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This supplement contains the derivations of the inferéntiethods for two stage synthetic data. Sec-
tion S1 describes the notation used in the derivations.i@e&2 presents the derivation of the inferential
methods for two-stage, fully synthetic data, which are dbed in Section 3.1 of the main text. Section
S3 presents the derivation of the inferential methods far-stage, partially synthetic data, which are de-
scribed in Section 3.2 of the main text. Section S4 preséetsl¢rivations of the degrees of freedom for the
t-distributions used in inferences for two-stage synthééita.

S1. Notation
To begin, we repeat some notation used in both the full antigbaynthesis cases. For a finite popu-
lation of sizeN, let I; = 1 if unit [ is included in the survey, anfl = 0 otherwise, wheré = 1,..., N.

Let = (I1,...,In), and let the sample size= )" I;. Let X be theN x d matrix of sampling design
variables, e.g. stratum or cluster indicators or size meagsuNe assume thaf is known approximately
for the entire population, for example from census recomdthe sampling frame(s). Lét be theN x p
matrix of survey data for the population. L¥},. = (Y,us, Yinis) be thes x p sub-matrix ofY” for all units
with I; = 1, whereY,,, is the portion ofY;,,. that is observed anH,,,;, is the portion ofY;,,. that is missing
due to nonresponse. L& be anN x p matrix of indicators such thak;, = 1 if the response for unitto
item k is recorded, and®;;, = 0 otherwise. The observed data is thg,s = (X, Yos, [, R). LetY, be the
values simulated in stage 1, and Ygtbe the values simulated in stage 2.

S2. Inferences for two stage full synthesis

We suppose that the agency has generatquhrtially completed populations as described in Section
3.1 of the main text. LeP() = (DobS,Y(fi),Yb(i’j)) be a completed population, wheie= 1,...,m
andj = 1,...,r. For each(i,j), let D(:J) be a simple random sample frof(*/). TheseM samples,
Dgyn = {DW9) . i =1,...,m;j = 1,...,r}, are released to the public. Each releagéé/) includes a
label indicating its value of, i.e. an indicator for its nest.

Let Q be the estimand of interest, such as a population mean oresgign coefficient. The analyst of
synthetic data seek§(Q|Ds,,). The three-step process for creatiby,,, described in Section 3.1 of the
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main text suggests that
f(Q|Dsyn) = /f(Q|DOb57 Psyna Dsyn)f(Dobs|Psyna Dsyn)f(Psyn|Dsyn)dDobsdPsyna (821)

where Py, = {P(W) :i=1,...,m;j = 1,...,r}. For all derivations in this section, we assume that
the analyst’s distributions are identical to those usedhleyagency for creating,,,,. We also assume that
the sample sizes are large enough to permit normal apprexinssfor these distributions. Thus, we require
only the first two moments for each distribution, which weiderusing standard large sample Bayesian
arguments. Diffuse priors are assumed for all parameters.

To begin, the synthetic data are irrelevant for inferenceuld) given the observed data, so that
F(Q|Dobs, Psyn, Doyn) = f(Q|Dops). We assume that

(Q’Dobs) (QObSa obs) (822)

whereQ s andU,,, are the estimates of the mean and variance computedfrgmif it were released. We
note that only@) needs to have a normal distribution, not the diétiiself.

The D, is irrelevant givenP,,,, so thatf (Dops| Psyn, Dsyn) = f(Dobs|Psyn). Because inferences
for @ depend only orQ,,s and U, it is sufficient to determingf (Qops, Uops| Psyn)- Let QU7) be the
estimate of in populationP9). Let Q") = =>,Q%) /r,andQn =Y, QY Jm. Let By = 32,(QY) —
Qm)?/(m—1), andw,” =2 QL) — Qy )) /(r —1). We assume the following sampling distributions:

(ng) ’Dobm Boo) ~ N(Qob37 Boo) (823)
(QU1QW, W) ~ N( QY WD) (52.4)

wherleQ, (’) , and B, are the limits of the corresponding finite-sum quantitiesas> co andr — co.
The process of repeatedly completing populations and astign@ in this nested manner is equivalent to
simulating the posterior distribution @@. Hence,Uyys = Boo + Woo, WhereWy, = lim Y, Wo(é)/m as
m — oo. From (S2.2), (S2.3), and (S2.4), for finite andr we have

(QIPyns Boo, W, .., W)~ N(@Qur, (14 1/m) Bog + (14 1/ (mr)) W ). (S2.5)

We also have

((m - 1)BM/(BOO + WOO/T)|Psym Woo) ~ X%L_l (52.6)
(= WO WD IPyn ) ~ s (52.7)

The posterior distribution of) conditioning onP,,, alone is found by integrating (S2.5) over the distribu-
tions in (S2.6) and (S2.7).

In general, releasing’,,, is impractical for agencies, as it could require releashgdata files of
very large sizeN. We therefore take random samples of sizg, from each population, i.eDI), We
require the distributions of) 17, Boo, and eachiv'y) conditional onDy,,. For all (i, ), let /) be the
estimate of@("), and letu(*7) be the estimate of the variance associated wit#. The ¢(“/) andw ()
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are computed based on the design used to sample é#i. Note that whemy,,, = N, u(») = 0. Let
) =, ¢ /r, andgy = Y, qﬁ“/m Letby = Y ,(@” — qu)?/(m — 1), andw” = 37 (¢ —
)% /(r — 1). Finally, letay; = 3, u®) /(mr).

For largen,,,, we assume the sampllng distribution of eggft?) | P{%, ) is N(Q4), U®), whereU’()
is an implied sampling variance. We further assume thatahnepting variability in theu(7) is negligible,
so thatu(®)) ~ U®. We also make the simplifying assumption that the varigbiti U(?) across nests is
small, so that/) ~ 3" U® /m. Thus, we have

(@ DP9 ) ~ N(QU) ayy). (S2.8)

Using the standard Bayesian arguments based on these sgmiigkributions, we have

(QW1, s ) ~ N(@?, i /) (52.9)
and
(QM’Dsyn) ~ N(ch,ﬂM/(mr)) (8210)
To obtain the conditional distributions d#., and eachWéf,), we use an analysis of variance setup.
From (S2.4) and (S2.8), we have
(r— Dy )
@ ’Dsyn ~ Xr—1- (8211)
Woo + up
From (S2.3), (S2.4), and (S2.8), and making the simplifyiagumption thatv.) = 1. for all i, we have
(m — Dby T 2
_ Dayn, Woo | ~ X2 S2.12
(Boo+Woo/r+uM/r| v Xm-1 ( )
m(r — 1)wpy 9
—————|Dgyn | ~ _ S2.13
(Woo+uM | y) Xm(r—1) (5213

wherewy; = ), wff)/m.

To obtain the conditional distribution @ given D,,,,, we integrate the distribution in (S2.5) with
respect to the distributions &7, B, and theiV\?) in (S2.10), (S2.12), and (S2.13). This can be done via
numerical integration. For example, analysts can takedlh@fing steps after computings, bas, was, and
u s from the released datasets.

1. Draw a value oV, sayWz,, from the chi-squared distribution in (S2.13). That is,vdi@valuec
from a chi-squared distribution with(r — 1) degrees of freedom, and take*, = (m(r — 1)wy; —

cpy)/c.

2. Given Wz, draw a value ofB,,, say B%, from the chi-squared distribution in (S2.12). That is,
draw a valued from a chi-squared distribution wittim — 1) degrees of freedom, and tak&’ =

((m = 1)bar — d(W3, /7 + 1 /7)) /d.
3. Draw a value of),,, sayQ%,, from the normal distribution in (S2.10).

4. GivenW, B, andQ%,, draw a value of), say@*, from the normal distribution in (S2.5).
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5. Store the value af)*, and repeat steps 1 - 4 independently a large number of tsags,0000 times.

The resulting draws of) are samples from the posterior distribution in (S2.1), sabjo the conditions
needed for (S2.2) — (S2.13). We note that, for sc@lathis integral can be computed evemwifor r is small.
The normality assumptions underpinning (S2.2) — (S2.18)&drom large sample Bayesian arguments,
where the relevant sample sizes arandn,, notm or M.

Instead of direct simulation, some analysts may desireaghiiforward approximation usings,,, .
For largem andr, we can approximatg (Q|Ds,,) by a normal distribution with mea#'(Q|D,,,) and
varianceV ar(Q|Dsyy). Using (S2.5) and (S2.10), we have

E(Q|Dsyn) = E[E(Q|QM)|Dsyn] = E(QM|Dsyn) =qMm- (52-14)
Similarly,

VCLT‘(Q|DSyn) = E[VQT(Q|Psym By, Woo)|Dsyn] + VQT[E(Q|Psym B, WOO)|Dsyn]
=1+ m_l)E(BOO|Dsyn) + (1+1/(mr)) E(Woo| Dsyn) + @nr /(mr). (S2.15)
Based on (S2.12) and (S2.13), we approximate the expetdatia(S2.15) a$s(Wao|Dsyn) ~ War — Ui
and E(Boo|Dsyn) ~ bar — war /. Substituting these approximate expectations in (S2wi@have
Var(Q|Dsyn) = (1 +m ™Y (bar — war/r) + (1 + 1/(mr)) (War — @nr) + @nr/ (mr)
= (1—|—m_1)bM—|—(1—1/7‘)’LZ)M—’L_LM :Tf. (52.16)

For modestn andr, we obtain inferences by usingtadistribution, (s — Q) ~ t,,(0,7%). The
degrees of freedomy;, equal

S (A ymb? (= yrw)?)
f (m = 1)T (m(r— )77 |

The degrees of freedom is derived by matching the first two swamof (vT%)/(tun /(mr) + (1 +
1/m)Bs + (1 4+ 1/(mr))Ws) to an inverse chi-squared distribution with degrees of freedom. The
derivation is presented in Section S4.1 of this supplement.

When the normality assumptions underpinning (S2.2) — (§2dpecifically those in (S2.2) — (S2.4)
and (S2.8), do not hold, neither the posterior simulatiopreach nor the-approximation result in valid
inferences. In general, multiple imputation approachet wiodest) (or m in one stage multiple impu-
tation) are not adequate for inference about quantitiels asymmetric posterior distributions. Fortunately,
with large sample sizes andns,,, as is expected to be the case for multiple imputation focldssire
limitation, these normality assumptions are usually reabte.

When (S2.2) — (S2.4) and (S2.8) do not hold, the analyst nideere(i) apply for special access to the
genuine data, or (ii) simulate more synthetic datasetsefatency provides sufficient meta-data to do so,
e.g., the agency provides a program that simulates datagbtssame way used to generélg,,,. This type
of detailed meta-data may not be available in practice. Agsnthat provide a data simulator essentially

release the exact values of the parameters of the imputatiatel, which could represent a disclosure risk.
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For example, if categorical data are simulated from a lagdr model, the exact values of the parameters
could be used to determine the counts in the cells of the vbdatata contingency table. A more likely
scenario is that the agency releases descriptions of thkesia model, or the synthesis code itself, without
the distributions of the parameters of the synthesis mogetéch are estimated wittD,;,). Given this
meta-data, it may be possible for the analyst to estimat@adh@meters of the synthesis model frang,,,

and then simulate additional datasets. The propertiesoafiproach have not been investigated. However,
these inferences clearly would have larger uncertainty thase based on a data simulator, because of the
additional variance due to estimating the imputation mpaeameters with modest.

Even when (S2.2) — (S2.13) are reasonable, it is possibleZtha< 0, which causes problems for
inferences. This occurs because of high variability in thineates ofB,, andW,,. Problems tend to arise
more with estimation o3, than with1W,,. We havem(r — 1) degrees of freedom to estimaitg,,, and
only (m—1) degrees of freedom to estimafs,. We note that negative variance estimates are not a problem
with direct posterior simulation.

S3. Inference for two stage partial synthesis
To obtain inferences from nested partially synthetic damassume the analyst acts as if eath?) is
a sample according to the original design. We require thregat,

f(Q|Dsyn) = /f(Q|Dobs>Dsyn)f(Dobs|Dsyn)dDobs- (831)
Unlike in fully synthetic data, there is no intermediatepstsf completing populations. Lef(7), q,(f),
qm, by, and thew,(i) be defined as in the previous section. Def@éfé = lim@(«i), beo = limby,, and
wé@ = lim wf«i) asm — oo andr — oo.
With large samples, we assume again th@®|Do»s) = N(Qobs, Uoss). We assume that the sampling

distributions of the synthetic data point estimators are

((Zgé)u)obsa boo) ~ N(Qobs> boo) (832)
(091D, 3,0 ) ~ N (a2, wld). (53.3)

When coupled with (S2.2) and diffuse priors on all paranget$3.2) and (S3.3) imply that
(QIDayns b wll) ;w0 ) ~ N(Gas, Uaps + oo /m + o (m1)). (S3.4)

Since theY, andY; are simulated from their conditional distributions, eadh’) approximated/,,,. We
assume that eaali’?) has low variability, so that"/) ~ @y ~ Uyps.

The posterior distributions df,, and eachué? are obtained from an analysis of variance setup. From
(S3.3), we have

(4)
r— 1w,
(%wsyn) ~ X (535)

Woo
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From (S3.2), (S3.3), and (S3.5), and making the simpliffasgumption thawé@ = W for all i, we have

(m —1)by - 2
R 2PM b ) ~ 2 S3.6
<boo + woo/r| yn, W Xm—1 ( )
mir = Do, 2 (S3.7)
W syn Xm(r—l)‘ '

To obtain the conditional distribution @, we integrate (S3.4) over the distributions in (S3.6) ar@l{H

For largem andr, we can approximate this integral with a normal distribafisubstituting the approx-
imate expected values 6f, andw,, into the variance in (S3.4). For large andr, this variance simplifies
to T}, = unr + bar/m, So that the approximate normal distribution(ég; — @) ~ N(0,T}).

For smallm andr, we can use &-distribution for inferences(qy, — Q) ~ t,,(0,7},). The degrees
of freedomy, = (m — 1)(1 + miipr/bar)?. The degrees of freedom is derived by matching the first two
moments of v, (anr + bar/m))/(tnr + boo/m + Wee /(mr)) to an inverse chi-squared distribution with
degrees of freedom. The derivation is presented in Sectloa & this supplement.

SA. Derivation of approximate degrees of freedom
Here we derive the degrees of freedom for the approximatistributions for two stage fully and
partially synthetic data.

$4.1. Fully synthetic data
The key step is to approximate the distribution of

Vfo
<UM/(m7“) + (14 1/m)Boo + (1 +1/(mr))Wae | Dsy"> (S4.1)

as a chi-squared distribution withy degrees of freedom. The is determined by matching the mean and
variance of the inverteg? distribution to the mean and variance of (S4.1).

Lety = (Boo + Woo /7 + tins/7)/bar, and letd = (Wo + @ips)/wps. Making the approximation that
W) = Wi forall i, (7~ | bys) and (61 | w,,) have mean square distributions with degrees of freedom
m — 1 andm(r — 1), respectively. Substituting andé into (S4.1), the random variable is

Ty
apnt/(mr) + (1 4+ 1/m)(vbar — dwpr/r) + (1 + 1/ (mr))(6wp — ang)

(S4.2)

We need to approximate the expectation and variance of Y&h@ match them to a mean square
random variable withv; degrees of freedom. We write the expectation as

Ty
b (E (aM/<mr> T 1) (s — St ) - (L5 1/ () Gy —aiar) | 5)) ’

whereD,,,, is suppressed from both expectations for brevity. We apprate the expectations using first
order Taylor series expansions+m! andé—! around their expectations, which equal one. The approxima-
tion boils down to substituting ones forandd. After substitution, the denominator in (S4.2) approxietat
equalsT’y, and the expectation approximately equals one.

(S4.3)
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For the variance, we use the conditional variance repratent
Tf )
Var | E 1)
( (ﬂM/(W") + (14 1/m)(vbam — 0war/r) + (1 + 1/(mr))(6War — tnr) |
Tf )
+E (Var| = — — — o).
< <uM/(m7“) + (14 1/m)(ybar — dwpr/r) + (L + 1/(mr))(dwpr — tny) |
For the interior expectation and variance, we use first ofidgfor series expansions ! around its
expectation. The first term in (S4.4) approximately equals

(S4.4)

Ty
var <UM/(m7“) + (14 1/m)(bar — dwar/r) + (1 + 1/(mr))(6wpr — uM)> : (S4.5)
SinceVar(y~! | Dgyn,d) = 2/(m — 1), the second term in (S4.4) approximately equals
(2/(m = D)TF((1 +1/m)bar)?
3 <(UM/(mT) + (1 +1/m)(bar — dwar/7) + (1 + 1/(mr)) (0wns — UM))4> : (54.6)

We next approximate the variance in (S4.5) and the expeantaii(S4.6) using first order Taylor series
expansions i ! around its expectation. Sindéar (6~ | Dsy,) = 2/(m(r — 1)), the variance in (S4.5)

approximately equals
2/(m(r — D))TF((1 — 1/r)in)?

T ;} (S4.7)

The expectation in (S4.6) approximately equals

(2/(m = 1)TF((A +1/m)ba)?

7 (S4.8)

The variance in (S4.4) is approximately the sum of (S4.7) @w8). Since a mean square random
variable has variance equal to 2 divided by its degrees efifsen, we conclude that the

(@ ymb)? (= ynan)?)
”f_< (m—l)Tj?Vj * (m(r—l))%?) ' (54.9)

$4.2. Partially synthetic data
We approximate the distribution of

v, 1,
(uM sy DSW) (S4.10)

as a chi-squared distribution with, degrees of freedom. The, is determined by matching the mean and
variance of the inverteg? distribution to the mean and variance of (S4.10).
Let ¢ = (boo + Woo/7)/bar, and lety) = w., /wys. Making the approximation thalzé? = Wy for all
i, (971 | Dsyn, Woo) @and(vp~1 | D,y ) have mean square distributions with degrees of freegdiom 1 and
m(r — 1), respectively. We write the random variable in (S4.10) as
TP

PP g (S4.11)
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To match moments, we need to approximate the expectatiowatahce of (S4.11) and match them to a
mean square random variable withdegrees of freedom.
We write the expectation of (S4.11) as

T
E(E(——2 | D, @) | D ). S4.12

We approximate these expectations using first order Tagibes expansions it " and¢~! around their
expectations, which equal one. The approximation boilsrdtmvsubstituting one fop, as they never
enters the computations except in the conditioning argisnien ¢. After substitution, the denominator in
(S4.11) approximately equals,, and the expectation approximately equals one.

For the variance, we use the conditional variance repratent

T, T,
E(Var | —2—— | d",w D Var (B —2—— | dM,w Dy | -
( o <uM+¢bM/m 47 oo ) [ Dayn |+ Var | B o poo 147 @ ) | Dagn
(S4.13)
For the interior expectation and variance, we use first ofdgtor series expansions 1! and«~! around
their expectations. The interior expectation equals apprately one, so that the variance in the second

term equals zero. Sindéar (¢! | Dsyn, Woo) = 2/(m — 1), the interior variance in (S4.13) approximately

equals
2L, (/) _ 20 /m)?
’ <<m =)+ bar ) D) TRy (5419

Since a mean square random variable has variance equaitw@diby its degrees of freedom, we conclude
that

vp = (m — 1)(Tp/(bar/m))* = (m — 1)(1 + maias /bar)?. (S4.15)



