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S1. Assumptions for proofs of Theorems 1 - 2

Even though the model l(η) =
∑n

i=1 li(η) =
∑n

i=1 log f(Do,i|η) may be mis-

specified, White (1994) has shown that the unpenalized ML estimate converges to

the value of η which minimizes E [
∑n

i=1 li(η)] =
∑n

i=1

∫
li(η)g(Do,i)dDo,i where

g(·) is the true density. We denote the true value by η∗n = arg supη E[l(η)]. For

simplicity, we further assume that E[∂ηli(η)] = 0 for all i and η∗ = η∗n, for all

n. Similarly, we define η∗Sn = argsupη : βj 6=0,j∈SE[Q(η|η∗)] and let η∗Sn = η∗S , for

all n.

The following assumptions are needed to facilitate development of our meth-

ods, although they may not be the weakest possible conditions.

(C1) η∗ is unique and an interior point of the parameter space Θ, where Θ is

compact.

(C2) η̂0 → η∗ in probability.

(C3) For all i, li(η) is three-times continuously differentiable on Θ and li(η),

|∂jli(η)|2 and |∂j∂k∂lli(η)| are dominated by Bi(Do,i) for all j, k, l = 1, · · · , d

where ∂j = ∂/∂ηj . We also require that the same smoothness condition also

holds for h(Do,i; η) = E [log f(zm,i|Do,i; η)|Do,i;η] .

(C4) For each ε > 0, there exists a finite K such that

sup
n≥1

1
n

n∑

i=1

E
[
Bi(Do,i)1[Bi(Do,i)>K]

]
< ε

for all n.
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(C5)

lim
n→∞−

1
n

n∑

i=1

∂2
ηli(η∗) = A(η∗),

lim
n→∞

1
n

n∑

i=1

∂ηli(η∗)∂ηli(η∗)T = B(η∗),

lim
n→∞−

1
n

n∑

i=1

D20Q(η∗S |η∗) = C(η∗S |η∗),

lim
n→∞

1
n

n∑

i=1

D10Q(η∗S |η∗)D10Q(η∗S |η∗)T = D(η∗S |η∗),

where A(η∗) and C(η∗S |η∗) are positive definite and Dij denotes the i-th

and j-th derivatives of the first and second component of the Q function

respectively.

(C6) Define an = maxj

{
p′λjn

(|β∗j |) : β∗j 6= 0
}

, and bn = maxj

{
p′′λjn

(|β∗j |) : β∗j 6= 0
}

.

1. maxj{λjn : β∗j 6= 0} = op(1).

2. an = Op(n−1/2).

3. bn = op(1).

(C7) Define dn = minj{λjn : β∗j = 0}.

1. For all j such that β∗j = 0, limn→∞ λ−1
jn lim infβ→0+ p′λjn

(β) > 0 in

probability.

2. n1/2dn
p→∞.

Proof of Theorem 1a.

Given assumptions (C1) - (C6), then it follows from White (1994) that

n−1/2
n∑

i=1

∂ηli(η∗)
D→ N (0,B(η∗)) (1.2)

and

n1/2(η̂0 − η∗) D→ N
(
0,A(η∗)−1B(η∗)A(η∗)−1

)
. (1.3)
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To show η̂λ is a
√

n-consistent maximizer of η∗, it is enough to show that

P


 sup
||u||=C



l(η∗ + n−1/2u)− n

p∑

j=1

pλjn(|β∗j + n−1/2uj |)




−l(η∗) + n

p∑

j=1

pλjn(|β∗j |) < 0




converges to 1 for large C, since this implies there exists a local maximizer in the

ball {η∗+n−1/2u; ||u|| ≤ C} and thus ||η̂λ−η∗|| = Op(n−1/2). Taking a Taylor’s

series expansion of the penalized likelihood function, we have

l(η∗ + n−1/2u)− l(η∗)− n

p∑

j=1

pλjn(|β∗j + n−1/2uj |) + n

p∑

j=1

pλjn(|β∗j |)

≤ l(η∗ + n−1/2u)− l(η∗)− n

p1∑

j=1

pλjn(|β∗j + n−1/2uj |) + n

p1∑

j=1

pλjn(|β∗j |)

= n−1/2uT ∂ηl(η∗)− 1
2
uT

[
− 1

n
∂2

ηl(η∗)
]
u− n1/2

p1∑

j=1

[
p′λjn

(|β∗j |)sgn(β∗j )uj

]

−1
2

p1∑

j=1

[
p′′λjn

(|β∗j |)u2
j

]
+ op(1)

≤ n−1/2uT ∂ηl(η∗)− 1
2
uTA(η∗)u +

√
p1n

1/2an||u1|| − 1
2
|bn|||u1||2 + op(1)

≤ n−1/2uT ∂ηl(η∗)− 1
2
uTA(η∗)u +

√
p1n

1/2an||u1||+ op(1), (1.4)

where u = (uT
1 ,uT

2 )T and u1 is a p1 × 1 vector. The second inequality in

(1.4) follows because pλjn(0) = 0 and pλjn ≥ 0. The third inequality fol-

lows from condition (C5) and the fact that
∑p1

i=1 |ui| ≤ √
p1(

∑p1
i=1 u2

i )
1/2. The

last inequality follows from (C6). Since the first and third terms in (1.4) are

Op(1) by (1.2) and condition (C6) - 2, and uTA(η∗)u is bounded below by

||u||2 × the smallest eigenvalue of A(η∗), then the second term in (1.4) domi-

nates the rest and all the terms can be made negative for large enough C.

Proof of Theorem 1b.

Suppose that the conditions of Theorem 1a hold, and there exists an, η̂λ,

which is a
√

n-consistent estimator of η∗. It suffices to show that for large n,

the gradient of the penalized log likelihood function evaluated at η̂λ, such that
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||η̂λ − η∗|| = Op(n−1/2) and ||β̂(2)λ|| = Op(n−1/2) = op(1), is zero. Taking a

Taylor’s series expansion of the penalized log likelihood function about η∗, we

have

0 = n−1/2


∂ηl(η̂λ)− n ∂η





p∑

j=1

pλjn(|βj |)




∣∣∣∣∣∣
η=η̂λ




= n−1/2∂ηl(η∗)− n1/2(η̂λ − η∗)T

[
− 1

n
∂2

ηl(η∗)
]

+ Op(n−1)

−n1/2 ∂η





p∑

j=1

pλjn(|βj |)




∣∣∣∣∣∣
η=η̂λ

= Op(1)− n1/2 ∂η





p∑

j=1

pλjn(|βjλ|)




∣∣∣∣∣∣
η=η̂λ

(1.5)

where the last equality follows from n−1/2∂ηl(η∗) = n1/2(η̂λ−η∗)T
[−∂2

ηl(η∗)/n
]

=

Op(1). Therefore, for j = p1 + 1, . . . p, the gradient with respect to βj of the sec-

ond term of (1.5), is −sgn(β̂j)n1/2λjn[λ−1
jn p′λjn

(|β̂j |)]. Since ||β̂(2)λ|| = op(1),

λ−1
jn p′λjn

(|β̂j |) is greater than zero for large n, it follows that (1.5) is dominated

by the term −sgn(β̂j)n1/2dn. Since n1/2dn
p→∞, it must be the case that β̂jλ = 0

for j = p1+1, . . . , p, otherwise the gradient could be made large in absolute value

and could not possibly be equal to zero.

Proof of Theorem 1c.

Given conditions (C1) - (C7), Theorems 1a and 1b apply. Thus, there ex-

ists a β̂λ =
(
β̂T

(1)λ,0T
)T

, and η̂λ =
(
β̂T

λ , τ̂T
λ , α̂T

λ , ξ̂T
λ

)T
which is a

√
n local

maximizer of (6). Let β∗ =
(
β∗T(1),0

T
)T

, γ∗ =
(
β∗T(1), τ

∗T , α∗T , ξ∗T
)T

, γ =
(
βT

(1), τ
T ,αT , ξT

)T
, γ̂λ =

(
β̂T

(1)λ, τ̂T
λ , α̂T

λ , ξ̂T
λ

)T
, and l̃(γ) = l((βT

(1),0, τT ,αT , ξT )).

Let Ã(γ) be the resulting matrix from removing the p1+1 to p rows and columns
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from the matrix A((βT
(1),0, τT , αT , ξT )) and similiarly define B̃. Let,

h1

(
β(1)

)
= (p′λ1

(|β1|)sgn(|β1|), . . . , p′λp1
(|βp1 |)sgn(|βp1 |))T ,

G1

(
β(1)

)
= diag

(
p′′λ1

(|β1|), . . . , p′′λp1
(|βp1 |)

)
,

h(γ∗) =


 h1

(
β∗(1)

)

0


 , G(γ∗) =


 G1

(
β∗(1)

)
0

0 0


 , and

Σ(γ∗) =
[
Ã(γ∗) + G(γ∗)

]−1
B̃(γ∗)

[
Ã(γ∗) + G(γ∗)

]−1
.

Then, using a Taylor’s series expansion, we have

0 = ∂γ l̃(γ̂λ)− n∂γ




p∑

j=1

pλj (|βλj |)



∣∣∣∣∣∣
γ=γ̂λ

= ∂γ l̃(γ∗)− nh(γ∗)− n(γ̂λ − γ∗)T

[
− 1

n
∂2

γ l̃(γ∗) + G(γ∗)
]

+ op(1)

= n−1/2∂γ l̃(γ∗)− n1/2h(γ∗)− n1/2(γ̂λ − γ∗)T
[
Ã(γ∗) + G(γ∗)

]
+ op(1),

which indicates

n1/2

{
γ̂λ − γ∗ +

[
Ã(γ∗) + G(γ∗)

]−1
h(γ∗)

}
D= n−1/2

[
Ã(γ∗) + G(γ∗)

]−1
∂γ l(γ∗),

and therefore

n1/2

{
γ̂λ − γ∗ +

[
Ã(γ∗) + G(γ∗)

]−1
h(γ∗)

}
D→ N (0,Σ(γ∗)) .

For the SCAD penalty with λjn = λn, if λn = op(1), n1/2λn
p→ ∞ and

conditions (C1) - (C5) are satisfied, then the oracle properties of Theorem 1

hold. For the ALASSO penalty, with λjn = λn|β̂j |−1 where β̂j is the unpenalized

ML estimate, λn = Op(n−1/2), nλn
p→ ∞ and conditions (C1) - (C5) imply

Theorem 1. Therefore, depending on the penalty function and specification of

λjn, the rates of λjn which characterize the oracle properties, may be different.

Under the assumptions of Theorem 1 for the SCAD and ALASSO penalty

functions, h(η∗) → 0, therefore the asymptotic covariance matrix of γ̂λ is n−1Σ(γ∗).
Using Louis’s formula (Louis (1982)), an estimate of Σ(γ∗) is,

Var(γ̂λ) ≈ n−1[Â(γ̂λ) + G(γ̂λ)]−1B̂(γ̂λ) [A(γ̂λ) + G(γ̂λ)]−1 , (1.6)
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where

Q̇i(γ∗|γ∗) = ∂γ

[∫
log f(Dc,i;γ,β(2) = 0)f(zm,i|Do,i; γ∗, β(2) = 0)dzm,i

]∣∣∣∣
γ=γ∗

,

B̂(γ∗) = n−1
n∑

i=1

Q̇i(γ∗|γ∗)Q̇i(γ∗|γ∗)T ,

Q̇(γ∗|γ∗) = ∂γQ((β(1),0, τ , α, ξ)|γ∗,β(2) = 0)
∣∣
γ=γ∗

Q̈(γ∗|γ∗) = ∂2
γQ((β(1),0, τ , α, ξ)|γ∗,β(2) = 0)

∣∣
γ=γ∗ , and

Â(γ∗) = −n−1Q̈(γ∗|γ∗) + n−1Q̇(γ∗|η∗)Q̇(γ∗|γ∗)T

−n−1 E[(∂γ log f(Dc;γ, β(2) = 0))⊕|Do;γ∗,β(2) = 0]
∣∣
γ=γ∗

where v⊕ = vvT .

Proof of Theorem 2a.

To prove Theorem 2, we first show that for ηtn
p→ ηt, t = 1, 2,

Q(η1n|η2n)−Q(η1|η2) = op(n)

E[Q(η1n|η2n)]−E[Q(η1|η2)] = op(n)

Q(η1n|η2n)−E[Q(η1|η2)] = op(n). (1.7)

First we note that conditions (C3) and (C4) imply [Q(η1|η2) − E[Q(η1|η2)]/n

converges in probability to 0 for all η1, η2 ∈ Θ. Furthermore, because conditions

(C3) and (C4) satisfy the W-LIP assumption of Lemma 2 of Andrews (1992),

we obtain the uniform continuity and stochastic continuity of E[Q(η1|η2)] and

[Q(η1|η2)− E(Q(η1|η2))]/n respectively. Because the stochastic continuity and

pointwise convergence properties satisfy the assumptions of Theorem 3 of An-

drews (1992), we have

sup
(η1,η2)∈Θ×Θ

1
n
|Q(η1|η2)−E[Q(η1|η2)]| p→ 0, (1.8)

which implies (1.7).

We also need to show that the hypothetical estimator

η̄S = argsupη : βj 6=0,j∈SQ(η|η∗)
is a

√
n-consistent estimator of η∗S . To prove this, it is enough to show that

P

[
sup
||u||=C

Q(η∗S + n−1/2u|η∗) ≤ Q(η∗S |η∗)
]
≥ 1− ε
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for large C, since this implies there exists a local maximizer in the ball {η +

n−1/2u; ||u|| ≤ C} and thus ||η̄S − η∗S || = Op(n−1/2). Taking a Taylor’s series

expansion of the first component of the Q function, we have

Q(η∗S + n−1/2u|η∗)−Q(η∗S |η∗)
= n−1/2uT D10Q(η∗S |η∗)−

1
2
uT

[
− 1

n
D20Q(η∗S |η∗)

]
u + op(1)

= n−1/2uT D10Q(η∗S |η∗)−
1
2
uTC(η∗S |η∗)u + op(1). (1.9)

Conditions (C3) and (C5) ensure that n−1/2D10Q(η∗S |η∗)
D→ N(0,D(η∗S |η∗)) =

Op(1) and C(η∗S |η∗) is positive definite. Therefore, the second term dominates

the rest and (1.9) can be made negative for large enough C.

Let η̃Sλ
= argsup

η: βj=0,j∈Sλ

Q(η|η̂0). Since η̂0
p→ η∗ and η̄Sλ

p→ η∗Sλ
, we have

1
n

dICQ(λ, 0) =
1
n

(ICQ(λ)− ICQ(0))

=
1
n

[2Q (η̂0|η̂0)− 2Q (η̂λ|η̂0) + ĉn(η̂λ)− ĉn(η̂0)]

≥ 2
n

[Q (η̂0|η̂0)−Q (η̃Sλ
|η̂0)] + op(1)

=
2
n

[Q (η̂0|η̂0)−Q (η̃Sλ
|η∗)] + op(1)

≥ 2
n

[Q (η̂0|η̂0)−Q (η̄Sλ
|η∗)] + op(1)

=
2
n

E [Q (η∗|η∗)]−E
[
Q

(
η∗Sλ

|η∗)] + op(1)

≥ 2
n

min
S6⊃ST

{E [Q (η∗|η∗)]− E [Q (η∗S |η∗)]}+ op(1),

where the second and fourth inequalities follow because Q (η̂λ|η̂0) ≤ Q (η̃Sλ
|η̂0)

and Q (η̃Sλ
|η∗) ≤ Q (η̄Sλ

|η∗) for all λ and the third and fifth equalities follow

from (1.7). Therefore, we have

Pr

(
inf

λ∈Rp
u

ICQ(λ) > ICQ(0)
)
→ 1,

which yields Theorem 2a.



RAMON I. GARCIA, JOSEPH G. IBRAHIM and HONGTU ZHU

Proof of Theorem 2b.

Under the assumptions of Theorem 2b, we have

n−1/2δQ(λ2, λ1) = n−1/2(ICQ(λ2)− ICQ(λ1))

= 2n−1/2 (Q(η̂λ1 |η̂0)− 2Q(η̂λ2 |η̂0)) + n−1/2(ĉ(η̂λ2)− ĉ(η̂λ1))

= 2n−1/2
(
Q(η̂λ1 |η̂0)−E[Q(η∗Sλ1

|η̂0)]
)
− 2n−1/2

(
Q(η̂λ2 |η̂0)− E[Q(η∗Sλ2

|η̂0)]
)

+2n−1/2
(
E[Q(η∗Sλ2

|η̂0)]− E[Q(η∗Sλ1
|η̂0)]

)
+ n−1/2δc(λ2, λ1)

= Op(1) + n−1/2δc21
p→∞.

Thus ICQ(λ2) > ICQ(λ1) in probability, which yields Theorem 2b. Proof of

Theorem 2c is similar to that of Theorem 2b.

S2. Statistical model for application of SIAS method to linear regres-

sion simulations.

To implement SIAS, we assume the response model is yi ∼ N(uT
i β, σ2),

the covariate distribution is ui ∼ N(µu,Σu) for i = 1, . . . , n and the missing

covariates are MAR. For the prior distribution of all the parameters we assume

π(β, γ, σ2, µu,Σu) =
p∏

j=1

{π(βj |γj)π(γj)}π(σ2)π(µu|Σu)π(Σu)

where µu|Σu ∼ N8(0, δ−1Σu), Σ−1
u ∼ Wishart(r, I8), σ−2 ∼ Gamma(ν/2, νω/2),

βj ∼ (1 − γj)N(0, t2j ) + γjN(0, c2
j t

2
j ) and γj ∼ Bernoulli(1/2). The hyper-

parameters were selected to reflect a lack of prior information on the parameters,

i.e. δ = ν = ω = .001, r = 8. For the values of tj and cj , we use those suggested

by George and McCulloch (1993) where (σ2
βj

/t2j , c
2
j ) = (1, 5), (1, 10), (10, 100), (10, 300)

and σ2
βj

was estimated using preliminary simulations.

We performed 5,000 simulations after a burn-in period of 5000 iterations.

The posterior probability of γ was calculated from the posterior simulations and

the model with the highest probability was selected as the ‘best’ model. The

results of (σ2
βj

/t2j , c
2
j ) = (1, 10) are presented since it gives the best model with

the highest posterior probability.

S3. Simulation results evaluating performance of standard errors of

penalized estimates for linear regression simulations
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Table 1.1: Standard errors of penalized estimates of linear regression model with covariates
missing at random

Method β̂1 β̂2 β̂5

SD SDm SDmad SD SDm SDmad SD SDm SDmad

SCAD-RE .138 .164 .042 .170 .187 .039 .160 .180 .039
SCAD-ICQ .141 .161 .039 .178 .180 .048 .163 .175 .038
ALASSO-RE .157 .161 .031 .183 .180 .035 .165 .173 .036
ALASSO-ICQ .139 .164 .039 .198 .185 .037 .166 .176 .038
Oracle .138 .155 .036 .179 .157 .040 .147 .139 .028

In order to test the accuracy of the asymptotic error formula (1.6), we esti-

mated the standard errors of the significant coefficients, β1, β3, and β5 for the

linear regression model using n = 60, σ = 1 with the covariates missing at ran-

dom. The median of the absolute deviations |β̂jλ−β∗j | divided by .6745, denoted

by SD, of the 100 penalized estimates can be regarded as the true standard error.

The median of the estimated standard errors is denoted as SDm. The median

absolute deviation error divided by .6745, denoted SDmad, measures the overall

performance of the standard error formula. The results, which are presented in

Table 1.1, indicate that the standard error estimate does a good job of estimating

the true standard error. All of the SDmad values were less than .05.

S4. Statistical model for application of SIAS method to Melanoma

data

Using the definition of yi, zi and xi in the main document, we assume a

logistic regression model on yi|xi, β with E(yi|xi, β) = exp(γi)/(1 + exp(γi)),

where γi = (1, zi, xi)T β, and β = (β0, β1, . . . , β6)T . We assume the covariates

are MAR with the following covariate distribution

f(zi|xi; α) = f(zi3|zi1, zi2,xi; α3)f(zi1, zi2|xi;α1, α2)

for i = 1, . . . , n. Since xi are completely observed, they are conditioned on

throughout. We take a (zi1, zi2|xi) ∼ N2(µi,Σ), where µi = (µi1, µi2) and

µis = αs0 +
∑3

j=1 αsjxij for s = 1, 2, i = 1, . . . , n and Σ is an unstructured

2 × 2 covariance matrix. We also assume a logistic regression model for xi3

conditional on (zi1, zi2,xi) with with E(yi|xi, β) = exp(ψi)/(1 + exp(ψi)), where
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ψi = (1, zi1, zi2,xi)T ϕ, and ϕ = (ϕ0, ϕ1, . . . , ϕ5)T . Let νj = (α1j , α2j)T for

j = 0, . . . , 3. For the prior distribution, we assume

π(β, ϕ, ν0, . . . , ν3,Σ) =
p∏

j=1

{π(βj |γj)π(γj)}
5∏

l=0

π(ϕl)
3∏

k=0

π(νk|Σ)π(Σ),

where ϕl ∼ N(0, δ−1) for l = 0, . . . , 5, νk|Σ ∼ N2(0, δ−1Σ) for k = 0, . . . , 3,

Σ−1 ∼ Wishart(r, I2), βj ∼ (1−γj)N(0, t2j )+γjN(0, c2
j t

2
j ) and γj ∼ Bernoulli(1/2)

for j = 1, . . . , 6.

The hyperparameters were selected to reflect lack of prior information on

the parameters, i.e. δ = .001, r = 2. We set (σ2
βj

/t2j , c
2
j ) = (1, 10). The posterior

probability of γ was calculated from 5000 simulated observations after 5,000

burn-in iterations and the model with the highest probability was selected as the

‘best’ model.
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