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Relative efficiency

To compare the R2 estimator with the MLE, the least squares estimator (LS)

and the least absolute deviation estimator (LAD), we summarize the relative

efficiency for various distributions in Table 1.1.

e(R2, ML) e(R2, LS) e(R2, LAD)

Normal 0.955 0.955 1.500

Logisitc 1.000 1.097 1.333

t5 0.993 1.240 1.290

t3 0.950 1.900 1.173

Cauchy 0.608 ∞ 0.750

DE 0.750 1.500 0.750

T (0.01, 3) 0.963 1.009 1.487

T (0.05, 3) 0.967 1.196 1.436

T (0.1, 3) 0.958 1.373 1.376

Table 1.1: The relative efficiency of the R2. DE: double exponential, td: Student’s t-

distribution with d degrees of freedom. T (ρ, σ): Tukey contaminated normal with cdf

F (x) = (1 − ρ)Φ(x) + ρΦ(x/σ) where Φ(·) is the cdf of a standard normal distribution

and ρ ∈ [0, 1] is the contamination proportion.

Some Proofs

We denote the cdf and pdf of εij = εi − εj as G and g respectively. Simple

algebra yields g(s) =
∫

f(t)f(t−s)dt. A proof of Theorem 1 can also be found in

Hettmansperger and Mckean (1998, Theorem 3.5.4). However, for completeness

and also since the proofs of Theorem 2 and Theorem 3 depend on the proof of

Theorem 1, the proof of Theorem 1 is included.
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Proof of Theorem 1. Denote u =
√

n(β − β0). We consider

Z(u) = (2n)−1
∑

i,j

(|yij − xT
ijβ| − |yij − xT

ijβ
0|)

= (2n)−1
∑

i,j

(|εij − xT
iju/

√
n| − |εij |)

which is minimized at û =
√

n(β̃ − β0). By Knight’s identity (Knight, 1998)

(|r − s| − |r|)/2 = −s(
1

2
− I(r < 0)) +

∫ s

0
(I(r ≤ t) − I(r ≤ 0))dt,

we may write

Z(u) = Z1(u) + Z2(u),

where

Z1(u) = −n−3/2
∑

i,j

xT
iju(

1

2
− I(εij < 0)),

Z2(u) = n−1
∑

i,j

∫

x
T
iju/

√
n

0
(I(εij ≤ t) − I(εij ≤ 0))dt ,

∑

i,j

Z2ij(u).

The limiting behavior of these two expressions is now discussed.

First note that

Z1(u) = −n−3/2
∑

i,j

xT
iju(

1

2
− I(εij < 0))

= −n−3/2
∑

i

xT
i {2R(εi) − (n + 1)}u

4
= W T

n u,

where R(εi) is the rank statistic of εi. By the independence between xi and εi,

E(Wn) = 0 and Cov(Wn) = n−3XT Cov(r)X for r = (2R(ε1)−(n+1), ...,R(2εn)−
(n + 1))T . The diagonal terms of n−2Cov(r) are

n−2V ar(ri) = n−2
n
∑

i=1

{2i−(n+1)}2 1

n
=

4(n + 1)2

n3

∑

i

(
i

n + 1
−1

2
)2 → 4

∫

(t−1

2
)2dt =

1

3
,

and its off-diagonal terms are

n−2Cov(ri, rj) = n−2
n
∑

i=1

∑

j 6=i

{2i−(n+1)}{2j−(n+1)} 1

n(n − 1)
= − 4(n + 1)2

n2(n − 1)

∫

(t−1

2
)2dt → 0.
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Combined with Assumption A1, we have Cov(Wn) → C/3. Therefore, an appli-

cation of the Lindeberg-Feller central limit theorem using Assumptions A1-A2,

yields

Wn →d W and Z1(u) →d −uT W, where W ∼ N(0, C/3).

For Z2(u), we write

Z2(u) =
∑

i,j

EZ2ij +
∑

i,j

(Z2ij − EZ2ij).

We have

EZ2 =
∑

i,j

EZ2ij = n−1
∑

i,j

∫

x
T
iju/

√
n

0
(G(t) − G(0))dt

=
1

n3/2

∑

i,j

∫

x
T
iju

0
(G(s/

√
n) − G(0))ds

=
1

n2

∑

i,j

∫

x
T
iju

0
sg(0)ds + o(1)

=
1

2n2

∑

i,j

g(0)uT xT
ijxiju + o(1)

→ g(0)uT Cu.

Here we use the fact that
∑

i,j xT
ijxij = 2nXT X in the last step. By noting that

V (Z2ij) = n−2E
{

∫

x
T
iju/

√
n

0
[I(εij ≤ t) − I(εij ≤ 0)] − [g(t) − g(0)]

}2

≤ n−2E
{

|
∫

x
T
iju/

√
n

0
[I(εij ≤ t) − I(εij ≤ 0)] − [g(t) − g(0)]|

}

× 2|
xT

iju√
n
|

≤ n−2
4max |xT

iju|√
n

EZ2ij(u),

we have

V ar(Z2(u)) ≤ n2
∑

i,j

V ar(Z2ij) ≤
4max |xT

iju|√
n

EZ2 → 0.

Therefore,

Z(u) →d Z0(u) = −uT W + g(0)uT Cu.
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Also, we have
√

n(β̃ − β0) →d (2g(0))−1C−1W ∼ N(0, C−1/{12g2(0)}) by the

convexity of the limiting function Z0(u). This completes the proof.

Proof of Theorem 2. Consider

Q(β) = (β−β̃)T Cn(β−β̃)+λ

p
∑

k=1

λk|βk|−
{

(β0−β̃)T Cn(β0−β̃)+λ

p
∑

k=1

λk|β0
k |
}

.

Denote u =
√

n(β − β0). We may write nQ(β) as

nQ(u) = uT Cnu + 2uT Cn

[√
n(β0 − β̃)

]

+ nλ

p
∑

k=1

λk|βk| − nλ

p
∑

k=1

λk|β0
k |,

which is minimized by
√

n(β̂λ − β0). Let

Z3(u) = nλ
∑

k

λk(|β0
k + uk/

√
n| − |β0

k |).

For Z3, we write Z3k(u) = nλλk(|β0
k + uk/

√
n| − |β0

k |) and then

Z3k(u) =







√
nλλkukSign(β0

k), if β0
k 6= 0,

√
nλλk|uk|, if β0

k = 0.

Now, the conditions in Theorem 2 assure the following

Z3k(u) → P (β0
k , uk) =



















0 if β0
k 6= 0,

0 if β0
k = 0 and uλk = 0,

∞ if β0
k = 0 and uλk 6= 0.

Thus, we have

Q(u) →d uT Cu− 2

2ω
uT W +

p
∑

k=1

P (β0
k , uk),

where W is given in Theorem 1. Applying the arguments in Knight (1998), we

have

ûλAC →d 0, for β0
k = 0,

ûλA →d
1

2ω
C−1
AAWA ∼ N(0, 1/(12ω2)C−1

AA).

The asymptotic normality is established.
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The consistency results can be seen as follows. Since β̂λ is root-n consistent,

we have P(k ∈ Sλ) → 1 for k ∈ A, where Sλ is the model identified by β̂λ. Note

that if ∃k ∈ AC , such that β̂λk 6= 0, we must have

√
n

∂Q(β)

∂βk
|
β=β̂λ

= 2C(k)
n ×

√
n(β̂λ − β̃) +

√
nλλksgn(β̂λk),

where C(k) stands for the kth row of C. Now, the order of the first term

is bounded since Cn →p C and
√

n(β̂λ − β̃) = Op(1). On the other hand,
√

nλλksgn(β̂λk) goes to ∞ as long as n is large. Therefore,
√

n∂Q(β̂λ)/∂βk can-

not be zero for n sufficiently large. The contradiction proves the consistency of

variable selection. Now, it is easy to see that once λ satisfies

√
nλan → 0 and

√
nλbn → ∞,

the assumptions of the theorem holds.

Lemma A1. When the assumptions in Theorem 1 and 2 are satisfied, with

probability tending to one,

√
n(β̂λA − β0

A) =
1

2ω
C−1
AAWnA + op(1),

where Wn is defined in Theorem 1.

Proof: The result follows from the proofs of Theorem 1 and Theorem 2.

Lemma A2. (Asymptotic linearity)

P{ sup√
n‖β−β0‖≤B

‖n−1/2G(β) − n−1/2G(β0) + 2ωCn(β − β0)
√

n‖ ≥ δ} → 0,

for any fixed B ∈ R and δ.

Proof: See Sievers (1983).

Lemma A3. For the reference tuning parameter sequence, with probability

tending to one

Tλn
→ χ2

q,

where q = p − #{A} is the number of the zero coefficients in β0.

Proof. Without loss of generality, assume A = {1, ..., p − q}. Since λn satisfies

the conditions in Theorem 2, we have with probability tending to one,

√
n(β̂λnA − β0

A) =
1

2ω
C−1
AAWnA + op(1) = Op(1)
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and β̂λnAC = 0. According to Lemma A2, we have

Tλn
= 3n−1GT (β̂λn

)C−1
n GT (β̂λn

)

= 3{n−1/2GT (β0) − 2ωCn(β̂λn
− β0)}T C−1

n {n−1/2GT (β0) − 2ωCn(β̂λn
− β0)}

= 3{W T
n C−1

n Wn − W T
nACnAAWnA}

= {
√

3C−1/2
n Wn}T {I − C1/2

n

(

C−1
nAA 0

0 0

)

C1/2
n }{

√
3C−1/2

n Wn.}

An application of Cochran’s Theorem gives Tλn
→ χ2

q by noting
√

3C
−1/2
nAA Wn,A →d

N(0, I).

Proof of Consistency of SIC. We classify any Sλ 6= A into two different cases

according to whether the model is underfitted (R− = {λ ≥ 0 : Sλ 6⊃ A}) or

overfitted (R+ = {λ ≥ 0 : Sλ ⊃ A,Sλ 6= A}). In either case, we show that the

theorem’s conclusion is valid. Specifically,

Case 1 (Underfitted Model). Since λn satisfies the regularity conditions spec-

ified by Theorem 2, the resulting estimator β̂λn
is

√
n-consistent. From Lemma

A3, its associated SIC value is of the order Op(log log(n)). On the other hand,

since Sλ 6⊃ A is an underfitted model, we know that with probability tending to

one,

SICλ/n ≥ inf
β: βj=0,j /∈Sλ

3n−1G(β)T C−1
n G(β)/n > 0.

Hence we have P (infλ∈R
−

SICλ > SICλn
) → 1.

Case 2 (Overfitted Model). For any overfitted model, we have dfλ > dfλn
and

SICλ − SICλn
= Tλ − Tλn

+ (dfλ − dfλn
) log log(n)

≥ inf
β: βj=0,j /∈Sλ

3n−1G(β)T C−1
n G(β) − Tλn

+ log log(n)

Now, following Lemma A3, it is easy to see that the first term converges to χ2
k

where k = p−#{Sλ}. The second term is Op(1) by Lemma A3. Thus, the third

term dominates the expression and we have P (infλ∈R+ SICλ > SICλn
) → 1.

The proof is completed.
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