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In this note, we will prove Theorem 3, Corollaries 1 and 2, Theorems 4 and 5.

Proof of Theorem 3(1): we need to determine the form of

H1(u, v) = Pr(U ≤ u, V ≤ v|T1 > c1, T2 > c2) = Pr(U ≤ u, V ≤ v, T1 > c1, T2 > c2)/S(c1, c2)

for 0 ≤ v ≤ S(c1, c2) and 0 ≤ u ≤ 1. From this we know that we only need to work on the probability:

Pr(U ≤ u, V ≤ v, T1 > c1, T2 > c2).

Assuming that the marginal distributions are continuous, using the monotonicity properties of the survivor

function and the function q, we can see the probability equals to

Pr(U ≤ u, V ≤ v, q{S1(T1)} > q{S1(c1)}, q{S2(T2)} > q{S2(c2)}).

From the definition of U and V , we know that q{S1(T1)} = q(V )U and q{S2(T2)} = q(V )(1−U). Hence

the probability can be simplified as:

Pr(U ≤ u, V ≤ v, q(V )U > q{S1(c1)}, q(V )(1 − U) > q{S2(c2)})



= Pr

(

V ≤ v,
q{S1(c1)}

q(V )
≤ U ≤ min{u, 1 −

q{S2(c2)}

q(V )
}

)

It turns out that there are five situations we need to consider to derive this probability:

1. when u < 1 − q{S2(c2)}/q(v), u < q{S1(c1)}/q{S(c1, c2)} and uq(v) < q{S1(c1)} (actually, because

uq(v) < q{S1(c1)} implies u < q{S1(c1)}/q{S(c1, c2)}, only the condition uq(v) < q{S1(c1)} is

needed here, we include both conditions here for clarity) : in this situation, we have

q{S1(c1)}

q(V )
≤ U ≤ u ≤ 1 −

q{S2(c2)}

q(V )

and

0 ≤ V < p[q{S1(c1)/u}] < min{v, p[q{S2(c2)/(1 − u)}]}.

Therefore the probability

H1(u, v) = Pr

(

0 ≤ V ≤ p[q{S1(c1)/u}],
q{S1(c1)}

q(V )
≤ U ≤ u

)

=
∫ p[q{S1(c1)/u}]

0

∫ u

q{S1(c1)}
q(V )

k(v)dudv

=
∫ p[q{S1(c1)/u}]

0

∫ u

q{S1(c1)}

q(V )

q′′(v)q(v)

q′(v)2
dudv = up[

q{S1(c1)}

u
]

when uq(v) < q{S1(c1)} for 0 ≤ v ≤ S(c1, c2).

2. when u < 1 − q{S2(c2)}/q(v), u < q{S1(c1)}/q{S(c1, c2)} but uq(v) > q{S1(c1)}: in this situation,

we have

0 ≤ V ≤ v < p[q{S1(c1)/u}] < p[q{S2(c2)/(1 − u)}],

and

q{S1(c1)}/q(V ) ≤ U ≤ u.

Hence

H1(u, v) = Pr

(

0 ≤ V ≤ v,
q{S1(c1)}

q(V )
≤ U ≤ u

)

=
∫ v

0

∫ u

q{S1(c1)}
q(V )

k(v)dudv



= uv +
q{S1(c1)} − uq(v)

q′(v)

for q{S1(c1)}/q(v) < u < q{S1(c1)}/q{S(c1, c2)} and 0 ≤ v ≤ S(c1, c2).

3. when q{S1(c1)}/q{S(c1, c2)} < u < 1−q{S2(c2)}/q(v) but q{S2(c2)} < (1−u)q(v): in this situation,

we have

0 ≤ V ≤ v < p[q{S2(c2)/(1 − u)}] < p[q{S1(c1)/u}],

and

q{S1(c1)}/q(V ) ≤ U ≤ u.

Hence

H1(u, v) = Pr

(

0 ≤ V ≤ v,
q{S1(c1)}

q(V )
≤ U ≤ u

)

=
∫ v

0

∫ u

q{S1(c1)}
q(V )

k(v)dudv

= uv +
q{S1(c1)} − uq(v)

q′(v)

for q{S1(c1)}/q{S(c1, c2)} < u < 1 − q{S2(c2)}/q{S(v)} and 0 ≤ v ≤ S(c1, c2).

4. when q{S1(c1)}/q{S(c1, c2)} < u < 1−q{S2(c2)}/q(v) but q{S2(c2)} > (1−u)q(v): in this situation,

we have

0 ≤ V ≤ p[q{S2(c2)/(1 − u)}] < v,

and

q{S1(c1)}/q(V ) ≤ U ≤ u.

Hence

H1(u, v) = Pr

(

0 ≤ V ≤ p[q{S2(c2)/(1 − u)}],
q{S1(c1)}

q(V )
≤ U ≤ u

)

=
∫ p[q{S2(c2)/(1−u)}]

0

∫ u

q{S1(c1)}
q(V )

k(v)dudv



= up[q{S2(c2)/(1 − u)}] − uq{S2(c2)}/(1 − u)/q′[p{q[S2(c2)/(1 − u)]}]

+q{S1(c1)}/q
′[p{q[S2(c2)/(1 − u)]}]

for 1 − q{S2(c2)}/q{S(v)} < u and 0 ≤ v ≤ S(c1, c2).

5. when u > 1 − q{S2(c2)}/q(v): in this situation, we have

p[
q{S2(c2)}

(1 − u)
] ≤ V ≤ v

and

q{S1(c1)}/q(V ) ≤ U ≤ 1 − q{S2(c2)}/q(V ).

Hence

H1(u, v) = Pr

(

p[
q{S2(c2)}

(1 − u)
] ≤ V ≤ v, q{S1(c1)}/q(V ) ≤ U ≤ 1 − q{S2(c2)}/q(V )

)

=
∫ v

p[
q{S2(c2)}

(1−u)
]

∫ 1−q{S2(c2)}/q(v)

q{S1(c1)}/q(v)
k(v)dudv

= v − q(v)/q′(v) − p[
q{S2(c2)}

(1 − u)
] + q(p[

q{S2(c2)}

(1 − u)
])/q′(p[

q{S2(c2)}

(1 − u)
])

+q{S(c1, c2)}

[

1/q′(v) − 1/q′(p[
q{S2(c2)}

(1 − u)
])

]

for 1 − q{S2(c2)}/q{S(v)} < u and 0 ≤ v ≤ S(c1, c2). Combining all five results and after some

simple algebra, we can reach the conclusion for the joint distribution of (U, V ) given T1 > c1, T2 > c2.

Proof of Theorem 3(2): we need to determine the form of

H2(u, v) = Pr(U ≤ u, V ≤ v|T1 = t1, T2 > c2) = Pr(U ≤ u, V ≤ v, T1 = t1, T2 > c2)/Pr(T1 = t1, T2 > c2)

for 0 ≤ v ≤ S(t1, c2) and 0 ≤ u ≤ 1. It is easily seen that because S(t1, t2) = p[q{S1(t1)}+ q{S2(t2)}], we

have

Pr(T1 = t1, T2 > c2) = −p′[q{S1(t1)} + q{S2(c2)}]q
′{S1(t1)}S

′
1(t1) = −p′[q{S(t1, c2)}]q

′{S1(t1)}S
′
1(t1).



Therefore, we only need to work on

Pr(U ≤ u, V ≤ v, T1 = t1, T2 > c2).

Using the same technique as presented in the proof of previous Theorem, we can express the above

probability as

Pr(q(v) ≤ q(V ),
q{S1(T1)}

u
≤ q(V ), T1 = t1, T2 > c2).

Based on the fact that q(V ) = q{S(T1, T2)} = q{S1(T1)} + q{S2(T2)} and T1 = t1, the above probability

can be further simplified as:

Pr
(

q{S2(T2)} ≥ min
[

q(v) − q{S1(t1)}, q{S1(t1)}(
1

u
− 1)

]

, T1 = t1, T2 > c2

)

.

Again, we need to consider several situations:

1. q(v) − q{S1(t1)} > q{S1(t1)}(1/u − 1), i.e. u > q{S1(t1)}/q(v). In this case, after some simple

algebra, we can show that the above probability equals to −p′{q(v)}q′{S1(t1)}S
′
1(t1).

2. q(v) − q{S1(t1)} ≤ q{S1(t1)}(1/u − 1), i.e. u ≤ q{S1(t1)}/q(v). In this case, after some simple

algebra, we can show that the above probability equals to −p′[q{S1(t1)}/u]q′{S1(t1)}S
′
1(t1).

Combining these two results and after some algebra, we can reach the conclusion for the joint distribution

of (U, V ) given T1 = t1, T2 > c2.

Proof of Theorem 3(3): As in the proof of Theorem 3(2), we need to determine the form of

H3(u, v) = Pr(U ≤ u, V ≤ v|T1 > c1, T2 = t2) = Pr(U ≤ u, V ≤ v, T1 > c1, T2 = t2)/Pr(T1 > c1, T2 = t2)

for 1 − q{S2(t2)}/q(v) ≤ u ≤ 1 and 0 ≤ v ≤ S(c1, t2). It is easily seen as before that

Pr(T1 > c1, T2 = t2) = −p′[q{S1(c1)} + q{S2(t2)}]q
′{S2(t2)}S

′
2(t2) = −p′[q{S(c1, t2)}]q

′{S2(t2)}S
′
2(t2).



Therefore, we only need to work on

Pr(U ≤ u, V ≤ v, T1 > c1, T2 = t2).

Using the same technique as presented in the proof of previous result, we can express the above probability

as

Pr (q{S2(t2)}/(1/u − 1) ≥ q{S1(T1)} ≥ q(v) − q{S2(t2)}, T2 = t2) .

= p′{q(v)} − p′[q{S2(t2)}/(1 − u)]q′{S2(t2)}S
′
2(t2) = −p′[q{S(c1, t2)}]q

′{S2(t2)}S
′
2(t2).

for 1−q{S2(t2)}/q(v) ≤ u ≤ 1. After some algebra, we can reach the conclusion for the joint distribution

of (U, V ) given T1 > c1, T2 = t2.

Proof of Corollary 1 and 2: Let v = S(c1, c2), v = S(t1, c2) and v = S(c1, t2) in H1, H2 and H3 respectively,

we can prove Corollary 1. The same idea applies in the proof of Corollary 2. After plugging u = 1 into

the expression of H1, H2 and H3, we can reach the desired conclusions.

Proof of Theorem 4: From Corollary 1(a), we know the density function of (V |T1 > c1, T2 > c2) is

f(v|T1 > c1, T2 > c2) = q′′(v)[q(v) − q{S(c1, c2)}]/{q
′(v)2S(c1, c2)}. Hence we only need to determine

Pr(U ≤ u, V = v, T1 > c1, T2 > c2)

= Pr(U ≤ u, V = v, q(V )U > q{S1(c1)}, q(V )(1 − U) > q{S2(c2)})

= Pr

(

q{S1(c1)}

q(v)
≤ U ≤ min

{

u, 1 −
q{S2(c2)}

q(v)

}

, V = v

)

Because T2 > c2, we have q{S2(T2)} ≥ q{S2(c2)}. Therefore

U = q{S2(T2)}/q(v) = [q(v) − q{S2(T2)}]/q(v) ≤ 1 − q{S2(c2)}/q(v).

On the other hand, T1 > c1, we have U = q{S1(T1)}/q(v) ≥ q{S1(c1)}/q(v). Hence

Pr(U ≤ u, V = v, T1 > c1, T2 > c2) = Pr

(

q{S1(c1)}

q(v)
≤ U ≤ u, V = v

)



= k(v)(u −
q{S1(c1)}

q(v)
) =

q′′(v)

q′(v)2
(uq(v) − q{S1(c1)}).

Hence the conditional distribution of (U |V = v, T1 > c1, T2 > c2) is [uq(v)−q{S1(c1)}]/[q(v)−q{S(c1, c2)}]

for q{S1(c1)}/q(v) ≤ u ≤ 1 − q{S2(c2)}/q(v). The conclusion follows.

Proof of Theorem 5: we only need to show that the covariance matrix

cov{(Ûi, V̂i)
T , (Ûj , V̂j)

T} = E{(Ûi − E(Ûi), V̂i − E(V̂i))
T (Ûj − E(Ûj), V̂j − E(V̂j))}} → 02×2

for i 6= j when n → ∞, where 02×2 represents a 2 × 2 zero matrix. Therefore, we need to prove this

conclusion is correct for each entry of the matrix. There are several cases we need to consider:

1. when (X1i, X2i) = (T1i, T2i) and (X1j, X2j) = (T1j , T2j) i.e., both components of (T1i, T2i) and

(T1j , T2j) are uncensored. Starting with the last entry, we must show that E(V̂i − E(V̂i))(V̂j −

E(V̂j)) → 0 when n → ∞. In this situation, V̂i and V̂j are both Dabrowska’s estimates of survivor

functions at (X1i, X2i) and (X1j , X2j) respectively. By the almost sure consistency of Dabrowska’s

estimator (Dabrowska 1988), we can conclude that V̂i = Vi +(V̂i−Vi) = Vi +Zi and V̂j = Vj +(V̂j −

Vj) = Vj+Zj, where Zi and Zj converge to zero a.s. on [0, τ1]×[0, τ2] where Pr(X1 > τ1, X2 > τ2) > 0.

Notice the fact that |cov(Zi, Vj)| ≤ var(Zi)var(Vj) ≤ E(Z2
i )E(V 2

j ) ≤ E(Z2
i ) → 0 when n → ∞ by

the bounded convergence Theorem because Z2
i converges almost surely to 0 and Z2

i ≤ 4. Similarly,

one can show cov(Vi, Zj) and cov(Zi, Zj) converge to zero when n → ∞ as well. Therefore, we can

conclude that cov(V̂i, V̂j) → 0 because

cov(V̂i, V̂j) = cov(Vi + Zi, Vj + Zj) = cov(Vi, Vj) + cov(Zi, Vj) + cov(Vi, Zj) + cov(Zi, Zj).

= cov(Zi, Vj) + cov(Vi, Zj) + cov(Zi, Zj).



Now we need to show cov(Ûi, Ûj) → 0 when n → ∞, where

Ûi =
qθ̂(Ŝ1(t1i))

qθ̂{Ŝ(t1i, t2i)}
= f{θ̂, Ŝ1(t1i), Ŝ(t1i, t2i)},

where f = f(θ, w1, w2) = qθ(w1)/qθ{w2}. Using the Taylor expansion, we have

Ûi = Ui + fθ{θ, S1(t1i), S(t1i, t2i)}(θ̂ − θ)

+f1{θ, S1(t1i), S(t1i, t2i)}(Ŝ1(t1i) − S1(t1i)) + f2{θ, S1(t1i), S(t1i, t2i)}(Ŝ(t1i, t2i) − S(t1i, t2i)),

where fθ, f1 and f2 denotes the derivatives of function f with respective to θ, w1 and w2 respectively.

Under appropriate regularity conditions on f such as the boundedness of the second derivatives of

f , considering the fact that θ̂, Ŝ1 and Ŝ are consistent estimators of θ, S1 and S respectively, one

can conclude that Ûi = Ui + op(1) and Ûj = Uj + op(1). Following the similar arguments as before,

we have cov(Ûi, Ûj) → 0 when n → ∞ because Ui and Uj are independent. Exactly the same

arguments can be applied to show that cov(Ûi, V̂j) → 0 and cov(V̂i, Ûj) → 0. We have therefore

proved the conclusion of Theorem 5 when both components of (T1i, T2i) are uncensored.

2. When both components of (T1i, T2i) and (T1j , T2j) are censored, i.e., (X1i, X2i) = (C1i, C2i) and also

(X1j , X2j) = (C1j, C2j). In this situation, from the MI step we have described,

V̂i = F−1
1 (Q1i, θ̂, Ŝ(C1i, C2i)), V̂j = F−1

1 (Q1j , θ̂, Ŝ(C1j , C2j)),

Ûi = Q2i{1 − q(Ŝ(C1i, C2i))/q(V̂i)} + q(Ŝ1(C1i))/q(V̂i) and

Ûj = Q2j{1 − q(Ŝ(C1j , C2j))/q(V̂j)} + q(Ŝ1(C1j))/q(V̂j),

where Q1i, Q1j , Q2i and Q2j are independently uniformly distributed random variables on [0, 1].

Applying the Taylor expansion again, one can show that V̂i = F−1
1 (Q1i, θ, S(C1i, C2i)) + op(1),



V̂j = F−1
1 (Q1j , θ, S(C1j, C2j)) + op(1),

Ûi = Q2i{1 − q(S(C1i, C2i))/q(Vi)} + q(S1(C1i))/q(Vi) + op(1)

and

Ûj = Q2j{1 − q(S(C1j, C2j))/q(Vj)} + q(S1(C1j))/q(Vj) + op(1)

where Vi = F−1
1 (Q1i, θ, S(C1i, C2i)) and Vj = F−1

1 (Q1j , θ, S(C1j, C2j)) under suitable regularity

conditions on F1 and q. Because (Q1i, Q1j), (Q2i, Q2j), (C1i, C2i) and also (C1j, C2j) are independent,

one can show that (Ûi, V̂i) and (Ûj, V̂j) are asymptotically independent for i 6= j, i, j ∈ {1, 2, . . . , n}

following the similar arguments as before.

3. When at least one component of (T1i, T2i) or (T1j , T2j) is censored and the other component in the

same pair is uncensored, the proof is essentially the same as before (we only need to replace F1 by

F2 or F3 accordingly). This completes our proof.


