactly 2n−p−k−1. This can be used to efficiently
identify whether a treatment effect is confounded with block effects and to screen
out the clear treatment effects in the combined blocked design Db∗.

6. Optimal Blocking and Foldover Plans for 8, 16, 32 and 64-run De-
signs

In this section, we present some optimal blocking and foldover plans for given
2n−p FF designs.

As in Chen et al. (1993) and Mukerjee and Wu (2006), we put the column
set of the factor representation of saturated designs in Table 1 in Yates order. To
save space, we represent a 2n−p design as a collection of columns from the factor
representation matrices in Table 1. For example, the factor representation matrix
consists of the first 4 rows and 15 columns for the 16-run saturated design. Let
1, 2, 3, and 4 be the four independent factors. Then all interactions are denoted as
their products. A column z = (z1, z2, z3, z4)′ with zi’s being 1 or 0 corresponds to
an effect of the form 1z12z23z34z4 . Search starts with the initial 2n−p designs given
in the catalogue of Chen et al. (1993). In the tables, the notation n − p.j under
the column “Design” is the same as in Chen et al.. Their factor representations
are given by a subset of n columns, consisting of (n−p) independent columns and
p additional columns. Only the latter are presented in the second columns of each
table. Under the “Additional Col.” of each design, the optimal core foldover plan
is displayed. The optimal blocking columns are indicated in the third column of
each table.

For ease of comparison and selection of optimal FF designs, the treatment
wordlength pattern (TWP) and the block wordlength pattern (BWP) of the
optimal combined blocked design are listed in the fourth and fifth columns, re-
spectively. Note that only some initial components of TWP and BWP are given
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for the sake of brevity. The numbers of clear main effects and clear 2fi’s, denoted
by cc1 and cc2, are given in the sixth column.

In order to compare combined blocked designs in terms of their aberration,
we adopt the following combined wordlength pattern for illustration:

Wc = (Ab
1, A

t
3, A

b
2, A

t
4, A

t
5, A

b
3, A

t
6, . . . , A

t
2j−1, A

b
j , A

t
2j , . . .). (6.1)

This wordlength pattern was suggested by Zhang and Park (2000) and Cheng
and Wu (2002). These designs are rank-ordered according to (6.1). The rank
of each design is given in the last column. Certainly, other criteria based on
different combined wordlength patterns can be adopted to rank-order designs.

In selecting and recommending good combined blocked designs, we use the
following five criteria: TWP, BWP, cc1, cc2, and rank, which are given in the
last four columns of the tables. Suppose q criteria are under consideration. An
FF design D is called inadmissible if there exists another design D1 such that D1

is at least as “good” as D for all q criteria and better than D for at least one of
the criteria. Otherwise, D is admissible. Here we use TWP, BWP, cc1, cc2, and
rank as the criteria to consider admissibility. Only admissible initial designs are
provided in the tables. The complete tables are available upon request.

Example 2. Revisit the 26−2 FF design D in Example 1. It is known from Li
and Lin (2003) that the MA treatment core foldover plan is ξ0 = (1, 1). On the
other hand, the MA blocking plan for D in 22 blocks will select columns 5 and 10
as the two blocking factors, denoted by b0 = (5, 10). Thus, the pair of blocking
and foldover plans b0 and ξ0 is simply the optimal plan for the combined blocked
designs with consideration of the implicit blocking factor. Here the optimal
combined blocked design is a (26−1 : 23) blocked design Db∗. Furthermore, it is
independent of the choice of the block foldover plans. Thus, Db∗ has the form

Db∗ = R

(
I4 C1 B 04

0T
4 1T

2 0T
2 1

)
.

Based on the overall defining contrast subgroup R(S) of the blocked design Db

in Example 1, we can easily obtain its treatment and block split wordlength
patterns as

[
At

i1,i2(D
b)

]
=



0 0 0

0 0 0

0 2 0

0 0 0

0 0 1


and

[
Ab

i1,i2(D
b)

]
=



0 0 1

0 0 0

2 6 2

0 0 0

1 0 0


.
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Now, by applying formulas (5.1) and (5.2), it can be shown that the TWP and
BWP of design Db∗ are (0, 0, 0, 1) and (0, 3, 8, 3), respectively.

To judge whether a main effect or 2fi is clear, we need to check if the treat-
ment effect is aliased with any other main effect or 2fi, and then to check if the
treatment effect is confounded with a block effect. Based on R(S), we can easily
obtain the treatment defining contrast subgroup of the combined blocked design
Db∗ as Gt(Db∗) = R(1T

6 ). Apparently, none of the main effects or 2fi’s are aliased
with other main effects or 2fi’s.

Next, by Theorem 5 we need only check if the number of null row vectors
of M , a submatrix of design Db consisting of the two blocking columns and the
treatment effect column under consideration, is exactly 24−2−1 = 2. By following
this process for every main effect and 2fi, we obtain cc1 = 6 and cc2 = 12.

7. Concluding Remarks and Further Work

In this paper, based on a general decomposition structure of both blocking
and foldover plans, we show that, for a 2n−p FF design D, a pair of blocking and
foldover plans has MA for the combined blocked design Db∗ if and only if the
foldover plan has MA for design D without consideration of the blocking plans
and the blocking plan has MA for D without consideration of the foldover plans.
We also show that a treatment effect is confounded with a block effect in the
combined blocked design Db∗ if and only if it is confounded with a block effect
in the blocked design Db.

Note that all of these minimum aberration results hold true for any aber-
ration criterion for blocked designs which orders Ab

i behind At
i. This greatly

simplifies the search from the joint pairs of blocking and foldover plans to two
separate searches for optimal blocking and foldover plans respectively.

Finally, it should be mentioned that all the previous results are based on the
assumption that the implicit blocking factor that takes 0 for the initial design
and 1 for the foldover part is included and its effect is significant. Otherwise,
some results may not hold. The most important is that, in the latter case, the
block split wordlength pattern in Theorem 1 may depend on the choice of the
block foldover plans, although it can be similarly expressed in terms of the initial
blocked design. Some further work in this direction is in progress.
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Appendix

Table 1. Factor representation matrices for 8, 16, 32 and 64-run two-level
designs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note: The factor representation matrix consists of the first 3 rows and 7 columns for the 8-run

saturated design, consists of the first 4 rows and 15 columns for the 16-run saturated design,

consists of the first 5 rows and 31 columns for the 32-run saturated design, and is the whole

matrix for the 64-run saturated design. Independent columns are numbered 1, 2, 4, 8, 16 and

32 in bold face.

Table 2. Optimal blocking and foldover plans for 8-run (2n−p : 2) designs.

Design Additional Col. Blocking Col. TWP BWP

Foldover plan (At
3, . . . , At

6) (Ab
1, . . . , Ab

4) cc1, cc2 Rank

4-1.1 7 3 0 0 0 2 0 1 4, 4 3

1

4-1.2 6 3 0 0 0 1 2 0 4, 5 1

1

5-2.1 3 5 6 0 1 0 0 2 4 0 5, 4 1

1 1

6-3.1 3 5 6 7 0 3 0 0 0 3 8 0 6, 0 1

1 1 1
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Table 3. Optimal blocking and foldover plans for 16-run (2n−p : 2) designs.

Design Additional Col. Blocking TWP BWP
Foldover plan Col. (At

3, . . . , A
t
7) (Ab

1, . . . , A
b
4) cc1, cc2 Rank

5-1.1 15 3 0 0 0 0 1 1 0 5, 9 3
1

5-1.2 7 11 0 0 0 0 0 2 1 5, 10 1
1

6-2.1 7 11 13 0 1 0 0 0 0 4 2 6, 9 1
1 0

6-2.2 3 13 6 0 0 1 0 0 1 3 2 6, 14 4
1 1

6-2.3 3 12 5 0 0 0 1 0 1 4 1 6, 14 3
1 1

7-3.1 7 11 13 14 0 3 0 0 0 0 0 7 4 7, 6 1
1 0 0

7-3.2 3 5 14 9 0 1 2 0 0 0 1 6 4 7, 14 4
1 1 1

7-3.3 3 5 10 12 0 2 0 1 0 0 1 6 3 7, 8 5
1 1 1

8-4.1 7 11 13 14 3 0 6 0 0 0 0 4 0 16 8, 0 6
1 1 0 0

8-4.2 3 5 9 14 15 0 3 4 0 0 0 1 10 16 8, 12 1
1 1 1 1

8-4.5 3 5 6 9 14 0 5 0 2 0 0 1 10 6 8, 3 2
1 1 1 1

8-4.6 3 5 6 7 9 0 7 0 0 0 0 1 10 4 8, 6 3
1 1 1 0

9-5.1 3 5 9 14 15 6 0 6 8 0 0 0 4 8 16 9, 8 5
1 1 1 1 0

9-5.3 3 5 6 9 14 15 0 10 0 4 0 0 2 14 8 9, 2 2
1 1 1 1 0

9-5.4 3 5 6 9 10 13 0 9 0 6 0 0 2 14 9 9, 0 1
1 1 1 1 1

10-6.1 3 5 6 9 14 15 10 0 18 0 8 0 0 4 16 12 10, 0 4
1 1 1 1 0 1

10-6.2 3 5 6 9 10 13 14 0 16 0 12 0 0 3 19 13 10, 0 2
1 1 1 1 1 0

10-6.3 3 5 6 9 10 12 7 0 15 0 15 0 0 3 20 13 10, 0 1
1 1 1 1 1 1

11-7.1 3 5 6 9 10 13 14 15 0 26 0 24 0 0 4 25 20 11, 0 2
1 1 1 1 1 0 0

11-7.2 3 5 6 7 9 10 12 11 0 25 0 27 0 0 4 26 19 11, 0 1
1 1 1 0 1 1 1

12-8.2 3 5 6 7 9 10 11 12 13 0 38 0 52 0 0 5 34 28 12, 0 1
1 1 1 0 1 1 0 1
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Table 4. Optimal blocking and foldover plans for 16-run (2n−p : 22) designs.

Design Additional Col. Blocking Col. TWP BWP
Foldover plan (At

3, . . . , A
t
7) (Ab

1, . . . , A
b
4) cc1, cc2 Rank

5-1.1 15 3 5 0 0 0 0 3 3 0 5, 7 3
1

5-1.2 7 3 13 0 0 0 0 2 4 1 5, 8 1
1

6-2.1 7 11 3 13 0 1 0 0 0 3 8 2 6, 8 2
1 0

6-2.3 3 12 5 10 0 0 0 1 0 3 8 3 6, 12 1
1 1

7-3.1 7 11 13 3 5 0 3 0 0 0 0 9 0 16 7, 3 5
1 0 0

7-3.2 3 5 14 6 9 0 1 2 0 0 0 5 12 6 7, 12 1
1 1 1

7-3.3 3 5 10 6 9 0 2 0 1 0 0 5 12 5 7, 8 2
1 1 1

7-3.5 3 5 6 7 9 0 3 0 0 0 0 5 12 4 7, 4 3
1 1 1

8-4.1 7 11 13 14 3 5 0 6 0 0 0 0 12 0 32 8, 0 5
1 1 0 0

8-4.2 3 5 9 14 6 10 0 3 4 0 0 0 9 12 16 8, 10 4
1 1 1 1

8-4.3 3 5 10 12 6 11 0 5 0 2 0 0 7 18 10 8, 4 1
1 1 1 1

8-4.4 3 5 6 15 7 9 0 3 4 0 0 0 8 16 11 8, 8 3
1 1 1 0

9-5.1 3 5 9 14 15 6 10 0 6 8 0 0 0 12 16 32 9, 8 4
1 1 1 1 0

9-5.2 3 5 10 12 15 6 11 0 9 0 6 0 0 9 27 18 9, 0 1
1 1 1 1 1

9-5.3 3 5 6 9 14 7 10 0 10 0 4 0 0 10 24 18 9, 2 3
1 1 1 1 0

10-6.1 3 5 6 9 14 15 7 10 0 18 0 8 0 0 13 32 32 10, 0 2
1 1 1 1 0 1

10-6.2 3 5 6 9 10 13 7 11 0 16 0 12 0 0 12 36 30 10, 0 1
1 1 1 1 1 0

10-6.3 3 5 6 9 10 12 7 11 0 15 0 15 0 1 9 36 39 9, 0 3
1 1 1 1 1 1

11-7.1 3 5 6 9 10 13 14 7 11 0 26 0 24 0 0 15 48 48 11, 0 1
1 1 1 1 1 0 0

11-7.2 3 5 6 7 9 10 12 11 13 0 25 0 27 0 1 12 48 57 10, 0 2
1 1 1 0 1 1 1

12-8.1 3 5 6 9 10 13 14 15 7 11 0 39 0 48 0 0 18 64 72 12, 0 1
1 1 1 1 1 0 0 1

12-8.2 3 5 6 7 9 10 11 12 13 14 0 38 0 52 0 1 15 63 84 11, 0 2
1 1 1 0 1 1 0 1
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Table 5. Optimal blocking and foldover plans for 32-run (2n−p : 2) designs.

Design Additional Col. Blocking Col. TWP BWP
Foldover plan (At

3, . . . , At
7) (Ab

1, . . . , Ab
4) cc1, cc2 Rank

6-1.1 31 7 0 0 0 0 0 0 0 2 0 6, 15 1
1

7-2.1 7 27 13 0 0 1 0 0 0 0 2 3 7, 21 5
1 0

7-2.2 7 25 11 0 0 0 1 0 0 0 3 2 7, 21 2
1 1

7-2.3 7 11 29 0 1 0 0 0 0 0 0 6 7, 15 7
1 0

7-2.5 3 28 13 0 0 0 0 1 0 0 3 3 7, 21 1
1 1

8-3.2 7 11 21 25 0 1 0 2 0 0 0 4 4 8, 22 3
0 1 1

8-3.3 7 11 19 29 0 2 0 0 0 0 0 0 12 8, 16 9
1 1 0

8-3.4 7 11 13 30 0 3 0 0 0 0 0 0 11 8, 13 10
1 0 0

8-3.5 3 13 22 25 0 0 2 1 0 0 0 4 5 8, 28 1
1 1 1

8-3.6 3 5 30 15 0 1 0 2 0 0 0 5 4 8, 22 4
1 1 1

8-3.7 3 13 21 26 0 1 1 0 1 0 0 3 6 8, 22 5
1 1 0

9-4.1 7 11 19 29 30 0 2 4 0 0 0 0 4 12 9, 24 4
1 1 0 0

9-4.5 7 11 13 14 19 0 6 0 0 0 0 0 4 8 9, 8 9
1 1 0 0

9-4.8 3 12 21 26 31 0 1 4 2 0 0 0 6 8 9, 30 1
1 1 1 0

10-5.1 7 11 19 29 30 5 0 4 8 0 0 0 2 4 12 10, 22 10
1 1 0 0 0

10-5.4 7 11 13 14 19 21 0 6 0 8 0 0 0 8 12 10, 17 4
0 0 1 1 1

10-5.8 3 5 14 22 25 31 0 2 8 4 0 0 0 8 16 10, 33 1
1 1 1 1 1

11-6.1 7 11 13 19 21 25 14 0 10 0 16 0 0 0 13 15 11, 10 5
1 0 1 1 0 0

11-6.2 7 11 13 14 19 21 25 0 10 0 16 0 0 0 12 16 11, 9 4
0 1 1 0 1 0

11-6.3 3 5 14 22 25 31 10 0 4 14 8 0 0 2 8 20 11, 32 10
1 1 1 1 1 1

11-6.6 3 5 10 23 27 28 13 0 5 12 7 4 0 1 10 21 11, 27 6
1 1 1 0 0 0

11-6.7 3 5 9 22 26 29 14 0 7 8 7 8 0 0 13 18 11, 22 1
1 1 1 1 0 0

11-6.10 3 5 9 14 18 29 31 0 6 10 8 4 0 1 10 20 11, 24 7
1 1 1 1 1 1

12-7.1 7 11 13 14 19 21 25 22 0 16 0 30 0 0 0 17 22 12, 5 4
1 0 1 0 1 0 0

12-7.2 7 11 13 14 19 21 22 25 0 15 0 32 0 0 0 16 24 12, 0 3
0 1 0 1 1 1 0

12-7.3 3 5 9 14 22 26 29 17 0 11 14 15 12 0 1 16 23 12, 20 6
1 1 1 1 1 0 0

12-7.5 3 5 10 12 22 27 29 15 0 10 18 10 12 0 2 12 29 12, 20 9
1 1 1 1 1 1 0

12-7.6 3 5 10 12 22 25 31 17 0 10 16 12 16 0 2 12 28 12, 18 8
1 1 1 1 1 1 0

12-7.7 3 5 6 15 23 25 30 10 0 10 20 8 8 0 2 12 29 12, 28 10
1 1 1 0 0 0 0

12-7.8 3 5 9 14 17 22 26 28 0 12 13 12 15 0 0 17 26 12, 17 1
1 1 1 1 1 1 1

12-7.9 3 5 9 14 15 22 26 29 0 12 14 12 12 0 0 16 27 12, 17 2
1 1 1 1 0 0 0

12-7.10 3 5 9 14 18 20 31 24 0 10 18 10 12 0 1 15 26 12, 19 5
1 1 1 1 1 1 1
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Table 5. (Cont’d).

Design Additional Col. Blocking Col. TWP BWP
Foldover plan (At

3, . . . , At
7) (Ab

1, . . . , Ab
4) cc1, cc2 Rank

13-8.1 7 11 13 14 19 21 22 25 26 0 23 0 56 0 0 0 22 32 13, 0 2
0 1 0 1 1 1 0 0

13-8.2 3 5 9 14 17 22 26 28 15 0 18 20 24 28 0 1 21 33 13, 11 6
1 1 1 1 1 1 1 1

13-8.3 3 5 9 14 15 22 26 29 17 0 18 20 28 24 0 1 21 32 13, 19 7
1 1 1 1 0 1 0 0

13-8.4 3 5 9 14 15 22 26 28 17 0 18 20 24 28 0 1 20 34 13, 11 5
1 1 1 1 0 1 0 0

13-8.5 3 5 9 14 15 17 22 26 28 0 20 18 22 30 0 0 22 35 13, 16 1
1 1 1 1 0 1 0 0

13-8.9 3 5 9 15 18 20 24 31 14 0 15 27 21 27 0 1 21 36 13, 15 3
1 1 1 0 1 1 1 1

13-8.10 3 5 6 9 14 17 26 29 22 0 17 24 18 32 0 1 21 34 13, 13 4
1 1 1 1 0 1 1 0

14-9.1 7 11 13 14 15 17 22 26 28 28 0 33 0 96 0 0 0 28 44 14, 0 1
1 1 1 1 1 0 0 0 0

14-9.2 3 5 9 14 15 17 22 26 28 23 0 28 27 42 54 0 1 27 44 14, 12 5
1 1 1 1 0 1 1 0 0

14-9.3 3 5 9 14 15 17 22 23 26 28 0 31 24 40 56 0 0 28 46 14, 15 2
1 1 1 1 0 1 1 0 0

14-9.4 3 5 9 15 18 20 24 30 31 14 0 22 40 36 56 0 2 26 46 14, 8 7
1 1 1 0 1 1 1 0 1

14-9.5 3 5 9 14 15 18 20 24 31 19 0 22 41 36 52 0 2 26 45 14, 8 8
1 1 1 1 0 1 1 1 1

14-9.7 3 5 9 14 15 18 20 24 30 19 0 22 40 36 56 0 2 25 47 14, 8 6
1 1 1 1 0 1 1 1 0

14-9.9 3 5 6 9 14 17 22 26 27 28 0 24 36 36 60 0 1 27 48 14, 11 3
1 1 1 1 0 1 0 1 0

14-9.10 3 5 6 9 14 15 17 26 29 22 0 27 32 32 64 0 1 27 45 14, 7 4
1 1 1 1 0 1 1 1 0

15-10.1 7 11 13 14 19 21 22 25 26 28 31 0 45 0 160 0 0 0 35 60 15, 0 1
1 1 1 1 0 0 1 1 0 0

15-10.2 3 5 9 14 15 17 22 23 26 28 27 0 41 36 72 96 0 1 34 58 15, 13 5
1 1 1 1 0 1 1 0 0 0

15-10.3 3 5 9 14 15 17 22 23 26 27 28 0 45 32 72 96 0 0 35 60 15, 14 2
1 1 1 1 0 1 1 0 1 0

15-10.4 3 5 6 9 14 17 22 26 27 28 15 0 33 54 60 108 0 2 33 61 15, 6 6
1 1 1 1 0 1 0 1 0 1

15-10.5 3 5 6 9 14 15 17 22 26 29 27 0 37 48 56 112 0 2 32 58 15, 4 7
1 1 1 1 0 1 1 0 1 0

15-10.6 3 5 6 9 14 15 17 22 26 27 28 0 36 48 61 112 0 1 34 63 15, 7 4
1 1 1 1 0 1 1 0 1 0

15-10.7 3 5 9 14 18 20 23 24 27 29 31 0 33 44 96 72 0 3 28 64 15, 14 8
1 1 1 1 1 1 1 1 1 1

16-11.1 7 11 13 14 19 21 22 25 26 28 31 3 0 60 0 256 0 0 8 0 192 16, 0 10
1 1 1 1 0 0 1 1 0 0 0

16-11.2 3 5 9 14 15 17 22 23 26 27 28 29 0 57 48 120 160 0 1 42 76 16, 14 2
1 1 1 0 1 1 1 0 1 0 0

16-11.3 3 5 6 9 14 15 17 22 26 27 28 23 0 47 72 98 192 0 2 41 80 16, 4 3
1 1 1 1 0 1 1 0 1 0 1

16-11.5 3 5 9 14 18 20 23 24 27 29 31 28 0 51 64 102 192 0 1 42 82 16, 3 1
1 1 1 1 0 1 1 0 1 1 0

16-11.6 3 5 9 14 18 20 23 24 27 29 31 6 0 45 60 160 120 0 5 34 72 16, 14 9
1 1 1 1 1 1 1 1 1 1 0

16-11.9 3 5 6 9 10 14 15 17 22 26 29 23 0 53 52 136 144 0 3 38 72 16, 17 5
1 1 1 1 1 0 1 1 0 0 0

17-12.1 3 5 9 14 15 17 22 23 26 27 28 29 6 0 76 64 192 256 0 8 16 176 17, 16 5
1 1 1 1 0 1 1 0 1 0 1 0

17-12.2 3 5 6 9 14 15 17 22 23 26 27 28 29 0 64 96 156 320 0 2 50 104 17, 2 1
1 1 1 1 0 1 1 0 1 1 0 1

17-12.5 3 5 6 9 10 14 15 17 22 23 26 29 27 0 96 0 348 0 0 3 48 67 17, 2 4
1 1 1 1 1 0 1 1 0 1 0 1

18-13.1 3 5 6 9 14 15 17 22 23 26 27 28 29 10 0 84 128 240 512 0 8 32 184 18, 0 5
1 1 1 1 0 1 1 0 1 1 0 1 0

18-13.2 3 5 6 9 10 14 15 17 22 23 26 27 28 29 0 126 0 532 0 0 3 59 85 18, 0 2
1 1 1 1 1 0 1 1 0 1 0 1 0

18-13.3 3 5 6 7 9 10 11 17 18 19 28 29 30 31 0 78 144 228 528 0 3 60 132 18, 0 1
1 1 1 0 1 1 0 1 1 0 1 0 0
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Table 6. Optimal blocking and foldover plans for 32-run (2n−p : 22) designs.

Design Additional Col. Blocking Col. TWP BWP
Foldover plan (At

3, . . . , At
7) (Ab

1, . . . , Ab
4) cc1, cc2 Rank

6-1.1 31 3 13 0 0 0 0 0 1 4 1 6, 14 1
1

7-2.1 7 27 11 21 0 0 1 0 0 0 1 6 5 7, 20 7
1 0

7-2.3 7 11 13 19 0 1 0 0 0 0 0 7 6 7, 15 2
1 0

7-2.5 3 28 13 22 0 0 0 0 1 0 0 7 7 7, 21 1
1 1

8-3.1 7 11 29 13 19 0 1 2 0 0 0 1 10 10 8, 21 5
1 0 0

8-3.2 7 11 21 13 19 0 1 0 2 0 0 1 10 10 8, 21 1
0 1 1

8-3.4 7 11 13 14 17 0 3 0 0 0 0 1 10 8 8, 12 6
1 0 0

8-3.5 3 13 22 7 24 0 0 2 1 0 0 2 8 10 8, 26 8
1 1 1

8-3.8 3 12 21 5 26 0 0 2 1 0 0 2 8 10 8, 26 8
1 1 1

9-4.1 7 11 19 29 5 27 0 2 4 0 0 0 4 8 20 9, 20 9
1 1 0 0

9-4.3 7 11 21 25 6 26 0 3 0 4 0 0 2 14 15 9, 18 3
0 1 1 0

9-4.6 3 13 21 26 6 25 0 1 4 2 0 0 2 14 17 9, 28 1
1 1 1 0

9-4.9 3 5 9 30 15 18 0 3 0 4 0 0 2 14 15 9, 19 3
1 1 1 1

9-4.10 3 5 10 28 12 23 0 2 3 1 1 0 2 14 16 9, 22 2
1 1 1 1

10-5.1 7 11 19 29 30 5 9 0 4 8 0 0 0 6 12 24 10, 20 9
1 1 0 0 0

10-5.3 7 11 13 19 21 9 22 0 6 0 8 0 0 3 19 23 10, 14 4
0 0 1 1 0

10-5.6 3 13 21 25 30 6 26 0 3 7 4 0 0 4 18 23 10, 26 6
1 1 1 1 1

10-5.8 3 5 14 22 25 10 21 0 2 8 4 0 0 4 16 28 10, 29 5
1 1 1 1 1

10-5.9 3 5 14 23 26 9 21 0 3 6 4 2 0 3 19 26 10, 24 1
1 1 1 0 0

11-6.1 7 11 13 19 21 25 3 28 0 10 0 16 0 0 4 26 34 11, 10 5
1 0 1 1 0 0

11-6.2 7 11 13 14 19 21 9 22 0 10 0 16 0 0 4 25 36 11, 9 4
0 1 1 0 1 0

11-6.3 3 5 14 22 25 31 7 10 0 4 14 8 0 0 6 23 36 11, 30 9
1 1 1 1 1 0

11-6.4 3 5 14 22 26 29 9 18 0 6 10 8 4 0 5 24 36 11, 22 7
1 1 1 1 0 0

11-6.6 3 5 10 23 27 28 15 17 0 5 12 7 4 0 5 24 37 11, 23 6
1 1 1 0 0 0

11-6.7 3 5 9 22 26 29 14 17 0 7 8 7 8 0 4 26 37 11, 20 1
1 1 1 1 0 0

11-6.8 3 5 9 22 26 28 14 17 0 8 8 4 8 0 4 25 38 11, 16 3
1 1 1 1 1 0

11-6.9 3 5 9 14 22 26 15 18 0 7 9 6 6 0 4 25 39 11, 20 2
1 1 1 1 1 0

12-7.1 7 11 13 14 19 21 25 3 28 0 16 0 30 0 0 5 34 50 12, 5 3
1 0 1 0 1 0 0

12-7.3 3 5 9 14 22 26 29 15 17 0 11 14 15 12 0 6 32 52 12, 18 5
1 1 1 1 1 0 0

12-7.5 3 5 10 12 22 27 29 7 18 0 10 18 10 12 0 7 30 52 12, 17 8
1 1 1 1 1 1 0

12-7.6 3 5 10 12 22 25 31 15 17 0 10 16 12 16 0 8 24 61 12, 16 9
1 1 1 1 1 1 0

12-7.7 3 5 6 15 23 25 30 9 18 0 10 20 8 8 0 8 24 61 12, 25 10
1 1 1 0 0 0 0

12-7.8 3 5 9 14 17 22 26 6 27 0 12 13 12 15 0 5 34 54 12, 16 1
1 1 1 1 1 1 1

12-7.10 3 5 9 14 18 20 31 15 23 0 10 18 10 12 0 6 31 56 12, 18 4
1 1 1 1 1 1 1
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Table 6. (Cont’d).

Design Additional Col. Blocking TWP BWP
Foldover plan Col. (At

3, . . . , At
7) (Ab

1, . . . , Ab
4) cc1, cc2 Rank

13-8.1 7 11 13 14 19 21 22 25 3 28 0 23 0 56 0 0 6 44 72 13, 0 2
0 1 0 1 1 1 0 0

13-8.2 3 5 9 14 17 22 26 28 6 27 0 18 20 24 28 0 7 42 74 13, 10 5
1 1 1 1 1 1 1 1

13-8.3 3 5 9 14 15 22 26 29 6 17 0 18 20 28 24 0 7 43 72 13, 18 6
1 1 1 1 0 1 0 0

13-8.5 3 5 9 14 15 17 22 26 6 27 0 20 18 22 30 0 6 44 75 13, 15 1
1 1 1 1 0 1 0 0

13-8.9 3 5 9 15 18 20 24 31 14 19 0 15 27 21 27 0 7 42 77 13, 15 3
1 1 1 0 1 1 1 1

13-8.10 3 5 6 9 14 17 26 29 10 22 0 17 24 18 32 0 7 42 75 13, 12 4
1 1 1 1 0 1 1 0

14-9.1 7 11 13 14 15 17 22 26 28 3 28 0 33 0 96 0 0 7 56 100 14, 0 2
1 1 1 1 1 0 0 0 0

14-9.2 3 5 9 14 15 17 22 26 28 6 27 0 28 27 42 54 0 8 54 101 14, 11 5
1 1 1 1 0 1 1 0 0

14-9.3 3 5 9 14 15 17 22 23 26 6 27 0 31 24 40 56 0 7 56 102 14, 14 1
1 1 1 1 0 1 1 0 0

14-9.4 3 5 9 15 18 20 24 30 31 6 19 0 22 40 36 56 0 9 52 105 14, 8 6
1 1 1 0 1 1 1 0 1

14-9.9 3 5 6 9 14 17 22 26 27 10 23 0 24 36 36 60 0 8 54 105 14, 11 3
1 1 1 1 0 1 0 1 0

14-9.10 3 5 6 9 14 15 17 26 29 10 22 0 27 32 32 64 0 8 54 102 14, 6 4
1 1 1 1 0 1 1 1 0

15-10.1 7 11 13 14 19 21 22 25 26 28 3 5 0 45 0 160 0 0 21 0 312 15, 0 10
1 1 1 1 0 0 1 1 0 0

15-10.2 3 5 9 14 15 17 22 23 26 28 6 27 0 41 36 72 96 0 9 68 136 15, 12 2
1 1 1 1 0 1 1 0 0 0

15-10.3 3 5 9 14 15 17 22 23 26 27 6 10 0 45 32 72 96 0 18 25 218 15, 14 9
1 1 1 1 0 1 1 0 1 0

15-10.4 3 5 6 9 14 17 22 26 27 28 10 23 0 33 54 60 108 0 10 66 140 15, 6 4
1 1 1 1 0 1 0 1 0 1

15-10.6 3 5 6 9 14 15 17 22 26 27 10 23 0 36 48 61 112 0 9 68 141 15, 7 1
1 1 1 1 0 1 1 0 1 0

15-10.7 3 5 9 14 18 20 23 24 27 29 7 17 0 33 44 96 72 0 12 63 132 15, 12 7
1 1 1 1 1 1 1 1 1 1

15-10.10 3 5 6 9 14 15 17 22 23 26 7 27 0 45 32 72 96 0 9 68 132 15, 12 3
1 1 1 1 0 1 1 0 1 1

16-11.1 7 11 13 14 19 21 22 25 26 28 31 3 5 0 60 0 256 0 0 24 0 416 16, 0 10
1 1 1 1 0 0 1 1 0 0 0

16-11.3 3 5 6 9 14 15 17 22 26 27 28 10 23 0 47 72 98 192 0 11 82 186 16, 4 1
1 1 1 1 0 1 1 0 1 0 1

16-11.6 3 5 9 14 18 20 23 24 27 29 31 6 10 0 45 60 160 120 0 15 72 176 16, 12 7
1 1 1 1 1 1 1 1 1 1 0

16-11.9 3 5 6 9 10 14 15 17 22 26 29 7 27 0 53 52 136 144 0 13 76 176 16, 15 5
1 1 1 1 1 0 1 1 0 0 0

17-12.1 3 5 9 14 15 17 22 23 26 27 28 29 6 10 0 76 64 192 256 0 24 32 400 17, 16 5
1 1 1 1 0 1 1 0 1 0 1 0

17-12.2 3 5 6 9 14 15 17 22 23 26 27 28 10 18 0 64 96 156 320 0 21 56 321 17, 2 4
1 1 1 1 0 1 1 0 1 1 0 1

17-12.3 3 5 6 9 10 14 17 22 23 26 27 28 15 18 0 95 0 354 0 0 13 98 208 17, 0 1
1 1 1 1 1 0 1 0 1 0 1 0

17-12.5 3 5 6 9 10 14 15 17 22 23 26 29 7 27 0 96 0 348 0 0 14 96 202 17, 2 3
1 1 1 1 1 0 1 1 0 1 0 1

18-13.1 3 5 6 9 14 15 17 22 23 26 27 28 29 10 18 0 84 128 240 512 0 24 64 424 18, 0 5
1 1 1 1 0 1 1 0 1 1 0 1 0

18-13.3 3 5 6 7 9 10 11 17 18 19 28 29 30 12 20 0 78 144 228 528 0 21 85 363 18, 0 3
1 1 1 0 1 1 0 1 1 0 1 0 0

18-13.4 3 5 6 9 14 15 18 21 23 24 27 28 31 10 19 0 108 0 552 0 0 18 108 270 18, 0 2
1 1 1 1 0 1 1 0 1 1 1 0 0

18-13.5 3 5 6 9 10 14 17 22 23 24 27 28 29 15 21 0 113 0 547 0 0 15 116 277 18, 0 1
1 1 1 1 1 0 1 0 1 1 1 0 1

19-14.1 3 5 6 9 10 14 15 17 22 23 26 27 28 29 13 18 0 164 0 748 0 0 24 97 408 19, 0 5
1 1 1 1 1 0 1 1 0 1 0 1 0 1

19-14.2 3 5 6 7 9 10 11 17 18 19 28 29 30 31 12 20 0 100 192 336 832 0 24 97 472 19, 0 4
1 1 1 0 1 1 0 1 1 0 1 0 0 1

19-14.5 3 5 6 9 10 13 14 17 22 23 24 26 29 31 15 19 0 136 0 816 0 0 18 135 350 19, 0 1
1 1 1 1 1 0 0 1 0 1 1 0 1 0

20-15.1 3 5 6 9 10 14 15 17 18 22 23 26 27 28 29 7 25 0 188 0 1128 0 0 25 130 472 20, 0 4
1 1 1 1 1 0 1 1 1 0 1 0 1 0 1

20-15.4 3 5 6 9 10 14 15 17 18 22 23 26 27 28 31 7 11 0 175 0 1155 0 0 24 143 441 20, 0 2
1 1 1 1 1 0 1 1 1 0 1 0 1 0 0

20-15.5 3 5 6 9 10 13 14 15 17 18 22 23 26 27 28 7 25 0 176 0 1148 0 0 23 144 448 20, 0 1
1 1 1 1 1 0 0 1 1 1 0 1 0 1 0

21-16.1 3 5 6 9 10 14 15 17 18 22 23 26 27 28 29 31 7 11 0 220 0 1608 0 0 27 163 552 21, 0 5
1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0

21-16.4 3 5 6 9 10 13 14 17 19 22 23 24 26 28 29 31 15 20 0 210 0 1638 0 0 21 189 546 21, 0 1
1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0

21-16.5 3 5 6 9 10 13 14 15 17 18 21 22 23 24 26 29 7 27 0 209 0 1644 0 0 24 180 534 21, 0 2
1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1



OPTIMAL BLOCKING AND FOLDOVER PLANS 201

Table 7. Optimal blocking and foldover plans for 32-run (2n−p : 23) designs.

Design Additional Col. Blocking Col. TWP BWP
Foldover plan (At

3, . . . , At
7) (Ab

1, . . . , Ab
4) cc1, cc2 Rank

6-1.1 31 3 12 21 0 0 0 0 0 3 8 3 6, 12 1
1

7-2.1 7 27 5 11 19 0 0 1 0 0 0 5 12 7 7, 16 4
1 0

7-2.2 7 25 3 9 21 0 0 0 1 0 0 5 12 7 7, 16 1
1 1

7-2.3 7 11 3 13 17 0 1 0 0 0 0 5 12 6 7, 12 6
1 0

7-2.5 3 28 5 9 18 0 0 0 0 1 0 6 9 9 7, 15 8
1 1

8-3.1 7 11 29 3 13 17 0 1 2 0 0 0 8 16 13 8, 16 7
1 0 0

8-3.2 7 11 21 3 13 17 0 1 0 2 0 0 7 18 14 8, 17 1
0 1 1

8-3.5 3 13 22 5 11 17 0 0 2 1 0 0 7 18 15 8, 21 5
1 1 1

8-3.7 3 13 21 5 10 19 0 1 1 0 1 0 7 18 14 8, 17 3
1 1 0

9-4.1 7 11 19 29 5 9 18 0 2 4 0 0 0 12 16 36 9, 16 7
1 1 0 0

9-4.8 3 12 21 26 6 11 18 0 1 4 2 0 0 9 27 26 9, 23 1
1 1 1 0

9-4.10 3 5 10 28 6 9 17 0 2 3 1 1 0 9 27 25 9, 19 2
1 1 1 1

10-5.1 7 11 19 29 30 3 5 9 0 4 8 0 0 0 17 24 42 10, 16 9
1 1 0 0 0

10-5.8 3 5 14 22 25 7 10 18 0 2 8 4 0 0 13 32 48 10, 24 3
1 1 1 1 1

10-5.9 3 5 14 23 26 6 9 18 0 3 6 4 2 0 12 36 43 10, 21 1
1 1 1 0 0

11-6.1 7 11 13 19 21 25 3 5 24 0 10 0 16 0 0 25 0 160 11, 6 10
1 0 1 1 0 0

11-6.3 3 5 14 22 25 31 6 9 18 0 4 14 8 0 0 19 36 74 11, 24 8
1 1 1 1 1 0

11-6.4 3 5 14 22 26 29 6 9 17 0 6 10 8 4 0 16 45 68 11, 19 3
1 1 1 1 0 0

11-6.6 3 5 10 23 27 28 6 11 18 0 5 12 7 4 0 17 40 77 11, 21 7
1 1 1 0 0 0

11-6.9 3 5 9 14 22 26 6 10 17 0 7 9 6 6 0 15 48 67 11, 18 1
1 1 1 1 1 0

12-7.1 7 11 13 14 19 21 25 3 12 17 0 16 0 30 0 0 30 0 239 12, 3 10
1 0 1 0 1 0 0

12-7.2 7 11 13 14 19 21 22 3 5 25 0 15 0 32 0 0 18 64 96 12, 0 2
0 1 0 1 1 1 0

12-7.4 3 5 9 14 22 26 28 6 10 17 0 12 13 12 15 0 19 60 102 12, 13 4
1 1 1 1 1 0 0

12-7.6 3 5 10 12 22 25 31 6 11 17 0 10 16 12 16 0 21 50 120 12, 16 5
1 1 1 1 1 1 0

12-7.7 3 5 6 15 23 25 30 7 9 18 0 10 20 8 8 0 22 48 117 12, 20 7
1 1 1 0 0 0 0

12-7.9 3 5 9 14 15 22 26 6 10 17 0 12 14 12 12 0 18 64 99 12, 14 1
1 1 1 1 0 0 0

12-7.10 3 5 9 14 18 20 31 6 11 19 0 10 18 10 12 0 19 60 104 12, 18 3
1 1 1 1 1 1 1

13-8.1 7 11 13 14 19 21 22 25 3 9 17 0 23 0 56 0 0 36 0 342 13, 0 10
0 1 0 1 1 1 0 0

13-8.3 3 5 9 14 15 22 26 29 6 10 18 0 18 20 28 24 0 31 35 232 13, 16 9
1 1 1 1 0 1 0 0

13-8.4 3 5 9 14 15 22 26 28 6 10 17 0 18 20 24 28 0 22 80 145 13, 8 1
1 1 1 1 0 1 0 0

13-8.5 3 5 9 14 15 17 22 26 6 11 18 0 20 18 22 30 0 30 36 235 13, 14 8
1 1 1 1 0 1 0 0

13-8.8 3 5 9 15 18 20 24 30 6 10 19 0 16 26 18 30 0 23 75 154 13, 12 2
1 1 1 0 1 1 1 0

13-8.9 3 5 9 15 18 20 24 31 6 11 17 0 15 27 21 27 0 26 60 180 13, 13 3
1 1 1 0 1 1 1 1
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Table 7. (Cont’d).

Design Additional Col. Blocking TWP BWP
Foldover plan Col. (At

3, . . . , At
7) (Ab

1, . . . , Ab
4) cc1, cc2 Rank

14-9.1 7 11 13 14 15 17 22 26 28 5 9 17 0 33 0 96 0 0 42 0 478 14, 0 10
1 1 1 1 1 0 0 0 0

14-9.2 3 5 9 14 15 17 22 26 28 6 11 18 0 28 27 42 54 0 36 42 337 14, 13 8
1 1 1 1 0 1 1 0 0

14-9.7 3 5 9 14 15 18 20 24 30 6 10 19 0 22 40 36 56 0 26 100 209 14, 8 1
1 1 1 1 0 1 1 1 0

14-9.9 3 5 6 9 14 17 22 26 27 7 10 19 0 24 36 36 60 0 31 72 261 14, 10 4
1 1 1 1 0 1 0 1 0

15-10.1 7 11 13 14 19 21 22 25 26 28 3 5 9 0 45 0 160 0 0 49 0 648 15, 0 10
1 1 1 1 0 0 1 1 0 0

15-10.2 3 5 9 14 15 17 22 23 26 28 7 10 18 0 41 36 72 96 0 42 49 470 15, 14 8
1 1 1 1 0 1 1 0 0 0

15-10.3 3 5 9 14 15 17 22 23 26 27 6 10 18 0 45 32 72 96 0 42 49 466 15, 14 9
1 1 1 1 0 1 1 0 1 0

15-10.7 3 5 9 14 18 20 23 24 27 29 6 10 19 0 33 44 96 72 0 33 112 292 15, 8 2
1 1 1 1 1 1 1 1 1 1

15-10.9 3 5 9 14 15 18 20 23 24 30 6 10 19 0 51 0 144 0 0 30 125 264 15, 0 1
1 1 1 0 1 1 1 1 1 1

16-11.1 7 11 13 14 19 21 22 25 26 28 31 3 5 9 0 60 0 256 0 0 56 0 864 16, 0 9
1 1 1 1 0 0 1 1 0 0 0

16-11.2 3 5 9 14 15 17 22 23 26 27 28 6 10 18 0 57 48 120 160 0 49 56 636 16, 15 8
1 1 1 0 1 1 1 0 1 0 0

16-11.3 3 5 6 9 14 15 17 22 26 27 28 7 11 18 0 47 72 98 192 0 43 98 506 16, 4 5
1 1 1 1 0 1 1 0 1 0 1

16-11.5 3 5 9 14 18 20 23 24 27 29 31 7 10 18 0 51 64 102 192 0 43 98 502 16, 5 6
1 1 1 1 0 1 1 0 1 1 0

16-11.6 3 5 9 14 18 20 23 24 27 29 31 6 7 10 0 45 60 160 120 1 33 145 392 15, 9 10
1 1 1 1 1 1 1 1 1 1 0

16-11.8 3 5 6 9 10 14 17 22 23 26 29 7 11 18 0 71 0 226 0 0 39 126 402 16, 2 3
1 1 1 1 1 0 1 0 1 0 1

16-11.9 3 5 6 9 10 14 15 17 22 26 29 7 11 18 0 53 52 136 144 0 41 120 416 16, 11 4
1 1 1 1 1 0 1 1 0 0 0

16-11.10 3 5 6 9 10 14 17 22 26 29 31 7 11 18 0 65 0 236 0 0 37 140 372 16, 1 1
1 1 1 1 1 0 1 0 0 1 0

17-12.1 3 5 9 14 15 17 22 23 26 27 28 29 6 10 18 0 76 64 192 256 0 56 64 848 17, 16 5
1 1 1 1 0 1 1 0 1 0 1 0

17-12.2 3 5 6 9 14 15 17 22 23 26 27 28 7 10 18 0 64 96 156 320 0 50 112 678 17, 2 4
1 1 1 1 0 1 1 0 1 1 0 1

17-12.3 3 5 6 9 10 14 17 22 23 26 27 28 7 11 19 0 95 0 354 0 0 45 147 542 17, 0 1
1 1 1 1 1 0 1 0 1 0 1 0

17-12.5 3 5 6 9 10 14 15 17 22 23 26 29 7 11 18 0 96 0 348 0 0 46 144 538 17, 2 3
1 1 1 1 1 0 1 1 0 1 0 1

18-13.1 3 5 6 9 14 15 17 22 23 26 27 28 29 7 10 18 0 84 128 240 512 0 57 128 896 18, 0 5
1 1 1 1 0 1 1 0 1 1 0 1 0

18-13.3 3 5 6 7 9 10 11 17 18 19 28 29 30 12 13 20 0 78 144 228 528 1 50 162 776 17, 0 3
1 1 1 0 1 1 0 1 1 0 1 0 0

18-13.4 3 5 6 9 14 15 18 21 23 24 27 28 31 7 10 19 0 108 0 552 0 0 45 216 612 18, 0 1
1 1 1 1 0 1 1 0 1 1 1 0 0

19-14.1 3 5 6 9 10 14 15 17 22 23 26 27 28 29 7 11 18 0 164 0 748 0 0 59 192 928 19, 0 4
1 1 1 1 1 0 1 1 0 1 0 1 0 1

19-14.2 3 5 6 7 9 10 11 17 18 19 28 29 30 31 12 13 20 0 100 192 336 832 1 57 185 1008 18, 0 5
1 1 1 0 1 1 0 1 1 0 1 0 0 1

19-14.5 3 5 6 9 10 13 14 17 22 23 24 26 29 31 7 11 18 0 136 0 816 0 0 51 252 784 19, 0 1
1 1 1 1 1 0 0 1 0 1 1 0 1 0

20-15.1 3 5 6 9 10 14 15 17 18 22 23 26 27 28 29 7 11 19 0 188 0 1128 0 0 62 256 1073 20, 0 2
1 1 1 1 1 0 1 1 1 0 1 0 1 0 1

20-15.4 3 5 6 9 10 14 15 17 18 22 23 26 27 28 31 7 11 19 0 175 0 1155 0 1 55 279 1037 19, 0 4
1 1 1 1 1 0 1 1 1 0 1 0 1 0 0

20-15.5 3 5 6 9 10 13 14 15 17 18 22 23 26 27 28 7 11 19 0 176 0 1148 0 0 59 280 1012 20, 0 1
1 1 1 1 1 0 0 1 1 1 0 1 0 1 0

21-16.1 3 5 6 9 10 14 15 17 18 22 23 26 27 28 29 31 7 11 19 0 220 0 1608 0 1 62 318 1297 20, 0 4
1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0

21-16.4 3 5 6 9 10 13 14 17 19 22 23 24 26 28 29 31 7 11 18 0 210 0 1638 0 0 63 343 1218 21, 0 1
1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0

21-16.5 3 5 6 9 10 13 14 15 17 18 21 22 23 24 26 29 7 11 19 0 209 0 1644 0 1 58 346 1244 20, 0 3
1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1
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Table 8. Optimal blocking and foldover plans for 64-run (2n−p : 2) designs.

Design Additional Col. Blocking Col. TWP BWP

Foldover plan (At
3, . . . , At

7) (Ab
1, . . . , Ab

4) cc1, cc2 Rank

7-1.1 63 7 0 0 0 0 0 0 0 1 1 7, 21 1
1

8-2.1 15 51 21 0 0 0 1 0 0 0 1 2 8, 28 1
1 1

9-3.1 7 27 45 51 0 0 2 1 0 0 0 1 5 9, 36 4
1 0 0

9-3.3 7 27 43 53 0 0 2 0 0 0 0 0 6 9, 36 3
1 1 0

9-3.5 7 25 42 53 0 0 0 3 0 0 0 0 9 9, 36 1
1 1 1

10-4.1 7 27 43 53 13 0 0 4 2 0 0 0 2 8 10, 45 2
1 1 0 0

10-4.2 7 25 42 53 62 0 0 3 3 1 0 0 2 7 10, 45 1
1 1 1 0

10-4.6 7 11 29 45 51 0 1 4 0 0 0 0 0 9 10, 39 8
1 0 1 0

10-4.7 7 25 42 52 63 0 1 0 6 0 0 0 0 14 10, 39 3
1 1 1 0

11-5.1 7 11 29 45 51 62 0 1 7 4 0 0 0 2 13 11, 49 5
1 0 1 0 0

11-5.3 7 11 29 46 49 60 0 1 6 4 2 0 0 3 12 11, 49 3
1 0 0 0 1

11-5.4 7 11 21 46 56 54 0 1 5 6 2 0 0 2 15 11, 49 4
0 1 1 0 1

11-5.5 7 11 29 45 49 62 0 2 4 4 4 0 0 2 12 11, 43 6
1 1 0 0 1

11-5.7 7 11 21 38 57 58 0 1 4 6 4 0 0 3 14 11, 49 1
0 1 1 1 0

11-5.10 7 11 13 30 46 49 0 3 7 0 0 0 0 2 11 11, 40 10
1 0 0 1 0

12-6.1 7 11 29 45 51 62 14 0 2 12 8 0 0 0 8 13 12, 54 4
1 0 1 0 0 0

12-6.6 7 11 19 37 57 63 29 0 2 8 10 8 0 0 4 20 12, 54 1
0 1 1 1 1 0

12-6.9 7 11 21 25 38 58 60 0 3 7 10 6 0 0 3 22 12, 48 5
0 1 1 0 1 0

13-7.1 7 11 21 25 38 58 60 31 0 4 14 16 12 0 0 8 22 13, 54 2
0 1 1 0 1 1 0

13-7.3 7 11 19 29 37 59 62 41 0 3 12 24 8 0 0 8 20 13, 60 1
0 1 1 0 1 0 1

13-7.4 7 11 19 29 37 41 60 50 0 5 13 13 15 0 0 7 23 13, 48 6
1 0 1 0 1 1 0

13-7.8 7 11 19 37 41 60 63 29 0 6 12 10 18 0 0 6 24 13, 48 9
0 0 1 1 1 1 0

13-7.9 7 11 19 29 37 41 47 30 0 6 10 18 12 0 0 4 32 13, 42 8
1 1 0 0 1 0 0

14-8.1 7 11 19 30 37 41 49 60 63 0 8 20 22 28 0 0 8 34 14, 46 5
1 0 1 0 1 1 0 0

14-8.3 7 11 13 19 21 25 35 60 63 0 11 12 28 28 0 0 5 44 14, 40 8
0 1 1 0 1 0 1 0

14-8.4 7 11 13 14 19 21 25 54 41 0 16 7 30 26 0 0 5 39 14, 30 10
0 1 0 1 1 1 0 0

14-8.6 7 11 19 29 30 37 41 49 60 0 8 19 22 30 0 0 8 34 14, 46 4
1 0 1 0 0 1 1 0

14-8.7 7 11 19 30 37 41 52 56 47 0 7 16 36 20 0 0 10 28 14, 49 1
1 1 0 0 0 1 1 0

14-8.8 7 11 13 19 21 41 54 63 25 0 8 18 24 30 0 0 11 29 14, 52 3
1 0 0 1 1 1 1 0

14-8.10 7 11 19 29 37 41 47 49 55 0 8 15 34 22 0 0 9 29 14, 43 2
1 0 1 0 1 1 0 0
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Table 8. (Cont’d).

Design Additional Col. Blocking TWP BWP

Foldover plan Col. (At
3, . . . , At

7) (Ab
1, . . . , Ab

4) cc1, cc2 Rank

15-9.1 7 11 19 30 37 41 49 60 63 29 0 12 30 34 51 0 0 13 39 15, 45 4
1 1 0 1 1 0 0 0 0

15-9.3 7 11 19 29 37 41 47 49 55 59 0 11 22 60 36 0 0 12 38 15, 39 1
1 0 1 0 1 1 0 0 0

15-9.5 7 11 13 14 19 21 22 25 58 37 0 23 10 56 40 0 0 6 54 15, 27 10
0 1 0 1 1 1 0 0 0

15-9.6 7 11 13 19 21 35 37 57 58 60 0 12 27 38 54 0 0 10 48 15, 45 2
0 1 1 0 1 1 0 1 0

15-9.10 7 11 13 14 19 21 25 35 60 63 0 17 16 48 48 0 0 6 60 15, 38 9
0 0 1 1 1 1 0 1 0

16-10.1 7 11 13 19 21 35 37 57 58 60 14 0 17 40 56 96 0 0 16 53 16, 41 3
0 1 1 0 1 1 0 1 0 0

16-10.2 7 11 19 29 37 41 47 49 55 59 62 0 15 30 100 60 0 0 15 50 16, 30 1
0 1 1 0 1 0 1 1 0 0

16-10.5 7 11 13 14 19 21 22 25 35 60 63 0 25 20 80 80 0 0 7 80 16, 33 14
0 1 0 1 1 1 0 1 0 0

16-10.6 7 11 13 14 19 21 22 25 26 60 35 0 33 12 96 64 0 0 7 72 16, 29 15
1 1 1 1 0 0 1 1 0 0

16-10.7 7 11 13 14 19 21 35 37 57 58 60 0 17 36 64 96 0 0 12 66 16, 41 2
0 0 1 1 1 1 1 0 1 0

16-10.8 7 11 13 14 19 21 25 35 60 63 22 0 19 32 66 96 0 0 19 50 16, 44 6
0 0 1 1 1 0 0 1 1 0

16-10.10 7 11 13 14 19 21 22 35 37 57 58 0 21 24 80 80 0 0 7 84 16, 27 8
0 0 1 1 1 1 0 1 0 0

16-10.14 7 11 19 37 41 47 49 55 59 62 29 0 20 0 160 0 0 0 0 120 16, 0 7
0 1 1 1 0 1 1 0 0 1

17-11.1 7 11 13 14 19 21 35 37 57 58 60 22 0 23 54 90 162 0 0 19 72 17, 34 1
0 0 1 1 1 0 1 0 1 0 0

17-11.2 7 11 19 29 37 41 47 49 55 59 62 13 0 20 40 160 96 0 1 20 55 17, 15 6
0 1 1 0 1 0 1 1 0 0 1

17-11.3 7 11 13 19 21 25 35 37 41 49 63 62 0 25 35 136 120 0 1 15 60 17, 30 7
0 0 1 1 0 1 1 1 0 0 1

17-11.7 7 11 13 14 19 21 22 35 37 38 57 58 0 28 32 128 128 0 0 8 112 17, 16 2
0 0 1 1 1 0 1 1 1 0 0

17-11.10 7 11 13 14 19 21 22 25 26 35 60 63 0 36 24 128 128 0 0 8 104 17, 32 5
1 1 1 1 0 0 1 1 0 0 0

18-12.1 7 11 13 14 19 21 22 35 37 57 58 60 38 0 30 72 140 264 0 0 22 96 18, 24 1
0 0 1 1 1 0 1 1 1 1 0 0

18-12.2 7 11 13 14 19 21 22 35 37 38 57 58 60 0 32 64 152 256 0 0 16 116 18, 16 2
0 0 1 1 1 0 1 1 1 0 0 0

18-12.3 7 11 13 14 19 21 22 25 26 35 60 63 33 0 40 48 160 256 0 2 12 98 18, 32 5
1 1 1 1 0 0 1 1 0 0 0 0

19-13.1 7 11 13 14 19 21 22 35 37 38 57 58 60 63 0 40 96 200 416 0 0 25 124 19, 12 1
0 0 1 1 1 0 1 1 1 0 0 0 0
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Table 9. Optimal blocking and foldover plans for 64-run (2n−p : 22) designs.

Design Additional Col. Blocking TWP BWP

Foldover plan Col. (At
3, . . . , At

7) (Ab
1, . . . , Ab

4) cc1, cc2 Rank

7-1.1 63 7 25 0 0 0 0 0 0 0 3 3 7, 21 1
1

8-2.1 15 51 21 42 0 0 0 1 0 0 0 4 5 8, 28 1
1 1

9-3.1 7 27 45 14 49 0 0 2 1 0 0 0 6 9 9, 36 4
1 0 0

9-3.3 7 27 43 13 51 0 0 2 0 0 0 0 4 14 9, 36 3
1 1 0

9-3.5 7 25 42 11 52 0 0 0 3 0 0 0 6 9 9, 36 1
1 1 1

9-3.6 7 11 53 22 45 0 1 0 0 2 0 0 4 13 9, 30 5
0 1 1

10-4.1 7 27 43 53 13 51 0 0 4 2 0 0 0 8 18 10, 45 2
1 1 0 0

10-4.2 7 25 42 53 13 54 0 0 3 3 1 0 0 9 16 10, 45 1
1 1 1 0

10-4.5 7 11 29 49 19 45 0 1 2 2 2 0 0 8 17 10, 39 4
1 1 0 1

11-5.1 7 11 29 45 51 14 49 0 1 7 4 0 0 1 12 21 11, 48 7
1 0 1 0 0

11-5.7 7 11 21 38 57 13 55 0 1 4 6 4 0 0 13 24 11, 49 1
0 1 1 1 0

11-5.8 7 11 21 41 51 25 47 0 2 4 4 4 0 0 12 24 11, 43 3
0 1 1 0 0

12-6.1 7 11 29 45 51 62 14 17 0 2 12 8 0 0 2 16 29 12, 52 9
1 0 1 0 0 0

12-6.4 7 11 21 41 54 56 26 37 0 3 7 10 6 0 1 15 33 12, 47 4
1 0 0 1 1 0

12-6.6 7 11 19 37 57 63 13 35 0 2 8 10 8 0 1 17 32 12, 53 1
0 1 1 1 1 0

12-6.7 7 11 19 29 37 59 30 41 0 2 8 12 4 0 1 16 32 12, 53 2
0 1 1 0 1 0

12-6.10 7 11 13 19 46 49 21 42 0 4 6 8 8 0 1 15 32 12, 44 8
0 0 1 1 1 0

13-7.1 7 11 21 25 38 58 60 31 40 0 4 14 16 12 0 2 18 46 13, 52 7
0 1 1 0 1 1 0

13-7.3 7 11 19 29 37 59 62 6 41 0 3 12 24 8 0 2 20 44 13, 60 6
0 1 1 0 1 0 1

13-7.6 7 11 19 30 37 41 52 29 47 0 5 11 19 11 0 1 20 47 13, 47 1
1 1 0 0 1 0 0

13-7.7 7 11 13 19 37 57 63 21 35 0 5 12 15 16 0 1 22 45 13, 50 2
0 1 0 1 1 1 0

14-8.1 7 11 19 30 37 41 49 60 29 35 0 8 20 22 28 0 2 25 61 14, 46 8
1 0 1 0 1 1 0 0

14-8.3 7 11 13 19 21 25 35 60 14 49 0 11 12 28 28 0 1 27 61 14, 39 2
0 1 1 0 1 0 1 0

14-8.4 7 11 13 14 19 21 25 54 22 41 0 16 7 30 26 0 1 27 56 14, 29 3
0 1 0 1 1 1 0 0

14-8.5 7 11 13 14 19 21 22 57 26 37 0 15 8 32 24 0 0 28 62 14, 25 1
0 1 0 1 1 1 0 0

14-8.7 7 11 19 30 37 41 52 56 15 50 0 7 16 36 20 0 2 24 64 14, 49 4
1 1 0 0 0 1 1 0

14-8.8 7 11 13 19 21 41 54 63 25 35 0 8 18 24 30 0 2 25 61 14, 50 6
1 0 0 1 1 1 1 0

15-9.1 7 11 19 30 37 41 49 60 63 5 35 0 12 30 34 51 0 3 32 78 15, 44 9
1 1 0 1 1 0 0 0 0

15-9.3 7 11 19 29 37 41 47 49 55 5 59 0 11 22 60 36 0 3 28 86 15, 38 7
1 0 1 0 1 1 0 0 0

15-9.6 7 11 13 19 21 35 37 57 58 14 49 0 12 27 38 54 0 2 33 82 15, 45 4
0 1 1 0 1 1 0 1 0

16-10.1 7 11 13 19 21 35 37 57 58 60 14 22 0 17 40 56 96 0 3 41 104 16, 40 8
0 1 1 0 1 1 0 1 0 0

16-10.2 7 11 19 29 37 41 47 49 55 59 5 35 0 15 30 100 60 0 4 40 101 16, 28 15
0 1 1 0 1 0 1 1 0 0

16-10.5 7 11 13 14 19 21 22 25 35 60 26 37 0 25 20 80 80 0 1 42 108 16, 32 3
0 1 0 1 1 1 0 1 0 0

16-10.6 7 11 13 14 19 21 22 25 26 60 28 35 0 33 12 96 64 0 1 42 100 16, 28 4
1 1 1 1 0 0 1 1 0 0

16-10.7 7 11 13 14 19 21 35 37 57 58 22 41 0 17 36 64 96 0 2 41 110 16, 41 5
0 0 1 1 1 1 1 0 1 0

16-10.8 7 11 13 14 19 21 25 35 60 63 22 37 0 19 32 66 96 0 3 38 106 16, 43 10
0 0 1 1 1 0 0 1 1 0

16-10.9 7 11 13 14 19 21 22 35 57 60 25 38 0 19 32 66 96 0 1 42 114 16, 35 1
0 0 1 1 1 1 0 1 0 0

16-10.10 7 11 13 14 19 21 22 35 37 57 25 38 0 21 24 80 80 0 1 42 112 16, 26 2
0 0 1 1 1 1 0 1 0 0
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Table 10. Optimal blocking and foldover plans for 64-run (2n−p : 23) designs.

Design Additional Col. Blocking TWP BWP
Foldover plan Col. (At

3, . . . , At
7) (Ab

1, . . . , Ab
4) cc1, cc2 Rank

7-1.1 63 7 25 42 0 0 0 0 0 0 0 7 7 7, 21 1
1

8-2.1 15 51 3 20 41 0 0 0 1 0 0 2 8 10 8, 26 1
1 1

9-3.1 7 27 45 11 22 35 0 0 2 1 0 0 2 14 18 9, 34 4
1 0 0

9-3.5 7 25 42 3 13 49 0 0 0 3 0 0 2 14 18 9, 34 1
1 1 1

9-3.6 7 11 53 5 19 41 0 1 0 0 2 0 2 14 17 9, 30 5
0 1 1

10-4.1 7 27 43 53 13 17 34 0 0 4 2 0 0 4 16 30 10, 41 8
1 1 0 0

10-4.2 7 25 42 53 11 22 38 0 0 3 3 1 0 3 19 29 10, 42 1
1 1 1 0

10-4.7 7 25 42 52 11 22 39 0 1 0 6 0 0 3 19 28 10, 36 2
1 1 1 0

10-4.9 7 11 21 45 6 25 35 0 1 2 2 0 0 3 19 28 10, 38 3
0 1 1 0

11-5.1 7 11 29 45 51 14 17 36 0 1 7 4 0 0 5 24 41 11, 44 7
1 0 1 0 0

11-5.2 7 25 42 52 63 11 22 39 0 1 4 6 4 0 4 25 45 11, 45 1
1 1 1 0 0

11-5.4 7 11 21 46 56 6 25 43 0 1 5 6 2 0 4 26 43 11, 47 3
0 1 1 0 1

11-5.7 7 11 21 38 57 9 19 37 0 1 4 6 4 0 4 26 43 11, 45 2
0 1 1 1 0

11-5.8 7 11 21 41 51 6 25 35 0 2 4 4 4 0 4 25 44 11, 41 5
0 1 1 0 0

12-6.1 7 11 29 45 51 62 14 17 36 0 2 12 8 0 0 6 32 61 12, 48 7
1 0 1 0 0 0

12-6.4 7 11 21 41 54 56 6 25 42 0 3 7 10 6 0 5 34 63 12, 43 4
1 0 0 1 1 0

12-6.6 7 11 19 37 57 63 9 21 38 0 2 8 10 8 0 5 34 64 12, 49 1
0 1 1 1 1 0

12-6.7 7 11 19 29 37 59 6 24 41 0 2 8 12 4 0 5 34 64 12, 53 2
0 1 1 0 1 0

13-7.1 7 11 21 25 38 58 60 13 19 33 0 4 14 16 12 0 7 42 88 13, 49 4
0 1 1 0 1 1 0

13-7.3 7 11 19 29 37 59 62 6 24 41 0 3 12 24 8 0 6 44 92 13, 60 1
0 1 1 0 1 0 1

13-7.6 7 11 19 30 37 41 52 10 23 38 0 5 11 19 11 0 6 44 90 13, 42 2
1 1 0 0 1 0 0

13-7.7 7 11 13 19 37 57 63 9 21 38 0 5 12 15 16 0 6 44 90 13, 47 3
0 1 0 1 1 1 0

14-8.1 7 11 19 30 37 41 49 60 5 25 35 0 8 20 22 28 0 9 52 119 14, 45 8
1 0 1 0 1 1 0 0

14-8.5 7 11 13 14 19 21 22 57 3 25 37 0 15 8 32 24 0 7 56 118 14, 24 2
0 1 0 1 1 1 0 0

14-8.7 7 11 19 30 37 41 52 56 15 18 35 0 7 16 36 20 0 7 56 126 14, 48 1
1 1 0 0 0 1 1 0

15-9.1 7 11 19 30 37 41 49 60 63 6 25 42 0 12 30 34 51 0 12 55 177 15, 37 10
1 1 0 1 1 0 0 0 0

15-9.3 7 11 19 29 37 41 47 49 55 5 25 35 0 11 22 60 36 0 9 68 166 15, 36 1
1 0 1 0 1 1 0 0 0

15-9.4 7 11 13 14 19 21 35 41 63 12 22 38 0 15 18 48 48 0 9 68 162 15, 32 2
0 0 1 1 1 1 1 0 0

15-9.5 7 11 13 14 19 21 22 25 58 5 26 35 0 23 10 56 40 0 9 68 154 15, 24 4
0 1 0 1 1 1 0 0 0

15-9.6 7 11 13 19 21 35 37 57 58 12 22 38 0 12 27 38 54 0 10 66 161 15, 41 5
0 1 1 0 1 1 0 1 0

15-9.10 7 11 13 14 19 21 25 35 60 12 22 37 0 17 16 48 48 0 9 68 160 15, 36 3
0 0 1 1 1 1 0 1 0

16-10.1 7 11 13 19 21 35 37 57 58 60 14 22 38 0 17 40 56 96 0 12 81 210 16, 37 5
0 1 1 0 1 1 0 1 0 0

16-10.7 7 11 13 14 19 21 35 37 57 58 12 22 38 0 17 36 64 96 0 11 82 216 16, 40 1
0 0 1 1 1 1 1 0 1 0

16-10.11 7 11 13 19 21 35 41 50 61 62 5 27 42 0 24 0 143 0 0 11 82 209 16, 16 3
1 1 0 0 0 0 0 1 1 0

16-10.15 7 11 13 19 21 25 35 44 55 61 3 28 37 0 24 0 141 0 0 11 82 209 16, 13 2
1 1 0 0 1 0 1 1 0 0
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