Goodness-of-fit Tests for Archimedean Copula Models

Antai Wang

Georgetown University
Supplementary Material

In this note, we will prove Theorem 3, Corollaries 1 and 2, Theorems 4 and 5.
Proof of Theorem 3(1): we need to determine the form of

$$
H_{1}(u, v)=\operatorname{Pr}\left(U \leq u, V \leq v \mid T_{1}>c_{1}, T_{2}>c_{2}\right)=\operatorname{Pr}\left(U \leq u, V \leq v, T_{1}>c_{1}, T_{2}>c_{2}\right) / S\left(c_{1}, c_{2}\right)
$$

for $0 \leq v \leq S\left(c_{1}, c_{2}\right)$ and $0 \leq u \leq 1$. From this we know that we only need to work on the probability:

$$
\operatorname{Pr}\left(U \leq u, V \leq v, T_{1}>c_{1}, T_{2}>c_{2}\right)
$$

Assuming that the marginal distributions are continuous, using the monotonicity properties of the survivor function and the function q, we can see the probability equals to

$$
\operatorname{Pr}\left(U \leq u, V \leq v, q\left\{S_{1}\left(T_{1}\right)\right\}>q\left\{S_{1}\left(c_{1}\right)\right\}, q\left\{S_{2}\left(T_{2}\right)\right\}>q\left\{S_{2}\left(c_{2}\right)\right\}\right)
$$

From the definition of U and V, we know that $q\left\{S_{1}\left(T_{1}\right)\right\}=q(V) U$ and $q\left\{S_{2}\left(T_{2}\right)\right\}=q(V)(1-U)$. Hence the probability can be simplified as:

$$
\operatorname{Pr}\left(U \leq u, V \leq v, q(V) U>q\left\{S_{1}\left(c_{1}\right)\right\}, q(V)(1-U)>q\left\{S_{2}\left(c_{2}\right)\right\}\right)
$$

$$
=\operatorname{Pr}\left(V \leq v, \frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)} \leq U \leq \min \left\{u, 1-\frac{q\left\{S_{2}\left(c_{2}\right)\right\}}{q(V)}\right\}\right)
$$

It turns out that there are five situations we need to consider to derive this probability:

1. when $u<1-q\left\{S_{2}\left(c_{2}\right)\right\} / q(v), u<q\left\{S_{1}\left(c_{1}\right)\right\} / q\left\{S\left(c_{1}, c_{2}\right)\right\}$ and $u q(v)<q\left\{S_{1}\left(c_{1}\right)\right\}$ (actually, because $u q(v)<q\left\{S_{1}\left(c_{1}\right)\right\}$ implies $u<q\left\{S_{1}\left(c_{1}\right)\right\} / q\left\{S\left(c_{1}, c_{2}\right)\right\}$, only the condition $u q(v)<q\left\{S_{1}\left(c_{1}\right)\right\}$ is needed here, we include both conditions here for clarity) : in this situation, we have

$$
\frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)} \leq U \leq u \leq 1-\frac{q\left\{S_{2}\left(c_{2}\right)\right\}}{q(V)}
$$

and

$$
0 \leq V<p\left[q\left\{S_{1}\left(c_{1}\right) / u\right\}\right]<\min \left\{v, p\left[q\left\{S_{2}\left(c_{2}\right) /(1-u)\right\}\right]\right\} .
$$

Therefore the probability

$$
\begin{gathered}
H_{1}(u, v)=\operatorname{Pr}\left(0 \leq V \leq p\left[q\left\{S_{1}\left(c_{1}\right) / u\right\}\right], \frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)} \leq U \leq u\right)=\int_{0}^{p\left[q\left\{S_{1}\left(c_{1}\right) / u\right\}\right]} \int_{\frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)}}^{u} k(v) d u d v \\
=\int_{0}^{p\left[q\left\{S_{1}\left(c_{1}\right) / u\right\}\right]} \int_{\frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)}}^{u} \frac{q^{\prime \prime}(v) q(v)}{q^{\prime}(v)^{2}} d u d v=u p\left[\frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{u}\right]
\end{gathered}
$$

when $u q(v)<q\left\{S_{1}\left(c_{1}\right)\right\}$ for $0 \leq v \leq S\left(c_{1}, c_{2}\right)$.
2. when $u<1-q\left\{S_{2}\left(c_{2}\right)\right\} / q(v), u<q\left\{S_{1}\left(c_{1}\right)\right\} / q\left\{S\left(c_{1}, c_{2}\right)\right\}$ but $u q(v)>q\left\{S_{1}\left(c_{1}\right)\right\}$: in this situation, we have

$$
0 \leq V \leq v<p\left[q\left\{S_{1}\left(c_{1}\right) / u\right\}\right]<p\left[q\left\{S_{2}\left(c_{2}\right) /(1-u)\right\}\right]
$$

and

$$
q\left\{S_{1}\left(c_{1}\right)\right\} / q(V) \leq U \leq u
$$

Hence

$$
H_{1}(u, v)=\operatorname{Pr}\left(0 \leq V \leq v, \frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)} \leq U \leq u\right)=\int_{0}^{v} \int_{\frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)}}^{u} k(v) d u d v
$$

$$
=u v+\frac{q\left\{S_{1}\left(c_{1}\right)\right\}-u q(v)}{q^{\prime}(v)}
$$

for $q\left\{S_{1}\left(c_{1}\right)\right\} / q(v)<u<q\left\{S_{1}\left(c_{1}\right)\right\} / q\left\{S\left(c_{1}, c_{2}\right)\right\}$ and $0 \leq v \leq S\left(c_{1}, c_{2}\right)$.
3. when $q\left\{S_{1}\left(c_{1}\right)\right\} / q\left\{S\left(c_{1}, c_{2}\right)\right\}<u<1-q\left\{S_{2}\left(c_{2}\right)\right\} / q(v)$ but $q\left\{S_{2}\left(c_{2}\right)\right\}<(1-u) q(v)$: in this situation, we have

$$
0 \leq V \leq v<p\left[q\left\{S_{2}\left(c_{2}\right) /(1-u)\right\}\right]<p\left[q\left\{S_{1}\left(c_{1}\right) / u\right\}\right]
$$

and

$$
q\left\{S_{1}\left(c_{1}\right)\right\} / q(V) \leq U \leq u
$$

Hence

$$
\begin{aligned}
H_{1}(u, v)=\operatorname{Pr}(0 \leq V & \left.\leq v, \frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)} \leq U \leq u\right)=\int_{0}^{v} \int_{\frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)}}^{u} k(v) d u d v \\
& =u v+\frac{q\left\{S_{1}\left(c_{1}\right)\right\}-u q(v)}{q^{\prime}(v)}
\end{aligned}
$$

for $q\left\{S_{1}\left(c_{1}\right)\right\} / q\left\{S\left(c_{1}, c_{2}\right)\right\}<u<1-q\left\{S_{2}\left(c_{2}\right)\right\} / q\{S(v)\}$ and $0 \leq v \leq S\left(c_{1}, c_{2}\right)$.
4. when $q\left\{S_{1}\left(c_{1}\right)\right\} / q\left\{S\left(c_{1}, c_{2}\right)\right\}<u<1-q\left\{S_{2}\left(c_{2}\right)\right\} / q(v)$ but $q\left\{S_{2}\left(c_{2}\right)\right\}>(1-u) q(v)$: in this situation, we have

$$
0 \leq V \leq p\left[q\left\{S_{2}\left(c_{2}\right) /(1-u)\right\}\right]<v
$$

and

$$
q\left\{S_{1}\left(c_{1}\right)\right\} / q(V) \leq U \leq u
$$

Hence

$$
\begin{gathered}
H_{1}(u, v)=\operatorname{Pr}\left(0 \leq V \leq p\left[q\left\{S_{2}\left(c_{2}\right) /(1-u)\right\}\right], \frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)} \leq U \leq u\right) \\
=\int_{0}^{p\left[q\left\{S_{2}\left(c_{2}\right) /(1-u)\right\}\right]} \int_{\frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(V)}}^{u} k(v) d u d v
\end{gathered}
$$

$$
\begin{gathered}
=u p\left[q\left\{S_{2}\left(c_{2}\right) /(1-u)\right\}\right]-u q\left\{S_{2}\left(c_{2}\right)\right\} /(1-u) / q^{\prime}\left[p\left\{q\left[S_{2}\left(c_{2}\right) /(1-u)\right]\right\}\right] \\
+q\left\{S_{1}\left(c_{1}\right)\right\} / q^{\prime}\left[p\left\{q\left[S_{2}\left(c_{2}\right) /(1-u)\right]\right\}\right]
\end{gathered}
$$

for $1-q\left\{S_{2}\left(c_{2}\right)\right\} / q\{S(v)\}<u$ and $0 \leq v \leq S\left(c_{1}, c_{2}\right)$.
5. when $u>1-q\left\{S_{2}\left(c_{2}\right)\right\} / q(v)$: in this situation, we have

$$
p\left[\frac{q\left\{S_{2}\left(c_{2}\right)\right\}}{(1-u)}\right] \leq V \leq v
$$

and

$$
q\left\{S_{1}\left(c_{1}\right)\right\} / q(V) \leq U \leq 1-q\left\{S_{2}\left(c_{2}\right)\right\} / q(V)
$$

Hence

$$
\begin{gathered}
H_{1}(u, v)=\operatorname{Pr}\left(p\left[\frac{q\left\{S_{2}\left(c_{2}\right)\right\}}{(1-u)}\right] \leq V \leq v, q\left\{S_{1}\left(c_{1}\right)\right\} / q(V) \leq U \leq 1-q\left\{S_{2}\left(c_{2}\right)\right\} / q(V)\right) \\
=\int_{p\left[\frac{q\left\{S_{2}\left(c_{2}\right)\right\}}{(1-u)}\right]}^{v} \int_{q\left\{S_{1}\left(c_{1}\right)\right\} / q(v)}^{1-q\left\{S_{2}\left(c_{2}\right)\right\} / q(v)} k(v) d u d v \\
=v-q(v) / q^{\prime}(v)-p\left[\frac{q\left\{S_{2}\left(c_{2}\right)\right\}}{(1-u)}\right]+q\left(p\left[\frac{q\left\{S_{2}\left(c_{2}\right)\right\}}{(1-u)}\right]\right) / q^{\prime}\left(p\left[\frac{q\left\{S_{2}\left(c_{2}\right)\right\}}{(1-u)}\right]\right) \\
\quad+q\left\{S\left(c_{1}, c_{2}\right)\right\}\left[1 / q^{\prime}(v)-1 / q^{\prime}\left(p\left[\frac{q\left\{S_{2}\left(c_{2}\right)\right\}}{(1-u)}\right]\right)\right]
\end{gathered}
$$

for $1-q\left\{S_{2}\left(c_{2}\right)\right\} / q\{S(v)\}<u$ and $0 \leq v \leq S\left(c_{1}, c_{2}\right)$. Combining all five results and after some simple algebra, we can reach the conclusion for the joint distribution of (U, V) given $T_{1}>c_{1}, T_{2}>c_{2}$.

Proof of Theorem 3(2): we need to determine the form of

$$
H_{2}(u, v)=\operatorname{Pr}\left(U \leq u, V \leq v \mid T_{1}=t_{1}, T_{2}>c_{2}\right)=\operatorname{Pr}\left(U \leq u, V \leq v, T_{1}=t_{1}, T_{2}>c_{2}\right) / \operatorname{Pr}\left(T_{1}=t_{1}, T_{2}>c_{2}\right)
$$

for $0 \leq v \leq S\left(t_{1}, c_{2}\right)$ and $0 \leq u \leq 1$. It is easily seen that because $S\left(t_{1}, t_{2}\right)=p\left[q\left\{S_{1}\left(t_{1}\right)\right\}+q\left\{S_{2}\left(t_{2}\right)\right\}\right]$, we have

$$
\operatorname{Pr}\left(T_{1}=t_{1}, T_{2}>c_{2}\right)=-p^{\prime}\left[q\left\{S_{1}\left(t_{1}\right)\right\}+q\left\{S_{2}\left(c_{2}\right)\right\}\right] q^{\prime}\left\{S_{1}\left(t_{1}\right)\right\} S_{1}^{\prime}\left(t_{1}\right)=-p^{\prime}\left[q\left\{S\left(t_{1}, c_{2}\right)\right\}\right] q^{\prime}\left\{S_{1}\left(t_{1}\right)\right\} S_{1}^{\prime}\left(t_{1}\right)
$$

Therefore, we only need to work on

$$
\operatorname{Pr}\left(U \leq u, V \leq v, T_{1}=t_{1}, T_{2}>c_{2}\right)
$$

Using the same technique as presented in the proof of previous Theorem, we can express the above probability as

$$
\operatorname{Pr}\left(q(v) \leq q(V), \frac{q\left\{S_{1}\left(T_{1}\right)\right\}}{u} \leq q(V), T_{1}=t_{1}, T_{2}>c_{2}\right)
$$

Based on the fact that $q(V)=q\left\{S\left(T_{1}, T_{2}\right)\right\}=q\left\{S_{1}\left(T_{1}\right)\right\}+q\left\{S_{2}\left(T_{2}\right)\right\}$ and $T_{1}=t_{1}$, the above probability can be further simplified as:

$$
\operatorname{Pr}\left(q\left\{S_{2}\left(T_{2}\right)\right\} \geq \min \left[q(v)-q\left\{S_{1}\left(t_{1}\right)\right\}, q\left\{S_{1}\left(t_{1}\right)\right\}\left(\frac{1}{u}-1\right)\right], T_{1}=t_{1}, T_{2}>c_{2}\right)
$$

Again, we need to consider several situations:

1. $q(v)-q\left\{S_{1}\left(t_{1}\right)\right\}>q\left\{S_{1}\left(t_{1}\right)\right\}(1 / u-1)$, i.e. $u>q\left\{S_{1}\left(t_{1}\right)\right\} / q(v)$. In this case, after some simple algebra, we can show that the above probability equals to $-p^{\prime}\{q(v)\} q^{\prime}\left\{S_{1}\left(t_{1}\right)\right\} S_{1}^{\prime}\left(t_{1}\right)$.
2. $q(v)-q\left\{S_{1}\left(t_{1}\right)\right\} \leq q\left\{S_{1}\left(t_{1}\right)\right\}(1 / u-1)$, i.e. $u \leq q\left\{S_{1}\left(t_{1}\right)\right\} / q(v)$. In this case, after some simple algebra, we can show that the above probability equals to $-p^{\prime}\left[q\left\{S_{1}\left(t_{1}\right)\right\} / u\right] q^{\prime}\left\{S_{1}\left(t_{1}\right)\right\} S_{1}^{\prime}\left(t_{1}\right)$.

Combining these two results and after some algebra, we can reach the conclusion for the joint distribution of (U, V) given $T_{1}=t_{1}, T_{2}>c_{2}$.

Proof of Theorem 3(3): As in the proof of Theorem 3(2), we need to determine the form of

$$
H_{3}(u, v)=\operatorname{Pr}\left(U \leq u, V \leq v \mid T_{1}>c_{1}, T_{2}=t_{2}\right)=\operatorname{Pr}\left(U \leq u, V \leq v, T_{1}>c_{1}, T_{2}=t_{2}\right) / \operatorname{Pr}\left(T_{1}>c_{1}, T_{2}=t_{2}\right)
$$

for $1-q\left\{S_{2}\left(t_{2}\right)\right\} / q(v) \leq u \leq 1$ and $0 \leq v \leq S\left(c_{1}, t_{2}\right)$. It is easily seen as before that

$$
\operatorname{Pr}\left(T_{1}>c_{1}, T_{2}=t_{2}\right)=-p^{\prime}\left[q\left\{S_{1}\left(c_{1}\right)\right\}+q\left\{S_{2}\left(t_{2}\right)\right\}\right] q^{\prime}\left\{S_{2}\left(t_{2}\right)\right\} S_{2}^{\prime}\left(t_{2}\right)=-p^{\prime}\left[q\left\{S\left(c_{1}, t_{2}\right)\right\}\right] q^{\prime}\left\{S_{2}\left(t_{2}\right)\right\} S_{2}^{\prime}\left(t_{2}\right)
$$

Therefore, we only need to work on

$$
\operatorname{Pr}\left(U \leq u, V \leq v, T_{1}>c_{1}, T_{2}=t_{2}\right)
$$

Using the same technique as presented in the proof of previous result, we can express the above probability as

$$
\begin{gathered}
\operatorname{Pr}\left(q\left\{S_{2}\left(t_{2}\right)\right\} /(1 / u-1) \geq q\left\{S_{1}\left(T_{1}\right)\right\} \geq q(v)-q\left\{S_{2}\left(t_{2}\right)\right\}, T_{2}=t_{2}\right) . \\
=p^{\prime}\{q(v)\}-p^{\prime}\left[q\left\{S_{2}\left(t_{2}\right)\right\} /(1-u)\right] q^{\prime}\left\{S_{2}\left(t_{2}\right)\right\} S_{2}^{\prime}\left(t_{2}\right)=-p^{\prime}\left[q\left\{S\left(c_{1}, t_{2}\right)\right\}\right] q^{\prime}\left\{S_{2}\left(t_{2}\right)\right\} S_{2}^{\prime}\left(t_{2}\right) .
\end{gathered}
$$

for $1-q\left\{S_{2}\left(t_{2}\right)\right\} / q(v) \leq u \leq 1$. After some algebra, we can reach the conclusion for the joint distribution of (U, V) given $T_{1}>c_{1}, T_{2}=t_{2}$.

Proof of Corollary 1 and 2: Let $v=S\left(c_{1}, c_{2}\right), v=S\left(t_{1}, c_{2}\right)$ and $v=S\left(c_{1}, t_{2}\right)$ in H_{1}, H_{2} and H_{3} respectively, we can prove Corollary 1. The same idea applies in the proof of Corollary 2. After plugging $u=1$ into the expression of H_{1}, H_{2} and H_{3}, we can reach the desired conclusions.

Proof of Theorem 4: From Corollary 1(a), we know the density function of $\left(V \mid T_{1}>c_{1}, T_{2}>c_{2}\right)$ is $f\left(v \mid T_{1}>c_{1}, T_{2}>c_{2}\right)=q^{\prime \prime}(v)\left[q(v)-q\left\{S\left(c_{1}, c_{2}\right)\right\}\right] /\left\{q^{\prime}(v)^{2} S\left(c_{1}, c_{2}\right)\right\}$. Hence we only need to determine

$$
\begin{gathered}
\operatorname{Pr}\left(U \leq u, V=v, T_{1}>c_{1}, T_{2}>c_{2}\right) \\
=\operatorname{Pr}\left(U \leq u, V=v, q(V) U>q\left\{S_{1}\left(c_{1}\right)\right\}, q(V)(1-U)>q\left\{S_{2}\left(c_{2}\right)\right\}\right) \\
=\operatorname{Pr}\left(\frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(v)} \leq U \leq \min \left\{u, 1-\frac{q\left\{S_{2}\left(c_{2}\right)\right\}}{q(v)}\right\}, V=v\right)
\end{gathered}
$$

Because $T_{2}>c_{2}$, we have $q\left\{S_{2}\left(T_{2}\right)\right\} \geq q\left\{S_{2}\left(c_{2}\right)\right\}$. Therefore

$$
U=q\left\{S_{2}\left(T_{2}\right)\right\} / q(v)=\left[q(v)-q\left\{S_{2}\left(T_{2}\right)\right\}\right] / q(v) \leq 1-q\left\{S_{2}\left(c_{2}\right)\right\} / q(v)
$$

On the other hand, $T_{1}>c_{1}$, we have $U=q\left\{S_{1}\left(T_{1}\right)\right\} / q(v) \geq q\left\{S_{1}\left(c_{1}\right)\right\} / q(v)$. Hence

$$
\operatorname{Pr}\left(U \leq u, V=v, T_{1}>c_{1}, T_{2}>c_{2}\right)=\operatorname{Pr}\left(\frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(v)} \leq U \leq u, V=v\right)
$$

$$
=k(v)\left(u-\frac{q\left\{S_{1}\left(c_{1}\right)\right\}}{q(v)}\right)=\frac{q^{\prime \prime}(v)}{q^{\prime}(v)^{2}}\left(u q(v)-q\left\{S_{1}\left(c_{1}\right)\right\}\right) .
$$

Hence the conditional distribution of $\left(U \mid V=v, T_{1}>c_{1}, T_{2}>c_{2}\right)$ is $\left[u q(v)-q\left\{S_{1}\left(c_{1}\right)\right\}\right] /\left[q(v)-q\left\{S\left(c_{1}, c_{2}\right)\right\}\right]$ for $q\left\{S_{1}\left(c_{1}\right)\right\} / q(v) \leq u \leq 1-q\left\{S_{2}\left(c_{2}\right)\right\} / q(v)$. The conclusion follows.

Proof of Theorem 5: we only need to show that the covariance matrix

$$
\left.\operatorname{cov}\left\{\left(\hat{U}_{i}, \hat{V}_{i}\right)^{T},\left(\hat{U}_{j}, \hat{V}_{j}\right)^{T}\right\}=E\left\{\left(\hat{U}_{i}-E\left(\hat{U}_{i}\right), \hat{V}_{i}-E\left(\hat{V}_{i}\right)\right)^{T}\left(\hat{U}_{j}-E\left(\hat{U}_{j}\right), \hat{V}_{j}-E\left(\hat{V}_{j}\right)\right)\right\}\right\} \rightarrow \mathbf{0}_{2 \times 2}
$$

for $i \neq j$ when $n \rightarrow \infty$, where $\mathbf{0}_{2 \times 2}$ represents a 2×2 zero matrix. Therefore, we need to prove this conclusion is correct for each entry of the matrix. There are several cases we need to consider:

1. when $\left(X_{1 i}, X_{2 i}\right)=\left(T_{1 i}, T_{2 i}\right)$ and $\left(X_{1 j}, X_{2 j}\right)=\left(T_{1 j}, T_{2 j}\right)$ i.e., both components of $\left(T_{1 i}, T_{2 i}\right)$ and $\left(T_{1 j}, T_{2 j}\right)$ are uncensored. Starting with the last entry, we must show that $E\left(\hat{V}_{i}-E\left(\hat{V}_{i}\right)\right)\left(\hat{V}_{j}-\right.$ $\left.E\left(\hat{V}_{j}\right)\right) \rightarrow 0$ when $n \rightarrow \infty$. In this situation, \hat{V}_{i} and \hat{V}_{j} are both Dabrowska's estimates of survivor functions at $\left(X_{1 i}, X_{2 i}\right)$ and $\left(X_{1 j}, X_{2 j}\right)$ respectively. By the almost sure consistency of Dabrowska's estimator (Dabrowska 1988), we can conclude that $\hat{V}_{i}=V_{i}+\left(\hat{V}_{i}-V_{i}\right)=V_{i}+Z_{i}$ and $\hat{V}_{j}=V_{j}+\left(\hat{V}_{j}-\right.$ $\left.V_{j}\right)=V_{j}+Z_{j}$, where Z_{i} and Z_{j} converge to zero a.s. on $\left[0, \tau_{1}\right] \times\left[0, \tau_{2}\right]$ where $\operatorname{Pr}\left(X_{1}>\tau_{1}, X_{2}>\tau_{2}\right)>0$. Notice the fact that $\left|\operatorname{cov}\left(Z_{i}, V_{j}\right)\right| \leq \operatorname{var}\left(Z_{i}\right) \operatorname{var}\left(V_{j}\right) \leq E\left(Z_{i}^{2}\right) E\left(V_{j}^{2}\right) \leq E\left(Z_{i}^{2}\right) \rightarrow 0$ when $n \rightarrow \infty$ by the bounded convergence Theorem because Z_{i}^{2} converges almost surely to 0 and $Z_{i}^{2} \leq 4$. Similarly, one can show $\operatorname{cov}\left(V_{i}, Z_{j}\right)$ and $\operatorname{cov}\left(Z_{i}, Z_{j}\right)$ converge to zero when $n \rightarrow \infty$ as well. Therefore, we can conclude that $\operatorname{cov}\left(\hat{V}_{i}, \hat{V}_{j}\right) \rightarrow 0$ because

$$
\begin{gathered}
\operatorname{cov}\left(\hat{V}_{i}, \hat{V}_{j}\right)=\operatorname{cov}\left(V_{i}+Z_{i}, V_{j}+Z_{j}\right)=\operatorname{cov}\left(V_{i}, V_{j}\right)+\operatorname{cov}\left(Z_{i}, V_{j}\right)+\operatorname{cov}\left(V_{i}, Z_{j}\right)+\operatorname{cov}\left(Z_{i}, Z_{j}\right) \\
=\operatorname{cov}\left(Z_{i}, V_{j}\right)+\operatorname{cov}\left(V_{i}, Z_{j}\right)+\operatorname{cov}\left(Z_{i}, Z_{j}\right)
\end{gathered}
$$

Now we need to show $\operatorname{cov}\left(\hat{U}_{i}, \hat{U}_{j}\right) \rightarrow 0$ when $n \rightarrow \infty$, where

$$
\hat{U}_{i}=\frac{q_{\hat{\theta}}\left(\hat{S}_{1}\left(t_{1 i}\right)\right)}{q_{\hat{\theta}}\left\{\hat{S}\left(t_{1 i}, t_{2 i}\right)\right\}}=f\left\{\hat{\theta}, \hat{S}_{1}\left(t_{1 i}\right), \hat{S}\left(t_{1 i}, t_{2 i}\right)\right\}
$$

where $f=f\left(\theta, w_{1}, w_{2}\right)=q_{\theta}\left(w_{1}\right) / q_{\theta}\left\{w_{2}\right\}$. Using the Taylor expansion, we have

$$
\begin{gathered}
\hat{U}_{i}=U_{i}+f_{\theta}\left\{\theta, S_{1}\left(t_{1 i}\right), S\left(t_{1 i}, t_{2 i}\right)\right\}(\hat{\theta}-\theta) \\
+f_{1}\left\{\theta, S_{1}\left(t_{1 i}\right), S\left(t_{1 i}, t_{2 i}\right)\right\}\left(\hat{S}_{1}\left(t_{1 i}\right)-S_{1}\left(t_{1 i}\right)\right)+f_{2}\left\{\theta, S_{1}\left(t_{1 i}\right), S\left(t_{1 i}, t_{2 i}\right)\right\}\left(\hat{S}\left(t_{1 i}, t_{2 i}\right)-S\left(t_{1 i}, t_{2 i}\right)\right),
\end{gathered}
$$

where f_{θ}, f_{1} and f_{2} denotes the derivatives of function f with respective to θ, w_{1} and w_{2} respectively. Under appropriate regularity conditions on f such as the boundedness of the second derivatives of f, considering the fact that $\hat{\theta}, \hat{S}_{1}$ and \hat{S} are consistent estimators of θ, S_{1} and S respectively, one can conclude that $\hat{U}_{i}=U_{i}+o_{p}(1)$ and $\hat{U}_{j}=U_{j}+o_{p}(1)$. Following the similar arguments as before, we have $\operatorname{cov}\left(\hat{U}_{i}, \hat{U}_{j}\right) \rightarrow 0$ when $n \rightarrow \infty$ because U_{i} and U_{j} are independent. Exactly the same arguments can be applied to show that $\operatorname{cov}\left(\hat{U}_{i}, \hat{V}_{j}\right) \rightarrow 0$ and $\operatorname{cov}\left(\hat{V}_{i}, \hat{U}_{j}\right) \rightarrow 0$. We have therefore proved the conclusion of Theorem 5 when both components of $\left(T_{1 i}, T_{2 i}\right)$ are uncensored.
2. When both components of $\left(T_{1 i}, T_{2 i}\right)$ and $\left(T_{1 j}, T_{2 j}\right)$ are censored, i.e., $\left(X_{1 i}, X_{2 i}\right)=\left(C_{1 i}, C_{2 i}\right)$ and also $\left(X_{1 j}, X_{2 j}\right)=\left(C_{1 j}, C_{2 j}\right)$. In this situation, from the MI step we have described,

$$
\begin{gathered}
\hat{V}_{i}=F_{1}^{-1}\left(Q_{1 i}, \hat{\theta}, \hat{S}\left(C_{1 i}, C_{2 i}\right)\right), \hat{V}_{j}=F_{1}^{-1}\left(Q_{1 j}, \hat{\theta}, \hat{S}\left(C_{1 j}, C_{2 j}\right)\right), \\
\hat{U}_{i}=Q_{2 i}\left\{1-q\left(\hat{S}\left(C_{1 i}, C_{2 i}\right)\right) / q\left(\hat{V}_{i}\right)\right\}+q\left(\hat{S}_{1}\left(C_{1 i}\right)\right) / q\left(\hat{V}_{i}\right) \text { and } \\
\hat{U}_{j}=Q_{2 j}\left\{1-q\left(\hat{S}\left(C_{1 j}, C_{2 j}\right)\right) / q\left(\hat{V}_{j}\right)\right\}+q\left(\hat{S}_{1}\left(C_{1 j}\right)\right) / q\left(\hat{V}_{j}\right),
\end{gathered}
$$

where $Q_{1 i}, Q_{1 j}, Q_{2 i}$ and $Q_{2 j}$ are independently uniformly distributed random variables on $[0,1]$. Applying the Taylor expansion again, one can show that $\hat{V}_{i}=F_{1}^{-1}\left(Q_{1 i}, \theta, S\left(C_{1 i}, C_{2 i}\right)\right)+o_{p}(1)$,
$\hat{V}_{j}=F_{1}^{-1}\left(Q_{1 j}, \theta, S\left(C_{1 j}, C_{2 j}\right)\right)+o_{p}(1)$,

$$
\hat{U}_{i}=Q_{2 i}\left\{1-q\left(S\left(C_{1 i}, C_{2 i}\right)\right) / q\left(V_{i}\right)\right\}+q\left(S_{1}\left(C_{1 i}\right)\right) / q\left(V_{i}\right)+o_{p}(1)
$$

and

$$
\hat{U}_{j}=Q_{2 j}\left\{1-q\left(S\left(C_{1 j}, C_{2 j}\right)\right) / q\left(V_{j}\right)\right\}+q\left(S_{1}\left(C_{1 j}\right)\right) / q\left(V_{j}\right)+o_{p}(1)
$$

where $V_{i}=F_{1}^{-1}\left(Q_{1 i}, \theta, S\left(C_{1 i}, C_{2 i}\right)\right)$ and $V_{j}=F_{1}^{-1}\left(Q_{1 j}, \theta, S\left(C_{1 j}, C_{2 j}\right)\right)$ under suitable regularity conditions on F_{1} and q. Because $\left(Q_{1 i}, Q_{1 j}\right),\left(Q_{2 i}, Q_{2 j}\right),\left(C_{1 i}, C_{2 i}\right)$ and also $\left(C_{1 j}, C_{2 j}\right)$ are independent, one can show that $\left(\hat{U}_{i}, \hat{V}_{i}\right)$ and $\left(\hat{U}_{j}, \hat{V}_{j}\right)$ are asymptotically independent for $i \neq j, i, j \in\{1,2, \ldots, n\}$ following the similar arguments as before.
3. When at least one component of $\left(T_{1 i}, T_{2 i}\right)$ or $\left(T_{1 j}, T_{2 j}\right)$ is censored and the other component in the same pair is uncensored, the proof is essentially the same as before (we only need to replace F_{1} by F_{2} or F_{3} accordingly). This completes our proof.

