VARIABLE SELECTION AND COEFFICIENT ESTIMATION VIA REGULARIZED RANK REGRESSION

Chenlei Leng

National University of Singapore Supplemtary Materials

Relative efficiency

To compare the R^2 estimator with the MLE, the least squares estimator (LS) and the least absolute deviation estimator (LAD), we summarize the relative efficiency for various distributions in Table 1.1.

	$e(R^2, ML)$	$e(R^2,LS)$	$e(R^2, LAD)$
Normal	0.955	0.955	1.500
Logisitc	1.000	1.097	1.333
t_5	0.993	1.240	1.290
t_3	0.950	1.900	1.173
Cauchy	0.608	∞	0.750
DE	0.750	1.500	0.750
T(0.01, 3)	0.963	1.009	1.487
T(0.05, 3)	0.967	1.196	1.436
T(0.1, 3)	0.958	1.373	1.376

Table 1.1: The relative efficiency of the R^2 . DE: double exponential, t_d : Student's tdistribution with d degrees of freedom. $T(\rho, \sigma)$: Tukey contaminated normal with cdf $F(x) = (1 - \rho)\Phi(x) + \rho\Phi(x/\sigma)$ where $\Phi(\cdot)$ is the cdf of a standard normal distribution and $\rho \in [0, 1]$ is the contamination proportion.

Some Proofs

We denote the cdf and pdf of $\varepsilon_{ij} = \varepsilon_i - \varepsilon_j$ as G and g respectively. Simple algebra yields $g(s) = \int f(t)f(t-s)dt$. A proof of Theorem 1 can also be found in Hettmansperger and Mckean (1998, Theorem 3.5.4). However, for completeness and also since the proofs of Theorem 2 and Theorem 3 depend on the proof of Theorem 1, the proof of Theorem 1 is included. **Proof of Theorem 1.** Denote $\mathbf{u} = \sqrt{n}(\boldsymbol{\beta} - \boldsymbol{\beta}^0)$. We consider

$$Z(\mathbf{u}) = (2n)^{-1} \sum_{i,j} (|y_{ij} - \mathbf{x}_{ij}^T \boldsymbol{\beta}| - |y_{ij} - \mathbf{x}_{ij}^T \boldsymbol{\beta}^0|)$$
$$= (2n)^{-1} \sum_{i,j} (|\varepsilon_{ij} - \mathbf{x}_{ij}^T \mathbf{u} / \sqrt{n}| - |\varepsilon_{ij}|)$$

which is minimized at $\hat{\mathbf{u}} = \sqrt{n}(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)$. By Knight's identity (Knight, 1998)

$$(|r-s|-|r|)/2 = -s(\frac{1}{2} - I(r<0)) + \int_0^s (I(r\le t) - I(r\le 0))dt,$$

we may write

$$Z(\mathbf{u}) = Z_1(\mathbf{u}) + Z_2(\mathbf{u}),$$

where

$$Z_1(\mathbf{u}) = -n^{-3/2} \sum_{i,j} \mathbf{x}_{ij}^T \mathbf{u} (\frac{1}{2} - I(\varepsilon_{ij} < 0)),$$

$$Z_2(\mathbf{u}) = n^{-1} \sum_{i,j} \int_0^{\mathbf{x}_{ij}^T \mathbf{u}/\sqrt{n}} (I(\varepsilon_{ij} \le t) - I(\varepsilon_{ij} \le 0)) dt \triangleq \sum_{i,j} Z_{2ij}(\mathbf{u}).$$

The limiting behavior of these two expressions is now discussed.

First note that

$$Z_1(\mathbf{u}) = -n^{-3/2} \sum_{i,j} \mathbf{x}_{ij}^T \mathbf{u} (\frac{1}{2} - I(\varepsilon_{ij} < 0))$$
$$= -n^{-3/2} \sum_i \mathbf{x}_i^T \{2\mathbf{R}(\varepsilon_i) - (n+1)\} \mathbf{u}$$
$$\stackrel{\triangle}{=} W_n^T \mathbf{u},$$

where $R(\varepsilon_i)$ is the rank statistic of ε_i . By the independence between \mathbf{x}_i and ε_i , $E(W_n) = 0$ and $Cov(W_n) = n^{-3}X^T Cov(\mathbf{r})X$ for $\mathbf{r} = (2R(\varepsilon_1) - (n+1), ..., R(2\varepsilon_n) - (n+1))^T$. The diagonal terms of $n^{-2}Cov(\mathbf{r})$ are

$$n^{-2}Var(r_i) = n^{-2}\sum_{i=1}^n \{2i - (n+1)\}^2 \frac{1}{n} = \frac{4(n+1)^2}{n^3} \sum_i (\frac{i}{n+1} - \frac{1}{2})^2 \to 4\int (t - \frac{1}{2})^2 dt = \frac{1}{3},$$

and its off-diagonal terms are

$$n^{-2}Cov(r_i, r_j) = n^{-2} \sum_{i=1}^n \sum_{j \neq i} \{2i - (n+1)\} \{2j - (n+1)\} \frac{1}{n(n-1)} = -\frac{4(n+1)^2}{n^2(n-1)} \int (t - \frac{1}{2})^2 dt \to 0.$$

Combined with Assumption A1, we have $Cov(W_n) \to C/3$. Therefore, an application of the Lindeberg-Feller central limit theorem using Assumptions A1-A2, yields

$$W_n \to_d W$$
 and $Z_1(\mathbf{u}) \to_d -\mathbf{u}^T W$, where $W \sim N(\mathbf{0}, C/3)$.

For $Z_2(\mathbf{u})$, we write

$$Z_2(\mathbf{u}) = \sum_{i,j} EZ_{2ij} + \sum_{i,j} (Z_{2ij} - EZ_{2ij}).$$

We have

$$\begin{split} EZ_2 &= \sum_{i,j} EZ_{2ij} = n^{-1} \sum_{i,j} \int_0^{\mathbf{x}_{ij}^T \mathbf{u}/\sqrt{n}} (G(t) - G(0)) dt \\ &= \frac{1}{n^{3/2}} \sum_{i,j} \int_0^{\mathbf{x}_{ij}^T \mathbf{u}} (G(s/\sqrt{n}) - G(0)) ds \\ &= \frac{1}{n^2} \sum_{i,j} \int_0^{\mathbf{x}_{ij}^T \mathbf{u}} sg(0) ds + o(1) \\ &= \frac{1}{2n^2} \sum_{i,j} g(0) \mathbf{u}^T \mathbf{x}_{ij}^T \mathbf{x}_{ij} \mathbf{u} + o(1) \\ &\to g(0) \mathbf{u}^T C \mathbf{u}. \end{split}$$

Here we use the fact that $\sum_{i,j} \mathbf{x}_{ij}^T \mathbf{x}_{ij} = 2nX^T X$ in the last step. By noting that

$$V(Z_{2ij}) = n^{-2}E\left\{\int_{0}^{\mathbf{x}_{ij}^{T}\mathbf{u}/\sqrt{n}} [I(\varepsilon_{ij} \leq t) - I(\varepsilon_{ij} \leq 0)] - [g(t) - g(0)]\right\}^{2}$$

$$\leq n^{-2}E\left\{\left|\int_{0}^{\mathbf{x}_{ij}^{T}\mathbf{u}/\sqrt{n}} [I(\varepsilon_{ij} \leq t) - I(\varepsilon_{ij} \leq 0)] - [g(t) - g(0)]\right|\right\} \times 2\left|\frac{\mathbf{x}_{ij}^{T}\mathbf{u}}{\sqrt{n}}\right|$$

$$\leq n^{-2}\frac{4\max|\mathbf{x}_{ij}^{T}\mathbf{u}|}{\sqrt{n}}EZ_{2ij}(\mathbf{u}),$$

we have

$$Var(Z_2(\mathbf{u})) \le n^2 \sum_{i,j} Var(Z_{2ij}) \le \frac{4 \max |\mathbf{x}_{ij}^T \mathbf{u}|}{\sqrt{n}} EZ_2 \to 0.$$

Therefore,

$$Z(\mathbf{u}) \to_d Z^0(\mathbf{u}) = -\mathbf{u}^T W + g(0)\mathbf{u}^T C\mathbf{u}.$$

Also, we have $\sqrt{n}(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}^0) \rightarrow_d (2g(0))^{-1}C^{-1}W \sim N(\mathbf{0}, C^{-1}/\{12g^2(0)\})$ by the convexity of the limiting function $Z^0(\mathbf{u})$. This completes the proof.

Proof of Theorem 2. Consider

$$Q(\boldsymbol{\beta}) = (\boldsymbol{\beta} - \tilde{\boldsymbol{\beta}})^T C_n(\boldsymbol{\beta} - \tilde{\boldsymbol{\beta}}) + \lambda \sum_{k=1}^p \lambda_k |\beta_k| - \left\{ (\boldsymbol{\beta}^0 - \tilde{\boldsymbol{\beta}})^T C_n(\boldsymbol{\beta}^0 - \tilde{\boldsymbol{\beta}}) + \lambda \sum_{k=1}^p \lambda_k |\beta_k^0| \right\}.$$

Denote $\mathbf{u} = \sqrt{n}(\boldsymbol{\beta} - \boldsymbol{\beta}^0)$. We may write $nQ(\boldsymbol{\beta})$ as

$$nQ(\mathbf{u}) = \mathbf{u}^T C_n \mathbf{u} + 2\mathbf{u}^T C_n \left[\sqrt{n}(\beta^0 - \tilde{\beta})\right] + n\lambda \sum_{k=1}^p \lambda_k |\beta_k| - n\lambda \sum_{k=1}^p \lambda_k |\beta_k^0|,$$

which is minimized by $\sqrt{n}(\hat{\boldsymbol{\beta}}_{\lambda}-\boldsymbol{\beta}^{0})$. Let

$$Z_3(\mathbf{u}) = n\lambda \sum_k \lambda_k (|\beta_k^0 + u_k/\sqrt{n}| - |\beta_k^0|).$$

For Z_3 , we write $Z_{3k}(\mathbf{u}) = n\lambda\lambda_k(|\beta_k^0 + u_k/\sqrt{n}| - |\beta_k^0|)$ and then

$$Z_{3k}(\mathbf{u}) = \begin{cases} \sqrt{n}\lambda\lambda_k u_k \operatorname{Sign}(\beta_k^0), & \text{if } \beta_k^0 \neq 0, \\ \sqrt{n}\lambda\lambda_k |u_k|, & \text{if } \beta_k^0 = 0. \end{cases}$$

Now, the conditions in Theorem 2 assure the following

$$Z_{3k}(\mathbf{u}) \to P(\beta_k^0, u_k) = \begin{cases} 0 & \text{if } \beta_k^0 \neq 0, \\ 0 & \text{if } \beta_k^0 = 0 \text{ and } u_{\lambda k} = 0, \\ \infty & \text{if } \beta_k^0 = 0 \text{ and } u_{\lambda k} \neq 0. \end{cases}$$

Thus, we have

$$Q(\mathbf{u}) \to_d \mathbf{u}^T C \mathbf{u} - \frac{2}{2\omega} \mathbf{u}^T W + \sum_{k=1}^p P(\beta_k^0, u_k),$$

where W is given in Theorem 1. Applying the arguments in Knight (1998), we have

$$\hat{u}_{\lambda\mathcal{A}^C} \to_d 0, \text{ for } \beta_k^0 = 0,$$

 $\hat{u}_{\lambda\mathcal{A}} \to_d \frac{1}{2\omega} C_{\mathcal{A}\mathcal{A}}^{-1} W_{\mathcal{A}} \sim N(\mathbf{0}, 1/(12\omega^2) C_{\mathcal{A}\mathcal{A}}^{-1}).$

The asymptotic normality is established.

The consistency results can be seen as follows. Since $\hat{\boldsymbol{\beta}}_{\lambda}$ is root-*n* consistent, we have $P(k \in S_{\lambda}) \to 1$ for $k \in \mathcal{A}$, where S_{λ} is the model identified by $\hat{\boldsymbol{\beta}}_{\lambda}$. Note that if $\exists k \in \mathcal{A}^{C}$, such that $\hat{\beta}_{\lambda k} \neq 0$, we must have

$$\sqrt{n}\frac{\partial Q(\boldsymbol{\beta})}{\partial \beta_k}|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}_{\lambda}} = 2C_n^{(k)} \times \sqrt{n}(\hat{\boldsymbol{\beta}}_{\lambda} - \tilde{\boldsymbol{\beta}}) + \sqrt{n}\lambda\lambda_k \operatorname{sgn}(\hat{\boldsymbol{\beta}}_{\lambda k}),$$

where $C^{(k)}$ stands for the *k*th row of *C*. Now, the order of the first term is bounded since $C_n \to_p C$ and $\sqrt{n}(\hat{\beta}_{\lambda} - \tilde{\beta}) = O_p(1)$. On the other hand, $\sqrt{n\lambda\lambda_k}\operatorname{sgn}(\hat{\beta}_{\lambda k})$ goes to ∞ as long as *n* is large. Therefore, $\sqrt{n\partial Q}(\hat{\beta}_{\lambda})/\partial\beta_k$ cannot be zero for *n* sufficiently large. The contradiction proves the consistency of variable selection. Now, it is easy to see that once λ satisfies

$$\sqrt{n}\lambda a_n \to 0$$
 and $\sqrt{n}\lambda b_n \to \infty$,

the assumptions of the theorem holds.

Lemma A1. When the assumptions in Theorem 1 and 2 are satisfied, with probability tending to one,

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_{\lambda\mathcal{A}} - \boldsymbol{\beta}_{\mathcal{A}}^{0}) = \frac{1}{2\omega} C_{\mathcal{A}\mathcal{A}}^{-1} W_{n\mathcal{A}} + o_{p}(1),$$

where W_n is defined in Theorem 1.

Proof: The result follows from the proofs of Theorem 1 and Theorem 2. **Lemma A2.** (Asymptotic linearity)

$$P\{\sup_{\sqrt{n}\|\boldsymbol{\beta}-\boldsymbol{\beta}^0\|\leq B}\|n^{-1/2}G(\boldsymbol{\beta})-n^{-1/2}G(\boldsymbol{\beta}^0)+2\omega C_n(\boldsymbol{\beta}-\boldsymbol{\beta}^0)\sqrt{n}\|\geq\delta\}\to 0,$$

for any fixed $B \in \mathbb{R}$ and δ .

Proof: See Sievers (1983).

Lemma A3. For the reference tuning parameter sequence, with probability tending to one

$$T_{\lambda_n} \to \chi_q^2,$$

where $q = p - \# \{A\}$ is the number of the zero coefficients in β^0 .

Proof. Without loss of generality, assume $\mathcal{A} = \{1, ..., p - q\}$. Since λ_n satisfies the conditions in Theorem 2, we have with probability tending to one,

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_{\lambda_n \mathcal{A}} - \boldsymbol{\beta}_{\mathcal{A}}^0) = \frac{1}{2\omega} C_{\mathcal{A}\mathcal{A}}^{-1} W_{n\mathcal{A}} + o_p(1) = O_p(1)$$

and $\hat{\boldsymbol{\beta}}_{\lambda_n \mathcal{A}^C} = 0$. According to Lemma A2, we have

$$\begin{aligned} T_{\lambda_n} &= 3n^{-1}G^T(\hat{\boldsymbol{\beta}}_{\lambda_n})C_n^{-1}G^T(\hat{\boldsymbol{\beta}}_{\lambda_n}) \\ &= 3\{n^{-1/2}G^T(\boldsymbol{\beta}^0) - 2\omega C_n(\hat{\boldsymbol{\beta}}_{\lambda_n} - \boldsymbol{\beta}^0)\}^T C_n^{-1}\{n^{-1/2}G^T(\boldsymbol{\beta}^0) - 2\omega C_n(\hat{\boldsymbol{\beta}}_{\lambda_n} - \boldsymbol{\beta}^0)\} \\ &= 3\{W_n^T C_n^{-1}W_n - W_{n\mathcal{A}}^T C_{n\mathcal{A}\mathcal{A}}W_{n\mathcal{A}}\} \\ &= \{\sqrt{3}C_n^{-1/2}W_n\}^T \{I - C_n^{1/2}\begin{pmatrix} C_{n\mathcal{A}\mathcal{A}}^{-1} & 0 \\ 0 & 0 \end{pmatrix} C_n^{1/2} \}\{\sqrt{3}C_n^{-1/2}W_n.\} \end{aligned}$$

An application of Cochran's Theorem gives $T_{\lambda_n} \to \chi_q^2$ by noting $\sqrt{3}C_{n\mathcal{A}\mathcal{A}}^{-1/2}W_{n,\mathcal{A}} \to_d N(\mathbf{0}, I)$.

Proof of Consistency of SIC. We classify any $S_{\lambda} \neq A$ into two different cases according to whether the model is underfitted ($\mathbb{R}_{-} = \{\lambda \geq 0 : S_{\lambda} \not\supseteq A\}$) or overfitted ($\mathbb{R}^{+} = \{\lambda \geq 0 : S_{\lambda} \supset A, S_{\lambda} \neq A\}$). In either case, we show that the theorem's conclusion is valid. Specifically,

Case 1 (Underfitted Model). Since λ_n satisfies the regularity conditions specified by Theorem 2, the resulting estimator $\hat{\beta}_{\lambda_n}$ is \sqrt{n} -consistent. From Lemma A3, its associated SIC value is of the order $O_p(\log \log(n))$. On the other hand, since $S_\lambda \not\supseteq A$ is an underfitted model, we know that with probability tending to one,

$$SIC_{\lambda}/n \ge \inf_{\boldsymbol{\beta}: \ \beta_j=0, j \notin S_{\lambda}} 3n^{-1}G(\boldsymbol{\beta})^T C_n^{-1}G(\boldsymbol{\beta})/n > 0.$$

Hence we have $P(\inf_{\lambda \in \mathbb{R}_{-}} SIC_{\lambda} > SIC_{\lambda_n}) \to 1.$

Case 2 (Overfitted Model). For any overfitted model, we have $df_{\lambda} > df_{\lambda_n}$ and

$$SIC_{\lambda} - SIC_{\lambda_n} = T_{\lambda} - T_{\lambda_n} + (df_{\lambda} - df_{\lambda_n}) \log \log(n)$$

$$\geq \inf_{\boldsymbol{\beta}: \ \boldsymbol{\beta}_j = 0, j \notin \mathcal{S}_{\lambda}} 3n^{-1}G(\boldsymbol{\beta})^T C_n^{-1}G(\boldsymbol{\beta}) - T_{\lambda_n} + \log \log(n)$$

Now, following Lemma A3, it is easy to see that the first term converges to χ_k^2 where $k = p - \#\{S_\lambda\}$. The second term is $O_p(1)$ by Lemma A3. Thus, the third term dominates the expression and we have $P(\inf_{\lambda \in \mathbb{R}^+} SIC_\lambda > SIC_{\lambda_n}) \to 1$. The proof is completed.

References

Knight, K. (1998). Limiting distributions for L_1 regression estimators under general conditions. The Annals of Statistics, 26, 755-770.

Sievers, G. L. (1983). A weighted dispersion function for estimation in linear models. Communications in Statistics Theory and Methodology, 12, 1161-1179.