
Statistica Sinica 20 (2010), 469-479

NONPARAMETRIC COVARIANCE MODEL

Jianxin Yin1, Zhi Geng1, Runze Li2 and Hansheng Wang1

1Peking University and 2Pennsylvania State University

Abstract: There has been considerable attention paid to estimation of conditional

variance functions in the literature. We propose a nonparametric model for the

conditional covariance matrix. A kernel estimator is developed, its asymptotic

bias and variance are derived, and its asymptotic normality is established. A data

example is used to illustrate the proposed procedure.
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1. Introduction

In addition to estimation of means, estimation of variance functions or co-
variance matrices is a common statistical problem that has application in many
different fields. They include, but are not limited to, graphical modeling (Ed-
wards (2000), and Drton and Perlman (2004)), longitudinal data analysis (Diggle
and Verbyla (1998), and Smith and Kohn (2002)), risk management (Ledoit and
Wolf (2004)), and machine learning (Bilmes (2000)). Covariance matrix estima-
tion has received a lot of attention in the recent literature (Pourahmadi (1999,
2000), Huang, Liu, Pourahmadi and Liu (2006), Meinshausen and Buhlmann
(2006), Bickel and Levina (2008), Levina, Rothman and Zhu (2007), and Lam
and Fan (2007)). Estimation of covariance functions, correlation functions, and
multivariate spectra is also an active research area. Nonparametric and semipara-
metric estimation of covariance and correlation functions for longitudinal data
have been carefully studied (Wu and Pourahmadi (2003), Yao, Müller and Wang
(2005a,b), and Fan, Huang and Li (2007)). Dai and Guo (2004) and Rosen and
Stoffer (2007) advocated the use of Cholesky decomposition for spectral analysis
of multivariate time series. Recently, Li, Wang, Hong, Turner, Lupton and Car-
roll (2007) proposed a nonparametric kernel estimator for the correlation function
of a random field.

Nonparametric regression models have been used in various areas. A num-
ber of estimation procedures for nonparametric mean regression have been exten-
sively studied. To our best knowledge, however, there are few references available
for nonparametric models for a conditional covariance matrix, although there are
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some references on nonparametric conditional variance functions; see Ruppert,
Wand, Holst and Hossjer (1997), Fan and Yao (1998) and references therein.
This paper intends to fill this gap by developing a nonparametric model for a
conditional covariance matrix. The proposed model can be regarded as a natural
extension of existing nonparametric models for conditional variance. Specifically,
for two random vectors X and U , we model the conditional covariance of X given
U as Cov (X|U) = Σ(U), whose every component is assumed to be an unknown
but smooth function of U . We propose a kernel estimator for Σ(U) estimation.
The sampling properties of the proposed estimator are systematically studied:
we derive the asymptotic bias and variance of the kernel estimator, and establish
its asymptotic normality. Our findings indicate that, without knowing the true
regression function, we may estimate the conditional covariance matrix asymp-
totically as well as if we knew the true regression function in advance. We further
investigate its asymptotic behavior under Stein loss and quadratic loss (Muirhead
(1982)). For a practical implementation, a local likelihood-based cross validation
method is developed for an automatic selection of the bandwidth.

The rest of the article is organized as follows. Section 2 introduces the
model, notation, and the estimator. The asymptotic properties of the estimator
are studied in this section. Numerical studies based on the Boston Housing data
set are presented in Section 3. The article concludes with a short discussion in
Section 4. All technical details, and a simulation study, are left to a separate
Technical Appendix that can be found at http://www.stat.sinica.edu.tw/

statistica.

2. Nonparametric Covariance Model

2.1. The model and estimator

Let X = (X1, . . . , Xp)> ∈ Rp be a p-dimensional random vector and U =
(U1, . . . , Uq)> ∈ Rq be the associated index random vector. A nonparametric co-
variance model assumes that, conditional on U = u, X follows a distribution with
mean m(u) = {m1(u), . . . ,mp(u)}> and covariance Σ(u) = {σj1j2(u)}. Further-
more, we assume that both m(u) and Σ(u) are unknown but smooth functions
of u. In this paper, we consider q = 1 only. Extension to multivariate U is
straightforward in theory, but it is less useful in practice due to the curse of
dimensionality.

To estimate Σ(u) consistently, we develop a Nadaraya-Watson (NW) kernel
estimator for both m(·) and Σ(·). Let K(u) be a symmetric kernel density func-
tion and Kh(u) = h−1K(u/h) be the scaled kernel function with a bandwidth
h > 0. To motivate our estimate, we temporarily assume that given U , X follows

http://www.stat.sinica.edu.tw/statistica
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a normal distribution, although the conditional normality assumption is unnec-
essary. Suppose (Xi, Ui) with Xi = (Xi1, . . . , Xip)>, i = 1, . . . , n, is a random
sample from the population (X,U). The kernel method is to minimize

1
n

n∑
i=1

[{
Xi −m(u)

}>
Σ−1(u)

{
Xi −m(u)

}
− log

(
|Σ−1(u)|

)]
Kh(Ui −u), (2.1)

where u is an arbitrary point in the support of U .
By minimizing the objective function (2.1), the resulting NW kernel estima-

tors are:

m̂(u) =
{ n∑

i=1

Kh(Ui − u)Xi

}{ n∑
i=1

Kh(Ui − u)
}−1

, (2.2)

Σ̂(u) =
[ n∑

i=1

Kh(Ui − u)
{

Xi − m̂(Ui)
}{

Xi − m̂(Ui)
}>

]{ n∑
i=1

Kh(Ui − u)
}−1

.

(2.3)

Since the kernel estimate for the regression function has been well studied, we
study only the asymptotic properties of the proposed conditional covariance es-
timator in the next section. In (2.2) and (2.3) the same bandwidth h is used.
This is unnecessary. Note that one may calculate the estimator m̂(·) and Σ̂(·)
separately. This allows us to easily use different bandwidths for different com-
ponents of the conditional mean and also the conditional covariance, in order to
be adaptive to different smoothnesses. For example, we may use different band-
widths h1j for estimation of the j-th component of the regression function, i.e.,

m̂j(u) =
{ n∑

i=1

Kh1j
(Ui − u)Xij

}{ n∑
i=1

Kh1j
(Ui − u)

}−1

, (2.4)

for j = 1, . . . , p. One may further employ the local linear regression to estimate
the mean function. Local linear estimators have several nice properties, such
as high statistical efficiency in an asymptotic minimax sense, design adaptivity,
and automatic correction of boundary effects (Fan (1993), and Cheng, Fan and
Marron (1997)). Since the main goal of this paper is to estimate the conditional
covariance matrix, our attention will focus on the NW kernel estimate. The
results in the next section are still valid for local linear regression under certain
conditions.

Remark 1. As to the estimation of the conditional covariance matrix, one may
use different bandwidths for different elements of Σ(u). However, the resulting
estimate with different bandwidths cannot be guaranteed to be positive definite
(Li et al. (2007)). In practice, positive definiteness is a desirable property and
we suggest using the same bandwidth for all elements.
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Remark 2. As an alternative, one may extend the local linear regression to esti-
mate the conditional covariance matrix. To develop a sensible local linear estima-
tor for the conditional covariance matrix without destroying positive-definiteness
seems not to be very straightforward. For this reason, we advocate the use of
the kernel estimate in (2.3).

2.2. Theoretical properties

Since the kernel regression m̂j(·) has been extensively studied, we study
only the asymptotic properties of the conditional covariance estimator in (2.3).
Without loss of generality, it is assumed that the bandwidth h1j ’s in (2.4) are
the same and equal the bandwidth h for Σ̂(u) in our theoretic development. The
following regularity conditions are imposed, they are not the weakest possible
but they facilitate the proofs.

Regularity conditions

(C1) (The density of the index variable) U has a compact support and a probabil-
ity density f(U), bounded away from 0 and with two continuous derivatives.

(C2) (The moment requirement) For any 1 ≤ j1, j2 ≤ p, there exists a constant
δ ∈ [0, 1) such that supu E{|Xj1(u)Xj2(u)|}2+δ < ∞.

(C3) (Smoothness of the conditional mean) The conditional mean mj(·) has two
continuous derivatives.

(C4) (Smoothness of the conditional variance) E{Xk1
j1

Xk2
j2

Xk3
j3

Xk4
j4
|U = u} has

two continuous derivatives in u for k1, k2, k3, k4 ∈ {0, 1}, where j1, j2, j3,
and j4 are not necessarily different.

(C5) (The bandwidth) h → 0 and nh5 → c > 0 for some c > 0.
(C6) (The kernel function) K(u) is a bounded probability density function sym-

metric about 0. For the δ in (C2),
∫

K2+δ(v)vjdv < ∞ for j = 0, 1, 2. For
two arbitrary indices u1 and u2, |K(u1) − K(u2)| ≤ Kc|u1 − u2| for some
Kc > 0.

Conditions (C1) and (C2) are rather standard technical assumptions (Li (2006)).
Conditions (C3) and (C4) are necessary smoothness constraints (Fan (1993), and
Yao and Tong (1998)). By (C5) we know that the optimal convergence rate is
n−1/5. Condition (C6) is a standard requirement for the kernel function (Yao
and Tong (1996)), which is trivially satisfied by the Gaussian and Epanechnikov
kernels.

Let Σ̂(u) = {σ̂j1j2(u)} with 1 ≤ j1, j2 ≤ p. For an arbitrary function g(u),
ġ(u) and g̈(u) denote its first and second order derivatives, respectively. Let
ν0 =

∫ ∞
−∞ K2(u)du and µ2 =

∫ ∞
−∞ u2K(u)du. Then the asymptotic behavior of

σ̂j1j2(u) is characterized by the following theorem.
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Theorem 1. Under (C1)−(C6),

√
nh

{
σ̂j1j2(u) − σj1j2(u) − θn

}
→ N

(
0, f−1(u)ν0ωj1j2(u)

)
in distribution, where

θn =
h2µ2

2

{
σ̈j1j2(u) + 2σ̇j1j2(u)

ḟ(u)
f(u)

}
, (2.5)

f(u) is the probability density function of U evaluated at U = u, εj1j2(i) =
{Xij1 − mj1(Ui)}{Xij2 − mj2(Ui)} − σj1j2(Ui), and ωj1j2(Ui) , Var (εj1j2(i)

∣∣Ui).

The proof can be found in Appendix B of the separate Technical Appendix.
By Theorem 1, we know that the variance of σ̂j1j2(u) is of the order (nh)−1 and
its bias is of the order h2. Thus, the optimal nonparametric convergence rate of
n−2/5 can be achieved by setting h ∝ n−1/5. The asymptotic bias and variance
in Theorem 1 are the same as those for the one replacing m̂(·) with the true
regression function m(·) in Σ̂(u). In other words, Theorem 1 demonstrates that
without knowing the regression function, we may estimate the conditional co-
variance matrix asymptotically as well as if we knew the true regression function
in advance. From our theoretic derivation, if all bandwidths h1j = O(n−1/5) are
used, the results in Theorem 1 are still valid. This implies that no undersmooth
of m̂ is required in the estimation of the conditional covariance matrix.

It is certainly of interest to evaluate the global convergence of Σ̂(u). Here
we consider two widely used loss function

∆1(u) = E{tr{Σ−1(u)Σ̂(u)} − log |Σ−1(u)Σ̂(u)|} − p, (2.6)

∆2(u) = E
[
tr{(Σ̂(u)Σ−1(u) − I)2}

]
, (2.7)

where tr(A) denotes the trace of an arbitrary matrix A. The losses ∆1 and ∆2

are known as the Stein loss and the quadratic loss, respectively. See, for example,
Muirhead (1982).

Theorem 2. Under (C1)−(C6),

∆1(u) = 0.5∆2(u){1 + o(1)}, (2.8)

∆2(u) =
h4

4
{µ2}2C1(u) +

1
nhf(u)

ν0

[
Φ(u, u) − p

]
+ o

(
h4 + (nh)−1

)
, (2.9)

where C1(u) = tr{[Σ̈(u)Σ−1(u)+2ḟ(u)/f(u)Σ̇(u)Σ−1(u)]2} and Φ(Ui, u) = EX|U
{[(Xi − m(Ui))>Σ−1(u)(Xi − m(Ui))]2}.



474 JIANXIN YIN, ZHI GENG, RUNZE LI AND HANSHENG WANG

The proof of Theorem 2 is given in Appendix C of the Technical Appendix.
By (2.8), we know that using the Stein loss or the quadratic loss is not crucial
because they are asymptotically equivalent to each other by just a constant and
some negligible term. By (2.9), we know that the quadratic loss defined above
has two different components. One is due to the variance having the order of
(nh)−1 and the other one is due to the bias having the order of h4. Once again
the optimal nonparametric convergence rate of n−2/5 can be achieved by setting
h ∝ n−1/5.

2.3. The bandwidths selection

Bandwidth selection for the kernel regression estimator and the local linear
estimator have been well studied. One may directly use the existing results to
select a bandwidth h1j for m̂j(·) in (2.4). As to selection of bandwidth for Σ̂(u),
one may develop a plug-in bandwidth based on the quadratic loss or the Stein
loss as the plug-in bandwidth was for the kernel estimator regression function;
see Chapter 4 of Fan and Gijbels (1996). For simplicity, we consider the log
likelihood type leave-out-one criterion

CVΣ(h) =
1
n

n∑
i=1

[{
Xi − m̂(Ui)

}>
Σ̂−1

(−i)(Ui)
{

Xi − m̂(Ui)
}

+ log
(
|Σ̂(−i)(Ui)|

)]
,

where Σ̂(−i) is the estimate computed according to (2.3) but without the ith
observation. Hereafter, the optimal bandwidth for the conditional covariance
estimation can be determined by minimizing CVΣ(h).

3. Numerical Example

Monte Carlo simulation was conducted to assess the finite sample perfor-
mance of the proposed estimate. Our simulation results are summarized in Ap-
pendix D of the Technical Appendix and are consistent with the theoretical re-
sults of last section. In this section, we focus on the Boston Housing dataset that
contains a total of 506 observations. The Gaussian kernel function is used for
both our Monte Carlo simulation study and the Boston Housing data analysis.

For illustration purposes, we consider four social economics variables: CRIM
(crime rate by town), TAX (full-value property-tax rate), PTRATIO (pupil-
teacher ratio by town), and MEDV (median value of owner-occupied homes). Fan
and Huang (2005) used

√
LSTAT as the index variable U , where LSTAT denotes

the percentage of lower status of the population. Thus, we are able to study how
the correlation structure of those X-variables changes as the percentage of lower
status varies. Nevertheless, if we use the same U -variable, the second term of
(2.5) suggests added bias in the local estimation. To reduce possible bias, we
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Table 3.1. Sample Correlation Coefficients.

CRIM TAX PTRATIO MEDV

CRIM 1 0.5828 0.2899 -0.3883

TAX 1 0.4609 -0.4685

PTRATIO 1 -0.5078

MEDV 1

transform U so that it follows a uniform distribution over [0,1]. To this end, let
U be the rank of LSTAT divided by the total sample size. Then U is uniformly
distributed over [0,1]. Thus, the second term in (2.5), 2σ̇j1j2(u)ḟ(u)/f(u), is 0.
Lastly, all X-variables are standardized to have zero mean and unit variance.

To confirm that the covariance matrix Σ(u) is indeed varying according to
u, we randomly split the dataset into two parts with equal sample sizes. Those
two subsamples serve, respectively, as the training data and the testing data.
Based on the training data, both m(u) and Σ(u) can be estimated. Denote these
estimates by m̂(u) and Σ̂(u). We evaluate forecasting error by the out-of-sample
loss measure

∆out =
1
n∗

n∗∑
i=1

[{
X∗

i − m̂(U∗
i )

}>
Σ̂−1(U∗

i )
{

X∗
i − m̂(U∗

i )
}

+ log
(
|Σ̂(U∗

i )|
)]

,

where (X∗
i , U∗

i ), 1 ≤ i ≤ n∗, stands for the testing data. Intuitively, if both m(u)
and Σ(u) are estimated accurately, we then should expect a reasonably good out-
of-sample fit by treating those estimates as if they were the parameters, which
in turn should produce reasonably small values for the negative log-likelihood
loss. For a reliable evaluation, we replicated such an experiment a total of 200
times, which gave a median ∆out = 0.5557. To examine whether the conditional
covariance Σ(u) truly varies according to u, we replicated the same experiment
but with Σ̂(U) in (2.3) replaced by Σ̃ = n−1

∑n
i=1{Xi − m̂(Ui)}{Xi − m̂(Ui)}>

(i.e., a non-varying constant covariance). Then the resulting median ∆out was
0.8575, much greater than 0.5557 of the nonparametric covariance model. We
conclude that the covariance structure of those four social economics variables
varies as the proportion of the lower status population (i.e., U) changes.

Next, we obtain the covariance matrix Σ̂(u) based on the whole dataset from
which the pairwise nonparametric correlation coefficients, denoted by ρ̂j1j2(u),
were computed. They are reported in Figure 3.1. Figure 3.1 also gives the point-
wise 90% confident intervals ρ̂j1j2(u) ± 1.64ŜE{ρ̂j1j2(u)}, where the standard
error estimate ŜE{ρ̂j1j2(u)} was obtained based on 200 bootstrap experiments.
For comparison purposes, the sample correlation coefficients are also presented in
Table 1. Comparing the results in Figure 3.1 and Table 3.1, a number of findings
can be obtained. For example, from Table 3.1, we have that sample correlation
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Figure 3.1. The Estimated Correlation Coefficients for the Boston Housing Data.

coefficient between the crime rate (CRIM) and the housing value (MEDV) is
negative. On the other hand, by Figure 3.1, we further see the correlation coeffi-
cient has a decreasing trend as lower status increases, see the middle left panel.
Furthermore, from the bottom-left panel, we find that the correlation between
tax rate (TAX) and housing value (MEDV) has a decreasing trend as the lower
status increases. We remark that these findings are not available from the simple
sample correlation coefficient matrix as presented in Table 3.1.

Remark 3. One referee questions how the estimation bias might affect our
conclusions. First, by Theorems 1 and 2, we know that as long as the bandwidth
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is selected appropriately, the magnitude of bias should be comparable to that of
the standard error ŜE{ρ̂24(u)}, whose average is about 0.0707. Thus, we expect
that an overall decreasing trend, as exhibited by ρ̂24(0) − ρ̂24(1) = 0.6111 for
example, should dominate potential estimation bias. Thus, we are reasonably
confident that an overall decreasing trend holds for ρ̂24(u), even after eliminating
the potential estimation bias. Similar comments apply to ρ̂14, the estimated
correlation coefficient between CRIM and MEDV.

4. Concluding Remarks

It is of interest to estimate covariance and correlation functions for functional
data and time series, see Yao, Müller and Wang (2005a,b), Fan, Huang and Li
(2007), and Li et al. (2007). Estimating nonparametric covariance and correlation
functions for functional data, longitudinal data, and multivariate time series is
an interesting topic for future research.

Cholesky decomposition has been used in estimation of covariance matrices
and covariance functions (Dai and Guo (2004), Huang et al. (2006), and Rosen
and Stoffer (2007)). Estimation procedures based on Cholesky decomposition are
particularly useful when there is a natural order among the variables of interest.
It would be interesting to extend Cholesky decomposition techniques to estima-
tion of the nonparamatric conditional covariance matrix. It is worth pointing out
that different X-variable order might lead to a different Cholesky decomposition
based estimate with a finite sample size. Thus, it is important to resolve issues
related to bandwidth flexibility, positive definiteness, and permutation invariance
(Rothman, Bickel, Levina and Zhu (2007)) under a unified framework. Further
studies along this line are needed.

Appendix

The technical proofs of Theorems 1, 2, and a detailed simulation study are
given in the on-line supplement material (i.e., the Technical Appendix) avail-
able at http://www.stat.sinica.edu/statistica. Also see Yin, Geng, Li and
Wang (2008).
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Meinshausen, N. and Bühlmann, P. (2006). High dimensional graphs and variable selection with

the Lasso. Ann. Statist. 34, 1436-1462.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theorey. Wiley, New York.

Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data:

unconstrained parameterization. Biometrika 86, 677-690.

Pourahmadi, M. (2000). Maximum likelihood estimation of generalized linear models for multi-

variate normal covariance matrix. Biometrika 87, 425-435.



NONPARAMETRIC COVARIANCE MODEL 479

Rosen, O. and Stoffer, D. S. (2007). Automatic estimation of multivariate spectra via smoothing

splines. Biometrika 94, 335-345.

Rothman, A., Bickel, P., Levina, L. and Zhu, J. (2007). Sparse permutation invariant covariance

estimation. Manuscript, Department of Statistics, University of Michigan.
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