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This supplement contains the derivations of the inferential methods for two stage synthetic data. Sec-

tion S1 describes the notation used in the derivations. Section S2 presents the derivation of the inferential

methods for two-stage, fully synthetic data, which are described in Section 3.1 of the main text. Section

S3 presents the derivation of the inferential methods for two-stage, partially synthetic data, which are de-

scribed in Section 3.2 of the main text. Section S4 presents the derivations of the degrees of freedom for the

t-distributions used in inferences for two-stage syntheticdata.

S1. Notation

To begin, we repeat some notation used in both the full and partial synthesis cases. For a finite popu-

lation of sizeN , let Il = 1 if unit l is included in the survey, andIl = 0 otherwise, wherel = 1, . . . ,N .

Let I = (I1, . . . , IN ), and let the sample sizes =
∑

Il. LetX be theN × d matrix of sampling design

variables, e.g. stratum or cluster indicators or size measures. We assume thatX is known approximately

for the entire population, for example from census records or the sampling frame(s). LetY be theN × p

matrix of survey data for the population. LetYinc = (Yobs, Ymis) be thes × p sub-matrix ofY for all units

with Il = 1, whereYobs is the portion ofYinc that is observed andYmis is the portion ofYinc that is missing

due to nonresponse. LetR be anN × p matrix of indicators such thatRlk = 1 if the response for unitl to

itemk is recorded, andRlk = 0 otherwise. The observed data is thusDobs = (X,Yobs, I, R). LetYa be the

values simulated in stage 1, and letYb be the values simulated in stage 2.

S2. Inferences for two stage full synthesis

We suppose that the agency has generatedm partially completed populations as described in Section

3.1 of the main text. LetP (i,j) = (Dobs, Y
(i)
a , Y

(i,j)
b ) be a completed population, wherei = 1, . . . ,m

andj = 1, . . . , r. For each(i, j), let D(i,j) be a simple random sample fromP (i,j). TheseM samples,

Dsyn = {D(i,j) : i = 1, . . . ,m; j = 1, . . . , r}, are released to the public. Each releasedD(i,j) includes a

label indicating its value ofi, i.e. an indicator for its nest.

LetQ be the estimand of interest, such as a population mean or a regression coefficient. The analyst of

synthetic data seeksf(Q|Dsyn). The three-step process for creatingDsyn described in Section 3.1 of the
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main text suggests that

f(Q|Dsyn) =

∫

f(Q|Dobs, Psyn,Dsyn)f(Dobs|Psyn,Dsyn)f(Psyn|Dsyn)dDobsdPsyn, (S2.1)

wherePsyn = {P (i,j) : i = 1, . . . ,m; j = 1, . . . , r}. For all derivations in this section, we assume that

the analyst’s distributions are identical to those used by the agency for creatingDsyn. We also assume that

the sample sizes are large enough to permit normal approximations for these distributions. Thus, we require

only the first two moments for each distribution, which we derive using standard large sample Bayesian

arguments. Diffuse priors are assumed for all parameters.

To begin, the synthetic data are irrelevant for inference about Q given the observed data, so that

f(Q|Dobs, Psyn,Dsyn) = f(Q|Dobs). We assume that

(Q|Dobs) ∼ N(Qobs, Uobs), (S2.2)

whereQobs andUobs are the estimates of the mean and variance computed fromDobs if it were released. We

note that onlyQ needs to have a normal distribution, not the dataY itself.

TheDsyn is irrelevant givenPsyn, so thatf(Dobs|Psyn,Dsyn) = f(Dobs|Psyn). Because inferences

for Q depend only onQobs andUobs, it is sufficient to determinef(Qobs, Uobs|Psyn). Let Q(i,j) be the

estimate ofQ in populationP (i,j). Let Q̄(i)
r =

∑

j Q
(i,j)/r, andQ̄M =

∑

i Q̄
(i)
r /m. LetBM =

∑

i(Q̄
(i)
r −

Q̄M )2/(m− 1), andW (i)
r =

∑

j(Q
(i,j) − Q̄

(i)
r )2/(r− 1). We assume the following sampling distributions:

(

Q̄(i)
∞
|Dobs, B∞

)

∼ N(Qobs, B∞) (S2.3)
(

Q(i,j)|Q̄(i)
∞
,W (i)

∞

)

∼ N(Q̄(i)
∞
,W (i)

∞
) (S2.4)

whereQ̄(i)
∞ ,W (i)

∞ , andB∞ are the limits of the corresponding finite-sum quantities asm→ ∞ andr → ∞.

The process of repeatedly completing populations and estimatingQ in this nested manner is equivalent to

simulating the posterior distribution ofQ. Hence,Uobs = B∞ + W̄∞, whereW̄∞ = lim
∑

iW
(i)
∞ /m as

m→ ∞. From (S2.2), (S2.3), and (S2.4), for finitem andr we have
(

Q|Psyn, B∞,W
(1)
∞
, . . . ,W (m)

∞

)

∼ N(Q̄M , (1 + 1/m)B∞ + (1 + 1/(mr))W̄∞). (S2.5)

We also have

(

(m− 1)BM/(B∞ + W̄∞/r)|Psyn, W̄∞

)

∼ χ2
m−1 (S2.6)

(

(r − 1)W (i)
r /W (i)

∞
|Psyn

)

∼ χ2
r−1. (S2.7)

The posterior distribution ofQ conditioning onPsyn alone is found by integrating (S2.5) over the distribu-

tions in (S2.6) and (S2.7).

In general, releasingPsyn is impractical for agencies, as it could require releasingM data files of

very large sizeN . We therefore take random samples of sizensyn from each population, i.e.D(i,j). We

require the distributions of̄QM , B∞, and eachW (i)
∞ conditional onDsyn. For all (i, j), let q(i,j) be the

estimate ofQ(i,j), and letu(i,j) be the estimate of the variance associated withq(i,j). Theq(i,j) andu(i,j)
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are computed based on the design used to sample fromP (i,j). Note that whennsyn = N , u(i,j) = 0. Let

q̄
(i)
r =

∑

j q
(i,j)/r, andq̄M =

∑

i q̄
(i)
r /m. Let bM =

∑

i(q̄
(i)
r − q̄M)2/(m − 1), andw(i)

r =
∑

j(q
(i,j) −

q̄
(i)
r )2/(r − 1). Finally, let ūM =

∑

i,j u
(i,j)/(mr).

For largensyn, we assume the sampling distribution of each(q(i,j)|P
(i)
syn) isN(Q(i,j), U (i)), whereU (i)

is an implied sampling variance. We further assume that the sampling variability in theu(i,j) is negligible,

so thatu(i,j) ≈ U (i). We also make the simplifying assumption that the variability in U (i) across nests is

small, so thatU (i) ≈
∑

U (i)/m. Thus, we have

(q(i,j)|P (i)
syn) ∼ N(Q(i,j), ūM ). (S2.8)

Using the standard Bayesian arguments based on these sampling distributions, we have
(

Q̄(i)|q̄(i)r , ūM

)

∼ N(q̄(i)r , ūM/r) (S2.9)

and
(

Q̄M |Dsyn

)

∼ N(q̄M , ūM/(mr)). (S2.10)

To obtain the conditional distributions ofB∞ and eachW (i)
∞ , we use an analysis of variance setup.

From (S2.4) and (S2.8), we have
(

(r − 1)w
(i)
r

W
(i)
∞ + ūM

|Dsyn

)

∼ χ2
r−1. (S2.11)

From (S2.3), (S2.4), and (S2.8), and making the simplifyingassumption thatW (i)
∞ = W̄∞ for all i, we have

(

(m− 1)bM
B∞ + W̄∞/r + ūM/r

|Dsyn, W̄∞

)

∼ χ2
m−1 (S2.12)

(

m(r − 1)w̄M

W̄∞ + ūM

|Dsyn

)

∼ χ2
m(r−1) (S2.13)

wherew̄M =
∑

iw
(i)
r /m.

To obtain the conditional distribution ofQ givenDsyn, we integrate the distribution in (S2.5) with

respect to the distributions of̄QM ,B∞, and theW (i)
∞ in (S2.10), (S2.12), and (S2.13). This can be done via

numerical integration. For example, analysts can take the following steps after computinḡqM , bM , w̄M , and

ūM from the released datasets.

1. Draw a value ofW̄∞, sayW̄ ∗

∞
, from the chi-squared distribution in (S2.13). That is, draw a valuec

from a chi-squared distribution withm(r − 1) degrees of freedom, and takēW ∗

∞
= (m(r − 1)w̄M −

cūM )/c.

2. GivenW̄ ∗

∞
, draw a value ofB∞, sayB∗

∞
, from the chi-squared distribution in (S2.12). That is,

draw a valued from a chi-squared distribution with(m − 1) degrees of freedom, and takēB∗

∞
=

((m− 1)bM − d(W̄ ∗

∞
/r + ūM/r))/d.

3. Draw a value ofQ̄M , sayQ̄∗

M , from the normal distribution in (S2.10).

4. GivenW̄ ∗

∞
, B∗

∞
andQ̄∗

M , draw a value ofQ, sayQ∗, from the normal distribution in (S2.5).
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5. Store the value ofQ∗, and repeat steps 1 - 4 independently a large number of times,say 10000 times.

The resulting draws ofQ are samples from the posterior distribution in (S2.1), subject to the conditions

needed for (S2.2) – (S2.13). We note that, for scalarQ, this integral can be computed even ifm or r is small.

The normality assumptions underpinning (S2.2) – (S2.13) come from large sample Bayesian arguments,

where the relevant sample sizes aren andnsyn, notm orM .

Instead of direct simulation, some analysts may desire a straightforward approximation usingDsyn.

For largem andr, we can approximatef(Q|Dsyn) by a normal distribution with meanE(Q|Dsyn) and

varianceV ar(Q|Dsyn). Using (S2.5) and (S2.10), we have

E(Q|Dsyn) = E[E(Q|Q̄M )|Dsyn] = E(Q̄M |Dsyn) = q̄M . (S2.14)

Similarly,

V ar(Q|Dsyn) = E[V ar(Q|Psyn, B∞, W̄∞)|Dsyn] + V ar[E(Q|Psyn, B∞, W̄∞)|Dsyn]

= (1 +m−1)E(B∞|Dsyn) + (1 + 1/(mr))E(W̄∞|Dsyn) + ūM/(mr). (S2.15)

Based on (S2.12) and (S2.13), we approximate the expectations in (S2.15) asE(W̄∞|Dsyn) ≈ w̄M − ūM

andE(B∞|Dsyn) ≈ bM − w̄M/r. Substituting these approximate expectations in (S2.15),we have

V ar(Q|Dsyn) ≈ (1 +m−1)(bM − w̄M/r) + (1 + 1/(mr))(w̄M − ūM ) + ūM/(mr)

= (1 +m−1)bM + (1 − 1/r)w̄M − ūM = Tf . (S2.16)

For modestm and r, we obtain inferences by using at-distribution, (q̄M − Q) ∼ tνf
(0, Tf ). The

degrees of freedom,νf , equal

νf =

(

((1 + 1/m)bM )2

(m− 1)T 2
f

+
((1 − 1/r)w̄M )2

(m(r − 1))T 2
f

)

−1

.

The degrees of freedom is derived by matching the first two moments of (νfTf )/(ūM/(mr) + (1 +

1/m)B∞ + (1 + 1/(mr))W̄∞) to an inverse chi-squared distribution withνf degrees of freedom. The

derivation is presented in Section S4.1 of this supplement.

When the normality assumptions underpinning (S2.2) – (S2.13), specifically those in (S2.2) – (S2.4)

and (S2.8), do not hold, neither the posterior simulation approach nor thet-approximation result in valid

inferences. In general, multiple imputation approaches with modestM (or m in one stage multiple impu-

tation) are not adequate for inference about quantities with asymmetric posterior distributions. Fortunately,

with large sample sizesn andnsyn, as is expected to be the case for multiple imputation for disclosure

limitation, these normality assumptions are usually reasonable.

When (S2.2) – (S2.4) and (S2.8) do not hold, the analyst need either: (i) apply for special access to the

genuine data, or (ii) simulate more synthetic datasets if the agency provides sufficient meta-data to do so,

e.g., the agency provides a program that simulates datasetsin the same way used to generateDsyn. This type

of detailed meta-data may not be available in practice. Agencies that provide a data simulator essentially

release the exact values of the parameters of the imputationmodel, which could represent a disclosure risk.
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For example, if categorical data are simulated from a log-linear model, the exact values of the parameters

could be used to determine the counts in the cells of the observed data contingency table. A more likely

scenario is that the agency releases descriptions of the synthesis model, or the synthesis code itself, without

the distributions of the parameters of the synthesis models(which are estimated withDobs). Given this

meta-data, it may be possible for the analyst to estimate theparameters of the synthesis model fromDsyn

and then simulate additional datasets. The properties of this approach have not been investigated. However,

these inferences clearly would have larger uncertainty than those based on a data simulator, because of the

additional variance due to estimating the imputation modelparameters with modestm.

Even when (S2.2) – (S2.13) are reasonable, it is possible that Tf < 0, which causes problems for

inferences. This occurs because of high variability in the estimates ofB∞ andW̄∞. Problems tend to arise

more with estimation ofB∞ than withW̄∞. We havem(r − 1) degrees of freedom to estimatēW∞, and

only (m−1) degrees of freedom to estimateB∞. We note that negative variance estimates are not a problem

with direct posterior simulation.

S3. Inference for two stage partial synthesis

To obtain inferences from nested partially synthetic data,we assume the analyst acts as if eachD(i,j) is

a sample according to the original design. We require the integral,

f(Q|Dsyn) =

∫

f(Q|Dobs,Dsyn)f(Dobs|Dsyn)dDobs. (S3.1)

Unlike in fully synthetic data, there is no intermediate step of completing populations. Letq(i,j), q̄(i)r ,

q̄M , bM , and thew(i)
r be defined as in the previous section. Defineq̄

(i)
∞ = lim q̄

(i)
r , b∞ = lim bM , and

w
(i)
∞ = limw

(i)
r asm→ ∞ andr → ∞.

With large samples, we assume again thatf(Q|Dobs) = N(Qobs, Uobs). We assume that the sampling

distributions of the synthetic data point estimators are

(

q̄(i)
∞
|Dobs, b∞

)

∼ N(Qobs, b∞) (S3.2)
(

q(i,j)|Dobs, q̄
(i)
∞
, w(i)

∞

)

∼ N(q̄(i)
∞
, w(i)

∞
). (S3.3)

When coupled with (S2.2) and diffuse priors on all parameters, (S3.2) and (S3.3) imply that

(

Q|Dsyn, b∞, w
(1)
∞
, . . . , w(m)

∞

)

∼ N(q̄M , Uobs + b∞/m+ w̄∞/(mr)). (S3.4)

Since theYa andYb are simulated from their conditional distributions, eachu(i,j) approximatesUobs. We

assume that eachu(i,j) has low variability, so thatu(i,j) ≈ ūM ≈ Uobs.

The posterior distributions ofb∞ and eachw(i)
∞ are obtained from an analysis of variance setup. From

(S3.3), we have
(

(r − 1)w
(i)
r

w
(i)
∞

|Dsyn

)

∼ χ2
r−1. (S3.5)
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From (S3.2), (S3.3), and (S3.5), and making the simplifyingassumption thatw(i)
∞ = w̄∞ for all i, we have

(

(m− 1)bM
b∞ + w̄∞/r

|Dsyn, w̄∞

)

∼ χ2
m−1 (S3.6)

(

m(r − 1)w̄M

w̄∞

|Dsyn

)

∼ χ2
m(r−1). (S3.7)

To obtain the conditional distribution ofQ, we integrate (S3.4) over the distributions in (S3.6) and (S3.7).

For largem andr, we can approximate this integral with a normal distribution, substituting the approx-

imate expected values ofb∞ andw̄∞ into the variance in (S3.4). For largem andr, this variance simplifies

to Tp = ūM + bM/m, so that the approximate normal distribution is(q̄M −Q) ∼ N(0, Tp).

For smallm andr, we can use at-distribution for inferences,(q̄M − Q) ∼ tνp(0, Tp). The degrees

of freedomνp = (m − 1)(1 + mūM/bM )2. The degrees of freedom is derived by matching the first two

moments of(νp(ūM + bM/m))/(ūM + b∞/m+ w̄∞/(mr)) to an inverse chi-squared distribution withνp

degrees of freedom. The derivation is presented in Section S4.2 of this supplement.

S4. Derivation of approximate degrees of freedom

Here we derive the degrees of freedom for the approximatet-distributions for two stage fully and

partially synthetic data.

S4.1. Fully synthetic data

The key step is to approximate the distribution of

(

νfTf

ūM/(mr) + (1 + 1/m)B∞ + (1 + 1/(mr))W̄∞

| Dsyn

)

(S4.1)

as a chi-squared distribution withνf degrees of freedom. Theνf is determined by matching the mean and

variance of the invertedχ2 distribution to the mean and variance of (S4.1).

Let γ = (B∞ + W̄∞/r + ūM/r)/bM , and letδ = (W̄∞ + ūM )/w̄M . Making the approximation that

W
(i)
∞ = W̄∞ for all i, (γ−1 | bM ) and(δ−1 | w̄M ) have mean square distributions with degrees of freedom

m− 1 andm(r − 1), respectively. Substitutingγ andδ into (S4.1), the random variable is

Tf

ūM/(mr) + (1 + 1/m)(γbM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM )
. (S4.2)

We need to approximate the expectation and variance of (S4.2) and match them to a mean square

random variable withνf degrees of freedom. We write the expectation as

E

(

E

(

Tf

ūM/(mr) + (1 + 1/m)(γbM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM )
| δ

))

, (S4.3)

whereDsyn is suppressed from both expectations for brevity. We approximate the expectations using first

order Taylor series expansions inγ−1 andδ−1 around their expectations, which equal one. The approxima-

tion boils down to substituting ones forγ andδ. After substitution, the denominator in (S4.2) approximately

equalsTf , and the expectation approximately equals one.
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For the variance, we use the conditional variance representation

V ar

(

E

(

Tf

ūM/(mr) + (1 + 1/m)(γbM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM )
| δ

))

+E

(

V ar

(

Tf

ūM/(mr) + (1 + 1/m)(γbM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM )
| δ

))

. (S4.4)

For the interior expectation and variance, we use first orderTaylor series expansions inγ−1 around its

expectation. The first term in (S4.4) approximately equals

V ar

(

Tf

ūM/(mr) + (1 + 1/m)(bM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM )

)

. (S4.5)

SinceV ar(γ−1 | Dsyn, δ) = 2/(m− 1), the second term in (S4.4) approximately equals

E

(

(2/(m− 1))T 2
f ((1 + 1/m)bM )2

(ūM/(mr) + (1 + 1/m)(bM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM ))4

)

. (S4.6)

We next approximate the variance in (S4.5) and the expectation in (S4.6) using first order Taylor series

expansions inδ−1 around its expectation. SinceV ar(δ−1 | Dsyn) = 2/(m(r − 1)), the variance in (S4.5)

approximately equals
2/(m(r − 1))T 2

f ((1 − 1/r)w̄M )2

T 4
f

. (S4.7)

The expectation in (S4.6) approximately equals

(2/(m − 1))T 2
f ((1 + 1/m)bM )2

T 4
f

. (S4.8)

The variance in (S4.4) is approximately the sum of (S4.7) and(S4.8). Since a mean square random

variable has variance equal to 2 divided by its degrees of freedom, we conclude that the

νf =

(

((1 + 1/m)bM )2

(m− 1)T 2
f

+
((1 − 1/r)w̄M )2

(m(r − 1))T 2
f

)

−1

. (S4.9)

S4.2. Partially synthetic data

We approximate the distribution of
(

νpTp

ūM + b∞/m+ w̄∞/(mr)
| Dsyn

)

(S4.10)

as a chi-squared distribution withνp degrees of freedom. Theνp is determined by matching the mean and

variance of the invertedχ2 distribution to the mean and variance of (S4.10).

Let φ = (b∞ + w̄∞/r)/bM , and letψ = w̄∞/w̄M . Making the approximation thatw(i)
∞ = w̄∞ for all

i, (φ−1 | Dsyn, w̄∞) and(ψ−1 | Dsyn) have mean square distributions with degrees of freedomm− 1 and

m(r − 1), respectively. We write the random variable in (S4.10) as

Tp

ūM + φbM/m
. (S4.11)
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To match moments, we need to approximate the expectation andvariance of (S4.11) and match them to a

mean square random variable withνp degrees of freedom.

We write the expectation of (S4.11) as

E

(

E

(

Tp

ūM + φbM/m
| Dsyn, w̄∞

)

| Dsyn

)

. (S4.12)

We approximate these expectations using first order Taylor series expansions inψ−1 andφ−1 around their

expectations, which equal one. The approximation boils down to substituting one forφ, as theψ never

enters the computations except in the conditioning arguments for φ. After substitution, the denominator in

(S4.11) approximately equalsTp, and the expectation approximately equals one.

For the variance, we use the conditional variance representation

E

(

V ar

(

Tp

ūM + φbM/m
| dM , w̄∞

)

| Dsyn

)

+ V ar

(

E

(

Tp

ūM + φbM/m
| dM , w̄∞

)

| Dsyn

)

.

(S4.13)

For the interior expectation and variance, we use first orderTaylor series expansions inφ−1 andψ−1 around

their expectations. The interior expectation equals approximately one, so that the variance in the second

term equals zero. SinceV ar(φ−1 | Dsyn, w̄∞) = 2/(m−1), the interior variance in (S4.13) approximately

equals

E

(

2T 2
p (bM/m)2

(m− 1)(ūM + bM/m)4
| Dsyn

)

=
2(bM/m)2

(m− 1)T 2
p

. (S4.14)

Since a mean square random variable has variance equal to 2 divided by its degrees of freedom, we conclude

that

νp = (m− 1)(Tp/(bM/m))2 = (m− 1)(1 +mūM/bM )2. (S4.15)


