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Abstract: Estimating tail dependence functions is important for applications of

multivariate extreme value theory, and only a fraction of the upper order statistics

are involved in the estimation. How to choose the sample fraction or threshold

is of importance in practice. Motivated by the recent methodologies on threshold

selection for a tail index in Guillou and Hall (2001) and Peng (2009a), we apply the

idea in Peng (2009a) to obtain a data-driven method for choosing the threshold in

estimating a tail dependence function. Further we propose a simple bias-reduction

estimator, and the combination of the bias-reduction estimator with the thresh-

old selection procedure gives a satisfactory way of estimating a tail dependence

function. This is supported by a simulation study. Moreover, a sub-sample boot-

strap method is proposed to construct a confidence interval for a tail dependence

function.
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1. Introduction

Suppose (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed
random variables with continuous distribution function F (x, y). Let F1(x) :=
F (x,∞) and F2(y) := F (∞, y) denote the marginal distribution functions. Bi-
variate extreme value theory is mainly based on the assumption that there exist
constants an > 0, cn > 0, bn ∈ R, dn ∈ R such that

lim
n→∞

P

(
∨n

i=1Xi − bn

an
≤ x,

∨n
i=1Yi − dn

cn
≤ y

)
= G(x, y) (1.1)

for all x, y ∈ R, where G is a continuous distribution function. Under the setup of
(1.1), one can estimate the probability of a rare event; see De Haan and de Ronde
(1998), and De Haan and Sinha (1999). An important step is to divide (1.1) into
marginal conditions and dependence function, that is, (1.1) is equivalent to

lim
n→∞

P
(∨n

i=1Xi − bn

an
≤ x

)
= G(x,∞)

lim
n→∞

P
(∨n

i=1Yi − dn

cn
≤ y

)
= G(∞, y)

(1.2)
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and
lim
t→0

t−1
{

1 − F (F−
1 (1 − tx), F−

2 (1 − ty))
}

= l(x, y) (1.3)

for all x ≥ 0, y ≥ 0, where F−
i denotes the inverse function of Fi and

l(x, y) = − log G
(
(− log G1)−(x), (− log G2)−(y)

)
(see De Haan and Ferreira (2006)). Hence, estimating the tail dependence func-
tion l(x, y) is of importance. Note that the tail copula is defined as

lim
t→0

t−1P (F1(X1) ≥ 1 − tx, F2(Y1) ≥ 1 − ty),

which equals x + y − l(x, y). Thus methods for estimating the tail dependence
function can be used to estimate the tail copula straightforwardly. For the ap-
plications of tail copulas to risk management, we refer to McNeil, Frey and Em-
brechts (2005).

There are some studies on estimation and construction of confidence in-
tervals and bands for a tail dependence function l(x, y). For example, Huang
(1992), Einmahl, de Haan and Huang (1993), De Haan and Resnick (1993), and
Schmidt and Stadtmüller (2006) estimated l(x, y) nonparametrically; Einmahl,
de Haan and Piterbarg (2001) and Einmahl, de Haan and Sinha (1997) estimated
a so-called spectral measure nonparametrically, this is closely related to l(x, y);
Drees and Huang (1998) obtained the best convergence rate for estimating l(x, y)
nonparametrically; Tawn (1988) studied parametric models and estimation for
l(x, y); Peng and Qi (2007) studied the estimation of partial derivatives of l(x, y)
and constructed confidence intervals for l(x, y); Peng and Qi (2008) constructed a
bootstrap confidence band for l(x, y); Einmahl, de Haan and Li (2006) provided a
weighted approximation for l(x, y); De Haan, Neves and Peng (2008) studied the
maximum likelihood estimation and goodness-of-fit tests for a parametric model
of a tail dependence function. All these studies focus on the case of asymp-
totic dependence, i.e., l(x, y) 6= x + y. In case of asymptotic independence, i.e.,
l(x, y) = x + y, more conditions than (1.1) are needed in order to estimate the
probability of a rare event. We refer to Ledford and Tawn (1997) for parametric
models and inference on the case of asymptotic independence.

Since the tail dependence function l(x, y) is defined as a limit, estimation can
only involve a fraction of upper order statistics, for example, the tail empirical
distribution function

l̂n(x, y; k) =
1
k

n∑
i=1

I
(
Xi ≥ Xn,n−[kx] or Yi ≥ Yn,n−[ky]

)
, (1.4)

where Xn,1 ≤ · · · ≤ Xn,n denote the order statistics of X1, . . . , Xn, Yn,1 ≤ · · · ≤
Yn,n denote the order statistics of Y1, . . . , Yn, and k = k(n) → ∞ and k/n → 0
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as n → ∞. An important question is how to choose the sample fraction k.
Peng (1998) proposed a sub-sample bootstrap method to choose the optimal k

in terms of asymptotic mean squared error; this was applied by Einmahl, Li and
Liu (2009) to some data sets.

Motivated by the recent approaches in Guillou and Hall (2001) and Peng
(2009a) on selecting threshold for a tail index, we propose a similar method
for selecting the sample fraction in estimating a tail dependence function, and
further propose a bias-reduction estimator with k selected by the new method; see
Section 2 for details. Moreover, Section 2 gives a sub-sample bootstrap method to
construct confidence intervals for a tail dependence function. Although the idea
presented here is designed for tail dependence functions, extension to broader
settings such as bandwidth selection for nonparametric smoothing, is possible.
In Section 3, we investigate the finite sample behavior of the proposed methods.
Proofs are given in Section 4.

2. Methodologies

We focus on the simple estimator l̂n(x, y; k) given in (1.4). Like tail index
estimation, when k is small, the variance of l̂n(x, y; k) is large. On the other
hand, the bias of l̂n(x, y; k) becomes large when k is big. Hence, the optimal
choice of k is to minimize the asymptotic mean squared error of l̂n(x, y; k). To
obtain an expression of the asymptotic mean squared error, we assume there
exists a regular variation A(t) at zero with index ρ > 0 (notation: A(t) ∈ RV 0

ρ ),
i.e., limt→0 A(tx)/A(t) = xρ for all x > 0, such that

lim
t→0

t−1{1 − F (F−
1 (1 − tx), F−

2 (1 − ty))} − l(x, y)
A(t)

= σ(x, y) (2.1)

holds uniformly on F = {(x, y) : x ≥ 0, y ≥ 0, x2 + y2 = 1}, where σ(x, y) is
non-constant and not a multiple of l(x, y). Under (2.1) and the assumptions that

k → ∞,
k

n
→ 0,

√
kA

(k

n

)
→ λ ∈ (−∞,∞) (2.2)

as n → ∞, one can show that
√

k
{

l̂n(x, y; k) − l(x, y)
}

D→ λσ(x, y) + B(x, y) (2.3)

in D([0,∞)2). Here

B(x, y) = W (x, y) − l1(x, y)W (x, 0) − l2(x, y)W (0, y),

l1(x, y) =
∂

∂x
l(x, y), l2(x, y) =

∂

∂y
l(x, y)
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and W (x, y) is a Gaussian process with zero mean and covariance structure

E{W (x1, y1)W (x2, y2)} = l(x1 ∧ x2, y1) + l(x1 ∧ x2, y2) + l(x1, y1 ∧ y2)
+l(x2, y1 ∧ y2) − l(x1, y2) − l(x2, y1)
−l(x1 ∧ x2, y1 ∧ y2). (2.4)

See the proofs in Huang (1992) or Schmidt and Stadtmüller (2006).
Based on (2.3), one could minimize the asymptotic mean squared error of

l̂n(x, y; k) to obtain an optimal choice of k. Since this choice depends on sev-
eral unknown quantities and estimating those quantities is not easy, Peng (1998)
proposed a two-step sub-sample bootstrap method, that requires a large sample
size. Instead of achieving the minimal asymptotic mean squared error, Guillou
and Hall (2001) proposed a different way of choosing a sample fraction. The key
idea is to find a sample fraction as large as possible while keeping the rate of the
optimal one. This can result in a larger asymptotic mean squared error. More-
over their procedure is designed for Hill’s estimator because a special structure
property of it is employed. Recently, Peng (2009a) generalized the idea in Guillou
and Hall (2001) to any statistic whose minimal asymptotic second moment is of
the same order as the minimal asymptotic mean squared error. Since this choice
results in a larger bias, it was further proposed to use a bias-reduction estimator.
Therefore, a bias-reduction estimator with the data-driven chosen k can be used
for both point estimation and interval estimation for a tail index. It is known
that a tail index estimator with its optimal choice of k can’t be employed to
obtain a confidence interval directly.

Here we propose to apply the idea in Peng (2009a) to estimating the tail
dependence function l(x, y). First we need to construct a statistic whose second
moment has the same order as the minimal asymptotic mean squared error of
l̂n(x, y; k).

Under conditions (2.1) and (2.2), it follows from (2.3) that
√

k

{
l̂n(x, y; k) − 2l̂n

(x

2
,
y

2
; k

)}
D→ λσ(x, y) + B(x, y) − 2λσ

(x

2
,
y

2

)
− 2B

(x

2
,
y

2

)
= {1 − 2−ρ}λσ(x, y) + B(x, y) − 2B

(x

2
,
y

2

)
, (2.5)

since A(t) ∈ RV 0
ρ implies that

σ(ax, ay) = aρ+1σ(x, y) for any a > 0. (2.6)

Hence, for fixed x, y > 0
√

k

{
l̂n(x, y; k) − 2l̂n

(x

2
,
y

2
; k

)}
d→ N

(
(1 − 2−ρ)λσ(x, y), r1(x, y)

)
, (2.7)
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where

r1(x, y) = l(x, y) + xl21(x, y) + yl22(x, y)

+l1(x, y)l2(x, y)
{
− 6l(x, y) + 4l

(
x,

y

2

)
+ 4l

(x

2
, y

)}
+l1(x, y)

{
2l(x, y)−4l

(
x,

y

2

)}
+ l2(x, y)

{
2l(x, y)−4l

(x

2
, y

)}
. (2.8)

By (2.3) and (2.7), we conclude that minimal asymptotic second moment of
l̂n(x, y; k)− 2l̂n(x/2, y/2; k) has the same order as the minimal asymptotic mean
squared error of l̂n(x, y; k).

Next we have to standardize the statistic l̂n(x, y; k) − 2l̂n(x/2, y/2; k) to es-
timate the asymptotic variance. For estimating l1(x, y) and l2(x, y), we employ
the estimators, via spectral measure, in Peng and Qi (2007) that are defined as l̂1(x, y; k) =

∫ π/2
arctan(y/x) min{1, tan θ}Φ̂(dθ; k),

l̂2(x, y; k) =
∫ arctan(y/x)
0 min{1, cot θ}Φ̂(dθ; k),

(2.9)

where

Φ̂(θ; k) =
1
k

n∑
i=1

I
(
R(Xi)∨R(Yi) ≥ n+1−k, n+1−R(Yi) ≤ (n+1−R(Xi)) tan θ

)
.

Here R(Xi) denotes the rank of Xi among X1, . . . , Xn, and R(Yi) denotes the
rank of Yi among Y1, . . . , Yn. Then we can estimate r1(x, y) by r̂1(x, y; k), which
replaces l(x, y), l(x/2, y), l(x, y/2), l1(x, y), and l2(x, y) in (2.8) by l̂n(x, y; k),
l̂n(x/2, y; k), l̂n(x, y/2; k), l̂1(x, y; k) and l̂2(x, y; k), respectively. For a given γ ∈
(0, 1), define zγ by P (|N(0, 1)| ≤ zγ) = γ. Then, it follows from (2.7) that

P

(∣∣∣∣√k
l̂n(x, y; k) − 2l̂n(x/2, y/2; k)√

r̂1(x, y; (log n)2)

∣∣∣∣ < zγ

)
→ γ

when λ = 0. Obviously, when λ = ∞, i.e., k is very large, we have

P

(∣∣∣∣√k
l̂n(x, y; k) − 2l̂n(x/2, y/2; k)√

r̂1(x, y; (log n)2)

∣∣∣∣ > zγ

)
→ 1.

Then, starting with k = n − 1 until∣∣∣∣√k
l̂n(x, y; k) − 2l̂n(x/2, y/2; k)√

r̂1(x, y; (log n)2)

∣∣∣∣ < zγ
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may ensure that k satisfies (2.2). So, like Peng (2009a), we choose k as

k̂ = inf

{
k :

∣∣∣∣√m
l̂n(x, y; m) − 2l̂n(x/2, y/2;m)√

r̂1(x, y; (log n)2)

∣∣∣∣ ≥ zγ for all m ≥ k

and m∈
[
n2ρn/(1+2ρn) ∧(0.01n)+1, n0.99 ∨

(
n2ρn/(1+2ρn) log n

)
∧ n−1

]}
,(2.10)

where, for δ ∈ (0, 1),

ρn =(log 2)−1

∣∣∣∣∣log
∣∣∣∣ l̂n(x, y; n exp{−(log n)δ})−2l̂n(x

2 , y
2 ; n exp{−(log n)δ})

l̂n(x, y; 2−1n exp{−(log n)δ})−2l̂n(x
2 , y

2 ; 2−1n exp{−(log n)δ})

∣∣∣∣
∣∣∣∣∣

is a consistent estimator of the regular variation index of function A(t) defined
in (2.1).

Theorem 1. Suppose (2.1) holds and

sup
(x,y)∈F

∣∣∣∣ t−1{1 − F (F−
1 (1 − tx), F−

2 (1 − ty))}−l(x, y)
A(t)

− σ(x, y)
∣∣∣∣ = O(tβ) (2.11)

for some β > 0. Then for any fixed x, y > 0

k̂

n2ρ/(1+2ρ)

d→ τ̂ := inf
{

t ≥ 1 : |Ẑ(u)| ≥ zγ for all u ≥ t
}

, (2.12)

√
k̂
{
l̂n(x, y; k̂) − l(x, y)

}
d→ τ̂ρ+1/2λ0σ(x, y) + τ̂−1/2

{
W (xτ̂ , yτ̂)

−l1(x, y)W (xτ̂ , 0) − l2(x, y)W (0, yτ̂)
}

, (2.13)

where

Ẑ(u) = uρ+1/2(1 − 2−ρ)
λ0σ(x, y)√

r1(x, y)

+u−1/2
{

W (xu, yu)−l1(x, y)W (xu, 0)−l2(x, y)W (0, yu)−2W (
xu

2
,
yu

2
)

+2l1(x, y)W (
xu

2
, 0)+2l2(x, y)W (0,

yu

2
)
}

(r1(x, y))−1/2, (2.14)

W is given in (2.4), and limn→∞ nρ/(1+ρ)A(n1/(1+2ρ)) = λ0.

Since (2.12) implies that P (k̂/n2ρ/(1+2ρ) > 1) > 0, it is better to employ
a bias-reduction estimator instead of l̂n(x, y; k̂). Here we propose the simple
bias-reduction estimator

l̃n(x, y; k̂) = l̂n(x, y; k̂) −
{

l̂n(x, y; k̂) − 2l̂n

(x

2
,
y

2
; k̂

)}
(1 − 2−ρ̂)−1, (2.15)
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where

ρ̂ =
log k̂/2

log n − log k̂
. (2.16)

We remark that our approach works for any bias-reduction estimator although
we are not aware of others.

Theorem 2. Under conditions of Theorem 1, we have√
k̂{l̃n(x, y; k̂) − l(x, y)}
d→ τ̂−1/2

{
W (xτ̂ , yτ̂) − l1(x, y)W (xτ̂ , 0) − l2(x, y)W (0, yτ̂)

}
−τ̂−1/2

{
W (xτ̂ , yτ̂)−l1(x, y)W (xτ̂ , 0)−l2(x, y)W (0, yτ̂)

−2W (
xτ̂

2
,
yτ̂

2
)−2l1(x, y)W (

xτ̂

2
, 0)−2l2(x, y)W (0,

yτ̂

2
)
}

(1 − 2−ρ)−1 (2.17)

for any fixed x, y > 0.

Remark 1. Recently, Klüppelberg, Kuhn and Peng (2008) proposed the use
of elliptical copulas to model tail copulas, which results in an effective way of
dealing with the dimensionality of multivariate extremes. The estimation pro-
cedure proposed there depends on the estimation of l(1, 1), and the choice of
threshold is taken as the same one in estimating l(1, 1). Hence the estimator
l̃(1, 1; k̂) above can be applied to solve the open issue of threshold selection in
Klüppelberg, Kuhn and Peng (2008). More details are given in Peng (2009b).

Like Peng (2009a), based on Theorem 2, we propose the following bootstrap
method to construct a confidence interval for l(x, y) with level γ0, as follows.

Take n1 (= n1(n) → ∞ and n1/n → 0 as n → ∞) and draw a random
sample of size n1 from {(X1, Y1), . . . , (Xn, Yn)} with replacement, say (X∗

1 , Y ∗
1 ),

. . . , (X∗
n1

, Y ∗
n1

). Based on this bootstrap sample, we compute the corresponding
k̂ and l̃n(x, y; k̂), say k̂∗ and l̃∗n(x, y; k̂∗). Hence, we have the bootstrap statistic
S∗ =

√
k̂∗{l̃∗n(x, y; k̂∗) − l̃n(x, y; k̂)}. Repeating this procedure M times, we

obtain M bootstrap statistics, say S∗
1 , . . . , S∗

M . Due to the randomness of k̂ and
the skewness of the limit in (2.17), we propose to employ log((S∗)2) instead of
S∗. Put T ∗

i = log((S∗
i )2) for i = 1, . . . ,M , and let T ∗

M,1 ≤ · · · ≤ T ∗
M,M denote the

order statistics of T ∗
1 , . . . , T ∗

M . Hence a confidence interval for l(x, y) with level
γ0 is (

a + l̃n(x, y; k̂), b + l̃n(x, y; k̂)
)
∪

(
− b + l̃n(x, y; k̂),−a + l̃n(x, y; k̂)

)
,

where

a = (k̂)−1/2 exp
{

1
2
T ∗

M,[(1−γ0)M/2]

}
and b = (k̂)−1/2 exp

{
1
2
T ∗

M,[(1+γ0)M/2]

}
.
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3. Simulation Study

We investigate the finite sample behavior of the proposed bias-reduction
estimator coupled with the proposed threshold selection method. In general, it
is not easy to simulate random vectors with a given tail dependence function.
Recently, Klüppelberg, Kuhn and Peng (2007) obtained explicit expression for
the tail dependence function of an elliptical vector. In particular,

l(x, y) = x+y−
x

∫ π/2

g((x/y)1/α)
cosα θdθ + y

∫ g((x/y)1/α)
− arcsin q sinα(θ + arcsin q)dθ∫ π/2

−π/2 cosα θdθ
, (3.1)

where g(t) = arctan((t − q)/
√

1 − q2), when the elliptical vector RAU satisfies

AAT =
(

σ2 qσν

[5pt] qσν ν2

)
,

rank(AAT ) = 2, −1 < q < 1, σ2 > 0, ν2 > 0, R > 0 is a heavy-tailed
random variable with index α (i.e., limt→∞ P (R > tx)/P (R > t) = x−α),
U = (U1, U2)T is a random vector uniformly distributed on the unit sphere
{(u1, u2)T : u2

1 + u2
2 = 1}, and U is independent of R. Recently, Li and Peng

(2009) proposed a goodness-of-fit test for testing (3.1) and applied it to some
financial data sets for which (3.1) cannot be rejected. For other applications
of elliptical distributions and elliptical copulas in risk management, we refer to
McNeil, Frey and Embrechts (2005).

We drew 1, 000 random samples of size n = 100, 200, 500 and 1, 000 from the
above elliptical random vector, with

A =


√

1 + q +
√

1 − q

2

√
1 + q −

√
1 − q

2
√

1 + q −
√

1 − q

2

√
1 + q +

√
1 − q

2


and P (R ≤ x) = exp{−x−α}. Consider q = 0.5, α = 0.5 and 2, x = cos θ,
y = sin θ for θ = π/8, 2π/8, 3π/8, and take γ = 0.9 or 0.95, and δ = 0.1 in the
definition of ρn.

For comparisons, we computed the theoretical optimal choice of k, denoted
by kopt, which minimizes the asymptotic mean squared error of l̂n(x, y; k), from
Corollary 6 of Klüppelberg, Kuhn and Peng (2007) for the above setup. We
used k̂1 and k̂2 to denote the k̂ in Theorem 1 for γ = 0.9 and 0.95, respectively.
Moreover we computed the simulated optimal choice of k, denoted by k∗, which
minimizes the average of {l̂n(x, y; k)− l(x, y)}2 over those 1, 000 random samples.
In Tables 1−4, we report means and root mean squared errors for l̂n(x, y; k) and
l̃n(x, y; k) with k = k̂1, k̂2, k

∗. From Tables 1-4, we observe that
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Table 1. Estimators, with their root mean squared errors in parentheses, are
given for (x, y) = (cos θ, sin θ) and n = 100.

α = 0.5 α = 0.5 α = 0.5 α = 2.0 α = 2.0 α = 2.0

θ = π
8

θ = 2π
8

θ = 3π
8

θ = π
8

θ = 2π
8

θ = 3π
8

l(x, y) 1.0414 1.0090 1.0414 1.0968 1.1377 1.0968

kopt 732 248 732 169 135 169

k∗ 65 50 75 35 30 35

l̂n(x, y; k∗) 1.0430 1.0035 1.0273 1.0901 1.1343 1.0901

(0.0308) (0.0450) (0.0303) (0.0473) (0.0632) (0.0438)

l̃n(x, y; k∗) 1.0756 1.0290 1.0558 1.1727 1.1904 1.1768

(0.0574) (0.0786) (0.0507) (0.1197) (0.1491) (0.1244)

k̂1 80 73 81 62 55 60

l̂n(x, y; k̂1) 1.0112 0.9460 1.0127 1.0398 1.0467 1.0399

(0.0527) (0.0994) (0.0557) (0.1061) (0.1343) (0.1025)

l̃n(x, y; k̂1) 1.0493 1.0027 1.0500 1.0945 1.1274 1.0933

(0.0478) (0.0794) (0.0509) (0.1006) (0.1143) (0.0968)

k̂2 82 76 83 66 59 65

l̂n(x, y; k̂2) 1.0044 0.9330 1.0066 1.0296 1.0252 1.0247

(0.0557) (0.1070) (0.0584) (0.1121) (0.1502) (0.1060)

l̃n(x, y; k̂2) 1.0479 1.0027 1.0496 1.0939 1.1202 1.0851

(0.0456) (0.0752) (0.0501) (0.1084) (0.1147) (0.0965)

Table 2. Estimators, with their root mean squared errors in parentheses, are
given for (x, y) = (cos θ, sin θ) and n = 200.

α = 0.5 α = 0.5 α = 0.5 α = 2.0 α = 2.0 α = 2.0

θ = π
8

θ = 2π
8

θ = 3π
8

θ = π
8

θ = 2π
8

θ = 3π
8

l(x, y) 1.0414 1.0090 1.0414 1.0968 1.1377 1.0968

kopt 1162 393 1162 268 215 268

k∗ 130 85 140 65 60 65

l̂n(x, y; k∗) 1.0393 0.9994 1.0343 1.0871 1.1117 1.0805

(0.0224) (0.0376) (0.0242) (0.0380) (0.0540) (0.0412)

l̃n(x, y; k∗) 1.0534 1.0414 1.0480 1.1487 1.1938 1.1474

(0.0372) (0.0675) (0.0334) (0.0897) (0.1004) (0.0808)

k̂1 159 144 156 101 100 103

l̂n(x, y; k̂1) 1.0089 0.09416 1.0164 1.0465 1.0500 1.0443

(0.0464) (0.0813) (0.0457) (0.0784) (0.1073) (0.0874)

l̃n(x, y; k̂1) 1.0406 0.9917 1.0475 1.0955 1.1180 1.0936

(0.0335) (0.0539) (0.0411) (0.0687) (0.0733) (0.0751)

k̂2 163 150 161 109 106 114

l̂n(x, y; k̂2) 1.0031 0.9319 1.0344 1.0341 1.0351 1.0313

(0.0509) (0.0894) (0.0506) (0.0859) (0.1190) (0.0952)

l̃n(x, y; k̂2) 1.0415 0.9905 1.0480 1.0907 1.1150 1.0866

(0.0335) (0.0528) (0.0402) (0.0676) (0.0724) (0.0753)
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Table 3. Estimators, with their root mean squared errors in parentheses, are
given for (x, y) = (cos θ, sin θ) and n = 500.

α = 0.5 α = 0.5 α = 0.5 α = 2.0 α = 2.0 α = 2.0

θ = π
8

θ = 2π
8

θ = 3π
8

θ = π
8

θ = 2π
8

θ = 3π
8

l(x, y) 1.0414 1.0090 1.0414 1.0968 1.1377 1.0968

kopt 2141 725 2141 494 396 494

k∗ 315 150 315 115 95 130

l̂n(x, y; k∗) 1.0374 1.0056 1.0383 1.0907 1.1291 1.0850

(0.0152) (0.0246) (0.0141) (0.0284) (0.0346) (0.0267)

l̃n(x, y; k∗) 1.0445 1.0327 1.0448 1.1278 1.1579 1.1067

(0.0225) (0.0548) (0.0212) (0.0588) (0.0786) (0.0505)

k̂1 364 330 361 212 216 212

l̂n(x, y; k̂1) 1.0230 0.9574 1.0229 1.0552 1.0667 1.0542

(0.0284) (0.0571) (0.0292) (0.0527) (0.0810) 0.0528)

l̃n(x, y; k̂1) 1.0422 0.9917 1.0418 1.0888 1.1153 1.0890

(0.0219) (0.0309) (0.0219) (0.0378) (0.0503) (0.0349)

k̂2 375 342 370 223 227 222

l̂n(x, y; k̂2) 1.0189 0.9512 1.0195 1.0476 1.0576 1.0477

(0.0309) (0.0627) (0.0321) (0.0580) (0.0890) (0.0586)

l̃n(x, y; k̂2) 1.0419 0.9914 1.0421 1.0870 1.1135 1.0882

(0.0216) (0.0305) (0.0226) (0.0367) (0.0509) (0.0357)

Table 4. Estimators, with their root mean squared errors in parentheses, are
given for (x, y) = (cos θ, sin θ) and n = 1, 000.

α = 0.5 α = 0.5 α = 0.5 α = 2.0 α = 2.0 α = 2.0

θ = π
8

θ = 2π
8

θ = 3π
8

θ = π
8

θ = 2π
8

θ = 3π
8

l(x, y) 1.0414 1.0090 1.0414 1.0968 1.1377 1.0968

kopt 3399 1151 3399 785 630 785

k∗ 630 310 550 220 215 155

l̂n(x, y; k∗) 1.0360 0.9975 1.0389 1.0837 1.1203 1.0908

(0.0115) (0.0231) (0.0122) (0.0238) (0.0295) (0.0229)

l̃n(x, y; k∗) 1.0435 1.0065 1.0445 1.1064 1.1519 1.1032

(0.0167) (0.0333) (0.0183) (0.0379) (0.0482) (0.0476)

k̂1 718 603 710 393 372 403

l̂n(x, y; k̂1) 1.0243 0.9667 1.0252 1.0581 1.0857 1.0552

(0.0230) (0.0472) (0.0224) (0.0454) (0.0595) (0.0467)

l̃n(x, y; k̂1) 1.0404 0.9931 1.0405 1.0878 1.1244 1.0838

(0.0154) (0.0280) (0.0161) (0.0290) (0.0361) (0.0282)

k̂2 735 631 732 412 392 424

l̂n(x, y; k̂2) 1.0214 0.9610 1.0220 1.0528 1.0777 1.0497

(0.0256) (0.0523) (0.0246) (0.0498) (0.0665) (0.0514)

l̃n(x, y; k̂2) 1.0405 0.9920 1.0445 1.0870 1.1221 1.0823

(0.0157) (0.0284) (0.0155) (0.0289) (0.0371) (0.0272)
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(i) the theoretical optimal choice of k was larger than sample size in most cases,
which implies that estimating kopt is only practical for a large sample size;

(ii) the bias-reduction estimators l̃n(x, y; k̂1) and l̃n(x, y; k̂2) worked well and out-
performed l̂n(x, y; k̂1) and l̂n(x, y; k̂2);

(iii) as γ grew large, k̂ grew large as well, but the root mean squared error only
changed slightly;

(iv) as sample size increased, the root mean squared errors of l̃n(x, y; k̂1) and
l̃n(x, y; k̂2) approached the root mean squared error of l̂n(x, y; k∗); this is not
obtainable in practice;

(v) both k̂1 and k̂2 were larger than k∗, which implies that our method results
in a larger bias and the bias-reduction is indeed needed;

(vi) both l̃n(x, y; k̂1) and l̃n(x, y; k̂2) had a smaller bias than l̂n(x, y; k∗) in most
cases;

(vii)l̃n(x, y; k∗) was worse than l̃n(x, y; k̂1) and l̃n(x, y; k̂2), which indicates that
a bias-reduction estimator based on the simulated optimal choice of k is
not better than that based on the sample fraction chosen by the proposed
data-driven method.

Next we examined the coverage accuracy of the proposed bootstrap confi-
dence intervals. We drew 1, 000 random samples of size n = 200 from the above
elliptical distribution with q = 0.5 and α = 0.5. For each random sample, we
drew 200 bootstrap samples with size n1 = n0.95. Consider confidence intervals
for l(cos θ, sin θ) with levels 0.9 and 0.95. For computing k̂, we used γ = 0.9
and δ = 0.1. The coverage probabilities for the 90% confidence intervals were
0.91, 0.885, 0.89 for θ = π/8, 2π/8, 3π/8, respectively; and those for the 95%
confidence intervals were 0.950, 0.94, 0.943 for θ = π/8, 2π/8, 3π/8, respectively.
Hence, this proposed bootstrap method worked well.

In summary, the proposed data-driven method for choosing k worked well
for small sample sizes, and the proposed bias-reduction estimator with the k

chosen by the data-driven method can be employed for both interval and point
estimation of a tail copula or tail dependence function simultaneously.

4. Proofs

Proof of Theorem 1. It follows from (2.3) and (2.11) that

ρn − ρ = op(log n). (4.1)

Since l(ax, ay) = al(x, y) for any a > 0, we have

li(ax, ay) = li(x, y) for a > 0, i = 1, 2. (4.2)
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By (2.3), (2.6) and (4.2), we have√
n2ρ/(1+2ρ)s

{
l̂n

(
x, y; n2ρ/(1+2ρ)s

)
− 2l̂n

(x

2
,
y

2
; n2ρ/(1+2ρ)s

)}
D→ s−1/2

{
λ0σ(xs, ys) + B(xs, yx) − 2λ0σ

(xs

2
,
ys

2

)
− 2B

(xs

2
,
ys

2

)}
= sρ+1/2(1 − 2−ρ)λ0σ(x, y) + s−1/2

{
W (xs, ys) − l1(x, y)W (xs, 0)

−l2(x, y)W (0, ys) − 2W
(xs

2
,
ys

2

)
+ 2l1(x, y)W

(xs

2
, 0

)
+2l2(x, y)W

(
0,

ys

2

)}
(4.3)

in D(0,∞). Hence (2.12) follows from (4.1), (4.3) and the fact that

r̂1

(
x, y; (log n)2

)
p→ r1(x, y). (4.4)

Write√
k̂
{

l̂n(x, y; k̂) − l(x, y)
}

=

√
k̂

n2ρ/(1+2ρ)
n2ρ/(1+2ρ)

{
l̂n

(
x, y;

k̂

n2ρ/(1+2ρ)
n2ρ/(1+2ρ)

)
− l(x, y)

}
. (4.5)

It follows from (2.6), (2.3) and (4.2) that√
n2ρ/(1+2ρ)s

{
l̂n

(
x, y; n2ρ/(1+2ρ)s

)
− l(x, y)

}
D→ sρ+1/2λ0σ(x, y)+s−1/2

{
W (xs, ys)−l1(x, y)W (xs, 0)−l2(x, y)W (0, ys)

}
(4.6)

in D(0,∞). Since the convergences in (4.3) and (4.6) hold in D(0,∞), and the
limits are expressed in terms of the same Gaussian process W , the joint weak con-
vergence follows immediately; see Billingsley (1999) for details on convergences
in D(0,∞). Using the Lemma on Page 151 of Billingsley (1999), equation (2.13)
follows from (2.12), (4.5) and (4.6).

Proof of Theorem 2. This result follows from (2.12), (4.3), (4.6) and the fact
that ρ̂

p→ ρ.
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