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Supplementary Material

This appendix contains technical proofs of theorems in the main text, and
also the details of a simulation study. Before we presenting the detailed theorem

proofs, the following lemma is necessarily needed.
Appendix A. Technical lemma and its proof

Lemma. Let G C {u: f(u) > 0} be a compact subset on the support of U,

where f(u) is the density of the index variable U. As n — oo, we then have

) =) = ot S () Lm0}

i=1

o) + O {RY) ()} (A1)

o [2f(“) v (u) + 70 ()

Gjrja (0) =03y () = nh;(u)zﬂ:[( (Ulh_u> [{Xijl_mjl(Ui)}{Xij2_mj2(Ui)}

=1

Ty, <u>us§§jj§ L ORY ()}, (A2)

where Op{ Ry, (u)} with an arbitrary random variable R,, is a random quantity sat-
isfying that sup,cq |Op{ Rn(u)}/Rp(u)| = Op(1). Similarly, o,{ R, (u)} stands for
a random quantity satisfying that sup,cq [0p{Rn(u)}/Rn(u)| = 0p(1). Finally,

we have
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Proof: Denote k;(u) = K{(U; — u)/h}, we have
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nh ; kilu) nh ; ( h ) f(w)
Then, by Li (2006, pp. 32), we know that | f(u)— f(u)| = Op{log(n)/?/(nh)'/>+

h?} under technical conditions (C1) and (C6). Then under condition (C1), we

have uniformly for u € G,
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Define for j =1, 2,

55(u) = nlhzn; (Uh_“)jK<Uh_“) (A.3)

Next, by the same argument as in Li (2006, pp. 35), we have
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Next, by Lemma 2 of Yao and Tong (1998) we know that:
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By Taylor’s expansion, we then have
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Then it follows by (A.4) and (A.5) that
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This proves (A.1). Furthermore, (A.2) follows by similar argument. This com-
pletes the proof.

Appendix B. Proof of theorem 1

Let ki(u) = K{(U;—u)/h} and {X;j, —m;, (

)}{Xijz _ij(U')} = UJIJQ(U)
€j1j- (%), where €5, ;,(7) satisfies with E(ej,;,(7)|U;) = 0 and var(ej, j, (i
wj, 4, (U;). By the Lemma in Appendix A, we have &, j,(u)
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It is easy to see that the theorem follows directly from the following statements
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Next, we will verify (A.6) to (A.9) in a one-by-one manner. Note that (A.6) and
(A.7) can be verified by standard Taylor expansion argument. By conditions (C2)
and (C6), one can check that {nhf(u)}~1k;(u)e;, j, (1) satisfies the requirement of
Liapunov’s Central Limit Theorem (Li, 2006). Furthermore, note that Els = 0

and by standard arguments, it follows that
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where vy = [ K2(v)dv. Thus, we have vnhly —4 N{0,vow;, j,(v)/f(u)}. This
proves the statement (A.8).
To prove I3 = o,(h?), we write X;; = m;(U;) + 0;(U;)e;(i) with oj(U;) =
oj;(U;) > 0, E{e;(9)|U;} = 0, and var{e;(7)|U;} = 1. We then have I3 =
I31 + I32 + I33 with
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Thus, the statement I3 = o,(h?) follows if we are able to show I3 =
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op(hZ) for j = 1,2,3. For such a purpose, we first consider I3; and its related

quantity E(El#] gofjm) = ZE((pE”Lpﬁ”). Note that if {i,j} # {k,[}, then

EgomQ goflm = 0. Thus, we only need to concern about the situation (k, 1) = (i, 5)

and (k,1) = (j,47). Without loss of generality, we will only consider the situation
(k,1) = (i,7). Note that if i # j, we have Ecpjl]2 EUEX|U<pJ”2 =0 and
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Since (A.11) is independent of i,j, we have maxi<;zj<y \E(gof]m) | < O(h?).

As a consequence, we have E(>_, <pfj”2) < O{n(n — 1)h?}. Then, for an

arbitrary € > 0 and some ¢y > 0, by Markov’s Inequality, we have
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Thus, we have I3y = op(n™"h 0T+ ") + Op,(n™"h™"). We know then I3; =
0p(h?) by choosing g9 < (14 8)~!. Similarly, we can also show that I32 = o,(h?),
I3 = op(h?), Iy = 0,(h?) and I5 = o0,(h?). This completes the proof.

Appendix C. Proof of theorem 2

We first prove (2.8). To save space, we denote X(u) , S(u) by ¥ and 3 for
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short, respectively. Next, we can rewrite the quadratic loss of the 3 as
Ay = Etr{(fl - 2)2*1(2 . 2)2*1}

= Etr{ } — 2Etr{i§]_1} +p
{e
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where czj is the jth largest eigenvalue of the matrix »-1/25%-1/2 Because & —p

3., we know that a?j —p 1. Furthermore, note that
A A p ~ A~
Ay(u) = E [tr{ZlZ} ~log ’212” —p=EY [di ~log(d
i=1

By Taylor’s expansion, we have log(d;) = log(1+d; —1) = d; —1—0.5(d; — 1)? +
o{(d; —1)?}. We can then write Aq(u) as

~

= (d; —1)? z
EZT{H% §EZ (dj — 1)2{1 + 0,(1)}. (A.14)
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Then, by (A.13)and (A.14), we know that the theorem statement is correct. This
completes the proof of (2.8).

We next prove (2.9). Let us introduce some notation. Define A(u) =
{aj,j,(u)} for an arbitrary varying matrix A(u) = {a; j,(v)}. By (A.1) and
(A.2) in Appendix B, we have
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where
Ry i(u) = nfl(u){ éK(Uzh— U) {XZ- — m(UZ)}‘} + o(h?)
Ry o(u) = nfl(u){ Zzn;K(Ui; u) |:{Xz - m(Ui)}{Xi - m(Uz‘)}T

~£(0) - (U - W)

} + o(h?).

Similar to the proof of Theorem 1, we write {X; — m(U;))H{X; — m(U;)} " =
Y(U;) 4+ E(i), where E(7) satisfies that E(5(1)|Ul> =0 and

2
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Similar to Theorem 1, we can write

S(u) —S(u) = Jy + Jo— Js — Jy+ Js

+%mﬂu+h—h—h+ﬂ} (A.17)
where
R o= ;K((T‘) [S(0) ~ B() — (U~ wS(w)}
h=:%+mmﬁgﬂw
Jr = nh}(u)zn:K(szL_lL)g(z)
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Js = nh}(u)§K<Uih_u){m(Ui)—m(Ui)}{m(Ui)—m(Ui)}T.

Similar to the proof of Theorem 1, we can also show that J; = 0.5h%us¥(u) +
op(h?). Ji = 0.5R2up{S(u) + 2f (u) fH(w)S(u)} + 0p(h?), J3 = 0p(h?), Jy =
op(h?), and also J5 = 0,(h?). Recalling the definition of the quadratic loss:

As(u) = Etr{ (i(u)zrl(u) ~ 1)2}

A

— trE (z(u) - z(u))z—l(u) (i(u) - E(u))E_l(u). (A.18)
From (A.17), we then have
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Because Jy, Js, Jy and Js are all of the O,(h?) order, (A.19) equals

h2 .. B flu) B _ B 2
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According to the point-wise results presented in Appendix C, we know that

Jo = Op((nh)_l/ 2). Consequently, the above quantity can be further written as

}LQ S ()5 M'u—lu “1(w) + o.(h2 n—1/22
[2u%z(n:<>+2ﬂwz<ﬁ:<>}+bz () + 0y(h? + (nh) 4.



Consequently, we have

Ao(u) = T(Mfcl(u) n trE{JQZ_l(u)JQE_l(u)} + o<h4 n (nh)_1> (A.20)

where C)(u) = tr{[%(u)2 7 (u) + 2f (u)/f(u)2(u) S~  (1)]?}. Next, note that
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It is easy to verify that whenever ¢ # j, we must have
EXU{K<U"h_“)K(“jh_“)s(i)z—l(u)g(j)z—l(u)} = 0. (A.22)

In addition to that, we also have
o Exp{ €0 WEDE W)}
_ trEXU{ {(X - m(UZ-)> (Xi - m(Ui))Tzfl(u) . E(Ui)Zl(u)} 2}
- trEXU{ (% = (o) (% - m(Ui))TE_l(u)
x (X = m(Uy) (X - m(Ui)>TZl(u)}
—tr{E(Ui)Z_l(u)E(Ui)E_l(u)} 2 ®(U;,u) — U(Uj, ), (A.23)

where

O(Uy, u) = EX|U{ KX - m(Ui))Txfl(u) (XZ- - m(Ui))} 2}
U(U;, u) = tr{E(Ui)E’l(u)E(Ui)Z’l(u)}.

In particular, we have ¥(u,u) = p. By (A.21)-(A.23) and conditions (C1), (C4)
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in Appendix A, we have
trE{J2z—1(u)J22—1(u)} (A.24)

- M{n /OO m(%) (U, u) - \I/(Ui,u)}f(Ui)dUZ}

—o0

= nh;(u) 2 [@(u,u) —p} + 0<(nh)_1>. (A.25)
Consequently, by (A.20)-(A.25), we have:
Ag(u) = T(/@)QC&(U) + nh}(u) 7 {CI)(u,u) - p} + o(h4 + (nh)_l).

This completes the proof of Theorem 2.
Appendix D. Simulation Studies

To corroborate our theoretical findings, two simulation examples are pre-
sented in this appendix. For these two examples, we consider the following 5-

dimensional nonparametric covariance model:

Case I: The regression function m(u) = (6u, 10 cos(u), 25 sin(2u), 20 exp(u), 30u—
10)" € R and X(u) = T(u)T " (u) with

2 cos(u) 0 0 0 0

3/2sin(u)  4cos(u) 0 0 0

T(u) = 2sin(u)  5/2sin(u) 6 cos(u) 0 0
5/2sin(u)  3sin(u)  7/2sin(u)  8cos(u) 0

3sin(u)  7/2sin(u) 4sin(u) 9/2sin(u) 10 cos(u)
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Case II: m(u) = (5u,4u + 1, 7u, 3u, 6exp(u)) " € R? and

exp(u) 0 0 0 0
—u  exp(—u) 0 0 0
T(u) = u 0 1/(1+u) 0 0
—u 2u—1 —1.5u  cos(2mu) + 1 0
u —2u 1.5u sin(u) log(u + 5)

In each simulation iteration, we firstly simulate U from a uniform distribution on
[0,1] and then simulate X € R5 from a 5-dimensional normal distribution with
mean m(u) and covariance (u). We then apply the CV method to determine
the optimal bandwidths needed for the estimation. With the estimated optimal
bandwidth, we then estimate the covariance matrix X(u) as (2.3). The estimation
error of such an estimate is then evaluated by both the Stein and quadratic losses.
Specifically, for each simulation data set, the estimate f)(u) is evaluated at u = Uj;

and calculate
median(A;) = median{A;(U;) : i =1,--- ,n}

for j =1 and 2. Here we summarize the simulation results using the sample me-
dian instead of the sample mean to minimize the impact of the boundary effect
of the kernel estimate on our summary. Figures 3.2 and 3.3 depict the boxplot
of 200 median(A;)’s over 200 simulations. It can be seen from Figures 3.2 and
3.3 that as sample size increases from n = 100 till n = 800, the estimation error
of our estimate steadily decreases, which numerically confirms the consistency of

our estimate (2.3).
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Figure 3.2: Box-plot of Estimation Errors for Case I
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Figure 3.3: Box-plot of Estimation Errors for Case II.




