VARIABLE SELECTION AND COEFFICIENT ESTIMATION VIA REGULARIZED RANK REGRESSION

Chenlei Leng
National University of Singapore
Supplemtary Materials

Relative efficiency

To compare the R^{2} estimator with the MLE, the least squares estimator (LS) and the least absolute deviation estimator (LAD), we summarize the relative efficiency for various distributions in Table 1.1.

	$e\left(R^{2}, M L\right)$	$e\left(R^{2}, L S\right)$	$e\left(R^{2}, L A D\right)$
Normal	0.955	0.955	1.500
Logisitc	1.000	1.097	1.333
t_{5}	0.993	1.240	1.290
t_{3}	0.950	1.900	1.173
Cauchy	0.608	∞	0.750
DE	0.750	1.500	0.750
$T(0.01,3)$	0.963	1.009	1.487
$T(0.05,3)$	0.967	1.196	1.436
$T(0.1,3)$	0.958	1.373	1.376

Table 1.1: The relative efficiency of the R^{2}. DE: double exponential, t_{d} : Student's tdistribution with d degrees of freedom. $T(\rho, \sigma)$: Tukey contaminated normal with cdf $F(x)=(1-\rho) \Phi(x)+\rho \Phi(x / \sigma)$ where $\Phi(\cdot)$ is the cdf of a standard normal distribution and $\rho \in[0,1]$ is the contamination proportion.

Some Proofs

We denote the cdf and pdf of $\varepsilon_{i j}=\varepsilon_{i}-\varepsilon_{j}$ as G and g respectively. Simple algebra yields $g(s)=\int f(t) f(t-s) d t$. A proof of Theorem 1 can also be found in Hettmansperger and Mckean (1998, Theorem 3.5.4). However, for completeness and also since the proofs of Theorem 2 and Theorem 3 depend on the proof of Theorem 1, the proof of Theorem 1 is included.

Proof of Theorem 1. Denote $\mathbf{u}=\sqrt{n}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right)$. We consider

$$
\begin{aligned}
Z(\mathbf{u}) & =(2 n)^{-1} \sum_{i, j}\left(\left|y_{i j}-\mathbf{x}_{i j}^{T} \boldsymbol{\beta}\right|-\left|y_{i j}-\mathbf{x}_{i j}^{T} \boldsymbol{\beta}^{0}\right|\right) \\
& =(2 n)^{-1} \sum_{i, j}\left(\left|\varepsilon_{i j}-\mathbf{x}_{i j}^{T} \mathbf{u} / \sqrt{n}\right|-\left|\varepsilon_{i j}\right|\right)
\end{aligned}
$$

which is minimized at $\hat{\mathbf{u}}=\sqrt{n}\left(\tilde{\boldsymbol{\beta}}-\boldsymbol{\beta}^{0}\right)$. By Knight's identity (Knight, 1998)

$$
(|r-s|-|r|) / 2=-s\left(\frac{1}{2}-I(r<0)\right)+\int_{0}^{s}(I(r \leq t)-I(r \leq 0)) d t,
$$

we may write

$$
Z(\mathbf{u})=Z_{1}(\mathbf{u})+Z_{2}(\mathbf{u}),
$$

where

$$
\begin{aligned}
& Z_{1}(\mathbf{u})=-n^{-3 / 2} \sum_{i, j} \mathbf{x}_{i j}^{T} \mathbf{u}\left(\frac{1}{2}-I\left(\varepsilon_{i j}<0\right)\right), \\
& Z_{2}(\mathbf{u})=n^{-1} \sum_{i, j} \int_{0}^{\mathbf{x}_{i j}^{T} \mathbf{u} / \sqrt{n}}\left(I\left(\varepsilon_{i j} \leq t\right)-I\left(\varepsilon_{i j} \leq 0\right)\right) d t \triangleq \sum_{i, j} Z_{2 i j}(\mathbf{u}) .
\end{aligned}
$$

The limiting behavior of these two expressions is now discussed.
First note that

$$
\begin{aligned}
Z_{1}(\mathbf{u}) & =-n^{-3 / 2} \sum_{i, j} \mathbf{x}_{i j}^{T} \mathbf{u}\left(\frac{1}{2}-I\left(\varepsilon_{i j}<0\right)\right) \\
& =-n^{-3 / 2} \sum_{i} \mathbf{x}_{i}^{T}\left\{2 \mathrm{R}\left(\varepsilon_{i}\right)-(n+1)\right\} \mathbf{u} \\
& \triangleq W_{n}^{T} \mathbf{u}
\end{aligned}
$$

where $\mathrm{R}\left(\varepsilon_{i}\right)$ is the rank statistic of ε_{i}. By the independence between \mathbf{x}_{i} and ε_{i}, $E\left(W_{n}\right)=0$ and $\operatorname{Cov}\left(W_{n}\right)=n^{-3} X^{T} \operatorname{Cov}(\mathbf{r}) X$ for $\mathbf{r}=\left(2 \mathrm{R}\left(\varepsilon_{1}\right)-(n+1), \ldots, \mathrm{R}\left(2 \varepsilon_{n}\right)-\right.$ $(n+1))^{T}$. The diagonal terms of $n^{-2} \operatorname{Cov}(\mathbf{r})$ are
$n^{-2} \operatorname{Var}\left(r_{i}\right)=n^{-2} \sum_{i=1}^{n}\{2 i-(n+1)\}^{2} \frac{1}{n}=\frac{4(n+1)^{2}}{n^{3}} \sum_{i}\left(\frac{i}{n+1}-\frac{1}{2}\right)^{2} \rightarrow 4 \int\left(t-\frac{1}{2}\right)^{2} d t=\frac{1}{3}$,
and its off-diagonal terms are
$n^{-2} \operatorname{Cov}\left(r_{i}, r_{j}\right)=n^{-2} \sum_{i=1}^{n} \sum_{j \neq i}\{2 i-(n+1)\}\{2 j-(n+1)\} \frac{1}{n(n-1)}=-\frac{4(n+1)^{2}}{n^{2}(n-1)} \int\left(t-\frac{1}{2}\right)^{2} d t \rightarrow 0$.

Combined with Assumption A1, we have $\operatorname{Cov}\left(W_{n}\right) \rightarrow C / 3$. Therefore, an application of the Lindeberg-Feller central limit theorem using Assumptions A1-A2, yields

$$
W_{n} \rightarrow_{d} W \text { and } Z_{1}(\mathbf{u}) \rightarrow_{d}-\mathbf{u}^{T} W, \text { where } W \sim N(\mathbf{0}, C / 3) .
$$

For $Z_{2}(\mathbf{u})$, we write

$$
Z_{2}(\mathbf{u})=\sum_{i, j} E Z_{2 i j}+\sum_{i, j}\left(Z_{2 i j}-E Z_{2 i j}\right) .
$$

We have

$$
\begin{aligned}
E Z_{2}=\sum_{i, j} E Z_{2 i j} & =n^{-1} \sum_{i, j} \int_{0}^{\mathbf{x}_{i j}^{T} \mathbf{u} / \sqrt{n}}(G(t)-G(0)) d t \\
& =\frac{1}{n^{3 / 2}} \sum_{i, j} \int_{0}^{\mathbf{x}_{i j}^{T} \mathbf{u}}(G(s / \sqrt{n})-G(0)) d s \\
& =\frac{1}{n^{2}} \sum_{i, j} \int_{0}^{\mathbf{x}_{i j}^{T} \mathbf{u}} s g(0) d s+o(1) \\
& =\frac{1}{2 n^{2}} \sum_{i, j} g(0) \mathbf{u}^{T} \mathbf{x}_{i j}^{T} \mathbf{x}_{i j} \mathbf{u}+o(1) \\
& \rightarrow g(0) \mathbf{u}^{T} C \mathbf{u} .
\end{aligned}
$$

Here we use the fact that $\sum_{i, j} \mathbf{x}_{i j}^{T} \mathbf{x}_{i j}=2 n X^{T} X$ in the last step. By noting that

$$
\begin{aligned}
V\left(Z_{2 i j}\right) & =n^{-2} E\left\{\int_{0}^{\mathbf{x}_{i j}^{T} \mathbf{u} / \sqrt{n}}\left[I\left(\varepsilon_{i j} \leq t\right)-I\left(\varepsilon_{i j} \leq 0\right)\right]-[g(t)-g(0)]\right\}^{2} \\
& \leq n^{-2} E\left\{\left|\int_{0}^{\mathbf{x}_{i j}^{T} \mathbf{u} / \sqrt{n}}\left[I\left(\varepsilon_{i j} \leq t\right)-I\left(\varepsilon_{i j} \leq 0\right)\right]-[g(t)-g(0)]\right|\right\} \times 2\left|\frac{\mathbf{x}_{i j}^{T} \mathbf{u}}{\sqrt{n}}\right| \\
& \leq n^{-2} \frac{4 \max \left|\mathbf{x}_{i j}^{T} \mathbf{u}\right|}{\sqrt{n}} E Z_{2 i j}(\mathbf{u}),
\end{aligned}
$$

we have

$$
\operatorname{Var}\left(Z_{2}(\mathbf{u})\right) \leq n^{2} \sum_{i, j} \operatorname{Var}\left(Z_{2 i j}\right) \leq \frac{4 \max \left|\mathbf{x}_{i j}^{T} \mathbf{u}\right|}{\sqrt{n}} E Z_{2} \rightarrow 0
$$

Therefore,

$$
Z(\mathbf{u}) \rightarrow_{d} Z^{0}(\mathbf{u})=-\mathbf{u}^{T} W+g(0) \mathbf{u}^{T} C \mathbf{u}
$$

Also, we have $\sqrt{n}\left(\tilde{\boldsymbol{\beta}}-\boldsymbol{\beta}^{0}\right) \rightarrow_{d}(2 g(0))^{-1} C^{-1} W \sim N\left(\mathbf{0}, C^{-1} /\left\{12 g^{2}(0)\right\}\right)$ by the convexity of the limiting function $Z^{0}(\mathbf{u})$. This completes the proof.
Proof of Theorem 2. Consider
$Q(\boldsymbol{\beta})=(\boldsymbol{\beta}-\tilde{\boldsymbol{\beta}})^{T} C_{n}(\boldsymbol{\beta}-\tilde{\boldsymbol{\beta}})+\lambda \sum_{k=1}^{p} \lambda_{k}\left|\beta_{k}\right|-\left\{\left(\boldsymbol{\beta}^{0}-\tilde{\boldsymbol{\beta}}\right)^{T} C_{n}\left(\boldsymbol{\beta}^{0}-\tilde{\boldsymbol{\beta}}\right)+\lambda \sum_{k=1}^{p} \lambda_{k}\left|\beta_{k}^{0}\right|\right\}$.
Denote $\mathbf{u}=\sqrt{n}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right)$. We may write $n Q(\boldsymbol{\beta})$ as

$$
n Q(\mathbf{u})=\mathbf{u}^{T} C_{n} \mathbf{u}+2 \mathbf{u}^{T} C_{n}\left[\sqrt{n}\left(\boldsymbol{\beta}^{0}-\tilde{\boldsymbol{\beta}}\right)\right]+n \lambda \sum_{k=1}^{p} \lambda_{k}\left|\beta_{k}\right|-n \lambda \sum_{k=1}^{p} \lambda_{k}\left|\beta_{k}^{0}\right|,
$$

which is minimized by $\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{\lambda}-\boldsymbol{\beta}^{0}\right)$. Let

$$
Z_{3}(\mathbf{u})=n \lambda \sum_{k} \lambda_{k}\left(\left|\beta_{k}^{0}+u_{k} / \sqrt{n}\right|-\left|\beta_{k}^{0}\right|\right) .
$$

For Z_{3}, we write $Z_{3 k}(\mathbf{u})=n \lambda \lambda_{k}\left(\left|\beta_{k}^{0}+u_{k} / \sqrt{n}\right|-\left|\beta_{k}^{0}\right|\right)$ and then

$$
Z_{3 k}(\mathbf{u})= \begin{cases}\sqrt{n} \lambda \lambda_{k} u_{k} \operatorname{Sign}\left(\beta_{k}^{0}\right), & \text { if } \beta_{k}^{0} \neq 0 \\ \sqrt{n} \lambda \lambda_{k}\left|u_{k}\right|, & \text { if } \beta_{k}^{0}=0 .\end{cases}
$$

Now, the conditions in Theorem 2 assure the following

$$
Z_{3 k}(\mathbf{u}) \rightarrow P\left(\beta_{k}^{0}, u_{k}\right)= \begin{cases}0 & \text { if } \beta_{k}^{0} \neq 0 \\ 0 & \text { if } \beta_{k}^{0}=0 \text { and } u_{\lambda k}=0 \\ \infty & \text { if } \beta_{k}^{0}=0 \text { and } u_{\lambda k} \neq 0\end{cases}
$$

Thus, we have

$$
Q(\mathbf{u}) \rightarrow_{d} \mathbf{u}^{T} C \mathbf{u}-\frac{2}{2 \omega} \mathbf{u}^{T} W+\sum_{k=1}^{p} P\left(\beta_{k}^{0}, u_{k}\right),
$$

where W is given in Theorem 1. Applying the arguments in Knight (1998), we have

$$
\begin{aligned}
\hat{u}_{\lambda \mathcal{A}^{C}} & \rightarrow{ }_{d} 0, \text { for } \beta_{k}^{0}=0, \\
\hat{u}_{\lambda \mathcal{A}} & \rightarrow{ }_{d} \frac{1}{2 \omega} C_{\mathcal{A} \mathcal{A}}^{-1} W_{\mathcal{A}} \sim N\left(\mathbf{0}, 1 /\left(12 \omega^{2}\right) C_{\mathcal{A} \mathcal{A}}^{-1}\right) .
\end{aligned}
$$

The asymptotic normality is established.

The consistency results can be seen as follows. Since $\hat{\boldsymbol{\beta}}_{\lambda}$ is root- n consistent, we have $\mathrm{P}\left(k \in \mathcal{S}_{\lambda}\right) \rightarrow 1$ for $k \in \mathcal{A}$, where \mathcal{S}_{λ} is the model identified by $\hat{\boldsymbol{\beta}}_{\lambda}$. Note that if $\exists k \in \mathcal{A}^{C}$, such that $\hat{\beta}_{\lambda k} \neq 0$, we must have

$$
\left.\sqrt{n} \frac{\partial Q(\boldsymbol{\beta})}{\partial \beta_{k}}\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}_{\lambda}}=2 C_{n}^{(k)} \times \sqrt{n}\left(\hat{\boldsymbol{\beta}}_{\lambda}-\tilde{\boldsymbol{\beta}}\right)+\sqrt{n} \lambda \lambda_{k} \operatorname{sgn}\left(\hat{\boldsymbol{\beta}}_{\lambda k}\right),
$$

where $C^{(k)}$ stands for the k th row of C. Now, the order of the first term is bounded since $C_{n} \rightarrow_{p} C$ and $\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{\lambda}-\tilde{\boldsymbol{\beta}}\right)=O_{p}(1)$. On the other hand, $\sqrt{n} \lambda \lambda_{k} \operatorname{sgn}\left(\hat{\beta}_{\lambda k}\right)$ goes to ∞ as long as n is large. Therefore, $\sqrt{n} \partial Q\left(\hat{\boldsymbol{\beta}}_{\lambda}\right) / \partial \beta_{k}$ cannot be zero for n sufficiently large. The contradiction proves the consistency of variable selection. Now, it is easy to see that once λ satisfies

$$
\sqrt{n} \lambda a_{n} \rightarrow 0 \text { and } \sqrt{n} \lambda b_{n} \rightarrow \infty
$$

the assumptions of the theorem holds.
Lemma A1. When the assumptions in Theorem 1 and 2 are satisfied, with probability tending to one,

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{\lambda \mathcal{A}}-\boldsymbol{\beta}_{\mathcal{A}}^{0}\right)=\frac{1}{2 \omega} C_{\mathcal{A} \mathcal{A}}^{-1} W_{n \mathcal{A}}+o_{p}(1),
$$

where W_{n} is defined in Theorem 1.
Proof: The result follows from the proofs of Theorem 1 and Theorem 2.
Lemma A2. (Asymptotic linearity)

$$
\mathrm{P}\left\{\sup _{\sqrt{n}\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right\| \leq B}\left\|n^{-1 / 2} G(\boldsymbol{\beta})-n^{-1 / 2} G\left(\boldsymbol{\beta}^{0}\right)+2 \omega C_{n}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right) \sqrt{n}\right\| \geq \delta\right\} \rightarrow 0,
$$

for any fixed $B \in \mathbb{R}$ and δ.
Proof: See Sievers (1983).
Lemma A3. For the reference tuning parameter sequence, with probability tending to one

$$
T_{\lambda_{n}} \rightarrow \chi_{q}^{2},
$$

where $q=p-\#\{\mathcal{A}\}$ is the number of the zero coefficients in $\boldsymbol{\beta}^{0}$.
Proof. Without loss of generality, assume $\mathcal{A}=\{1, \ldots, p-q\}$. Since λ_{n} satisfies the conditions in Theorem 2, we have with probability tending to one,

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{\lambda_{n \mathcal{A}}}-\boldsymbol{\beta}_{\mathcal{A}}^{0}\right)=\frac{1}{2 \omega} C_{\mathcal{A} \mathcal{A}}^{-1} W_{n \mathcal{A}}+o_{p}(1)=O_{p}(1)
$$

and $\hat{\boldsymbol{\beta}}_{\lambda_{n} \mathcal{A}^{C}}=0$. According to Lemma A2, we have

$$
\begin{aligned}
T_{\lambda_{n}} & =3 n^{-1} G^{T}\left(\hat{\boldsymbol{\beta}}_{\lambda_{n}}\right) C_{n}^{-1} G^{T}\left(\hat{\boldsymbol{\beta}}_{\lambda_{n}}\right) \\
& =3\left\{n^{-1 / 2} G^{T}\left(\boldsymbol{\beta}^{0}\right)-2 \omega C_{n}\left(\hat{\boldsymbol{\beta}}_{\lambda_{n}}-\boldsymbol{\beta}^{0}\right)\right\}^{T} C_{n}^{-1}\left\{n^{-1 / 2} G^{T}\left(\boldsymbol{\beta}^{0}\right)-2 \omega C_{n}\left(\hat{\boldsymbol{\beta}}_{\lambda_{n}}-\boldsymbol{\beta}^{0}\right)\right\} \\
& =3\left\{W_{n}^{T} C_{n}^{-1} W_{n}-W_{n \mathcal{A}}^{T} C_{n \mathcal{A A}} W_{n \mathcal{A}}\right\} \\
& =\left\{\sqrt{3} C_{n}^{-1 / 2} W_{n}\right\}^{T}\left\{I-C_{n}^{1 / 2}\left(\begin{array}{cc}
C_{n \mathcal{A A}}^{-1} & 0 \\
0 & 0
\end{array}\right) C_{n}^{1 / 2}\right\}\left\{\sqrt{3} C_{n}^{-1 / 2} W_{n} .\right\}
\end{aligned}
$$

An application of Cochran's Theorem gives $T_{\lambda_{n}} \rightarrow \chi_{q}^{2}$ by noting $\sqrt{3} C_{n \mathcal{A} \mathcal{A}}^{-1 / 2} W_{n, \mathcal{A}} \rightarrow{ }_{d}$ $N(\mathbf{0}, I)$.
Proof of Consistency of SIC. We classify any $\mathcal{S}_{\lambda} \neq \mathcal{A}$ into two different cases according to whether the model is underfitted ($\left.\mathbb{R}_{-}=\left\{\lambda \geq 0: \mathcal{S}_{\lambda} \not \supset \mathcal{A}\right\}\right)$ or overfitted $\left(\mathbb{R}^{+}=\left\{\lambda \geq 0: \mathcal{S}_{\lambda} \supset \mathcal{A}, \mathcal{S}_{\lambda} \neq \mathcal{A}\right\}\right)$. In either case, we show that the theorem's conclusion is valid. Specifically,

Case 1 (Underfitted Model). Since λ_{n} satisfies the regularity conditions specified by Theorem 2, the resulting estimator $\hat{\beta}_{\lambda_{n}}$ is \sqrt{n}-consistent. From Lemma A3, its associated SIC value is of the order $O_{p}(\log \log (n))$. On the other hand, since $\mathcal{S}_{\lambda} \not \supset \mathcal{A}$ is an underfitted model, we know that with probability tending to one,

$$
S I C_{\lambda} / n \geq \inf _{\boldsymbol{\beta}: \beta_{j}=0, j \notin \mathcal{S}_{\lambda}} 3 n^{-1} G(\boldsymbol{\beta})^{T} C_{n}^{-1} G(\boldsymbol{\beta}) / n>0
$$

Hence we have $P\left(\inf _{\lambda \in \mathbb{R}_{-}} S I C_{\lambda}>S I C_{\lambda_{n}}\right) \rightarrow 1$.
Case 2 (Overfitted Model). For any overfitted model, we have $d f_{\lambda}>d f_{\lambda_{n}}$ and

$$
\begin{aligned}
S I C_{\lambda}-S I C_{\lambda_{n}} & =T_{\lambda}-T_{\lambda_{n}}+\left(d f_{\lambda}-d f_{\lambda_{n}}\right) \log \log (n) \\
& \geq \inf _{\boldsymbol{\beta}: \beta_{j}=0, j \notin \mathcal{S}_{\lambda}} 3 n^{-1} G(\boldsymbol{\beta})^{T} C_{n}^{-1} G(\boldsymbol{\beta})-T_{\lambda_{n}}+\log \log (n)
\end{aligned}
$$

Now, following Lemma A3, it is easy to see that the first term converges to χ_{k}^{2} where $k=p-\#\left\{\mathcal{S}_{\lambda}\right\}$. The second term is $O_{p}(1)$ by Lemma A3. Thus, the third term dominates the expression and we have $P\left(\inf _{\lambda \in \mathbb{R}^{+}} S I C_{\lambda}>S I C_{\lambda_{n}}\right) \rightarrow 1$. The proof is completed.

References

Knight, K. (1998). Limiting distributions for L_{1} regression estimators under general conditions. The Annals of Statistics, 26, 755-770.

Sievers, G. L. (1983). A weighted dispersion function for estimation in linear models. Communications in Statistics Theory and Methodology, 12, 11611179.

