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Supplementary material

This note contains the proofs of Theorems 3.1 and 3.2. The proofs are
based on the maxiset theorem from Kerkyacharian and Picard (2000). The steps
are similar to those of Johnstone, Kerkyacharian, Picard and Raimondo (2004).
The technical novelties appear in moment bounds and large deviation results for
wavelet coefficients

β̂D
κ :=

1
n

n∑
i=1

ψκ(ui)Yi,

β̂C
κ :=

∫
ψκ(t)dYt.

which we establish under LRD assumption.

S1 Maxiset Theorem

The following theorem is borrowed from Kerkyacharian and Picard (2000). We
refer to section S3 for the definition of Temlyakov property. First, we introduce
some notation: µ will denote the measure such that for j ∈ IN, k ∈ IN,

µ{(j, k)} = ‖σjψj,k‖p
p = σp

j 2j( p

2
−1)‖ψ‖p

p, (S1.2)

lq,∞(µ) =

{
f, sup

λ>0
λqµ{(j, k) : |βj,k| > σjλ} <∞

}
.

Theorem S1.1 Let p > 1, 0 < q < p, { ψj,k, j ≥ −1, k = 0, 1, ..., 2j} be a
periodised wavelet basis of L2(I) and σj be a positive sequence such that the
heteroscedastic basis σjψj,k satisfies Temlyakov property. Suppose that Λn is a
set of pairs (j, k) and cn is a deterministic sequence tending to zero with

sup
n

µ{Λn} cpn <∞. (S1.3)
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If for any n and any pair κ = (j, k) ∈ Λn, we have

E|β̂κ − βκ|2p ≤ C (σj cn)2p (S1.4)

P
(
|β̂κ − βκ| ≥ η σj cn/2

)
≤ C (c2p

n ∧ c4
n) (S1.5)

for some positive constants η and C then, the wavelet based estimator

f̂n =
∑

κ∈Λn

β̂κ ψκ II{|β̂κ| ≥ η σj cn} (S1.6)

is such that, for all positive integers n,

E‖f̂n − f‖p
p ≤ C cp−q

n ,

if and only if :

f ∈ lq,∞(µ), and, (S1.7)

sup
n
cq−p
n ‖ f −

∑
κ∈Λn

βκψκ‖p
p <∞. (S1.8)

This theorem identifies the ’Maxiset’ of a general wavelet estimator of the form
(S1.6). This is done by using conditions (S1.7) and (S1.8) for an appropriate
choice of q. In the proof of the theorems we will choose q according to the dense
or sparse regime by setting:

q = qd :=
αp

2s+ α
, when s ≥ α

2

( p
π
− 1

)
(S1.9)

q = qs :=
αp
2 − 1

s− 1
π + α

2

, when s <
α

2

( p
π
− 1

)
. (S1.10)

S2 Moment bounds and large deviation estimates

S2.1 FBM model

Here β̂κ = β̂C
κ . In what follows C denotes a generic constant which does not

depends on n but may change from line to line. Recall that

β̂C
κ = βκ + εασjzκ,

where, as in Wang (1996), σ2
j = Var(

∫
ψκ(t)dBH(t)) and zκ are (weakly) corre-

lated Gaussian random variables with variance 1 and σj = τ2−j(1−α)/2. It follows
that Eβ̂κ = βκ and

Varβ̂κ = Var
(
εα
∫
ψκ(t)dBH(t)

)
= n−α2−j(1−α)τ2 ≤ Cσ2

j c
2
n.
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Since the rv’s β̂κ − βκ are Gaussian higher moments bound (S1.4) follows from
the previous inequality. Similarly,

Pr
(
|β̂κ − βκ| > ησj cn/2

)
≤ exp

(
− log n

η2

8

)
≤ C (c2p

n ∧ c4
n)

provided η >
√

8α
√
p ∨ 2. Which proves (S1.5).

S2.2 Discrete model

Here β̂κ = β̂D
κ . Write

β̂κ − βκ = β̂κ − Eβ̂κ + Eβ̂κ − βκ

=
1
n

n∑
i=1

Xiψκ(ui) +

(
1
n

n∑
i=1

f(ui)ψκ(ui)− βκ

)
.

The main tool to derive rates of convergence is the following lemma. To
establish moments bounds we do not assume that Xi’s are Gaussian. These
estimates may be of independent interest.

Lemma S2.1 For each fixed j and k, and p > 1,

E(β̂κ − βκ)2 ∼ 2−j(1−α)n−ατ2
D, (S2.11)

E
∣∣∣β̂κ − βκ

∣∣∣p = O
(
n−αp/22−jp(1−α)/2

)
. (S2.12)

If moreover Xi’s are Gaussian, then for all λ > n−1,

Pr
(
|β̂κ − βκ| > λ

)
≤ n−α/22−j(1−α)/2

λ
exp

(
− λ2

2(n−α2−j(1−α)τ2
D)

)
. (S2.13)

To prove this lemma we will replace βκ with β̂κ and use |Eβ̂κ − βκ| = O(n−1).
(Note that this just the distance between the integral

∫
f(x)ψκ(x) dx and the

Riemann-Stjeltjes sum.
Proof:

Note that
n∑

i=1

ψ2
κ(ui) = 2j

n∑
i=1

ψ2
(

2j i

n
− k

)
= 2jn

∫ 1

0
ψ2(2jx)dx+o(n) = n+o(n). (S2.14)

Bearing in mind that Var(Xi) = E(X2
1 ) = 1 we have:

E(β̂κ − Eβ̂κ)2 = Var

(
1
n

n∑
i=1

Xiψκ(ui)

)

=
1
n2

 n∑
i=1

ψ2
κ(ui) +

∑
i6=l

ψκ(ui)ψκ(zl)Cov(Xi, Xl)

 .
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By (S2.14) above, the first part is of order n−1 + o(n−1). For the second part we
have ∑

i6=l

ψκ(ui)ψκ(zl)Cov(Xi, Xl)

=
∑
i6=l

2j |i− l|−αψ

(
2j i

n
− k

)
ψ

(
2j l

n
− k

)

= L2jn−α
∑
i6=l

∣∣∣∣ in − l

n

∣∣∣∣−α

ψ

(
2j i

n
− k

)
ψ

(
2j l

n
− k

)
,

which behaves asymptotically as 2−j(1−α)n2−ατ2
D.

Further, the first part dominates the second one if and only if 2j > n, which
is not possible. Thus (S2.11) follows.

To prove (S2.12), let

br =
n∑

i=r

ai−rψκ(ui), r = 1, . . . , n,

br =
n∑

i=1

ai−rψκ(ui), r = −∞, . . . , 0.

Also, note that by (S2.11),

v2
n := Var

(
n∑

r=−∞
εrbr

)
=

n∑
r=−∞

b2r = Var

(
n∑

i=1

Xiψκ(ui)

)

and thus
v2
n/(n

2−α2−j(1−α)τ2
D) → 1 (S2.15)

as n→∞.
Note now that each Gaussian sequence can be represented as

Xi =
∞∑

m=0

amεi−m, i ≥ 1,

where am is a regularly varying sequence with index −(α + 1)/2 and {εi, i ≥ 1}
is a centered sequence of i.i.d. random variables. Via Rosenthal inequality, for
p ≥ 2

E
∣∣∣β̂κ − Eβ̂κ

∣∣∣p = E

∣∣∣∣∣ 1n
n∑

i=1

Xiψκ(ui)

∣∣∣∣∣
p

= n−pE

∣∣∣∣∣
∞∑

m=0

am

n∑
i=1

εi−mψκ(ui)

∣∣∣∣∣
p

= n−pE

∣∣∣∣∣
n∑

r=−∞
εrbr

∣∣∣∣∣
p
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≤ n−p

(
n∑

r=−∞
b2r

)p/2

+ n−p
n∑

r=−∞
|br|p

≤ n−p

(
n∑

r=−∞
b2r

)p/2

+ n−p sup
r
|br|p−2

n∑
r=−∞

b2r

= n−pO

((
n2−α2−j(1−α)

)p/2
)

+ n−pnp/2−1O
(
n2−α2−j(1−α)

)
= O

(
n−αp/22−jp/2(1−α) + n1−α−p/22−j(1−α)

)
.

The second term is negligible for all j such that 2j ≤ n.

To prove (S2.13) note that
∑n

i=1Xiψκ(ui) ∼ N (0, v2
n). Thus,

Pr
(
|β̂κ − Eβ̂κ| > λ

)
≤ C

vn

nλ
exp

(
−n

2λ2

2v2
n

)
.

and the result follows by (S2.15). �

Consequently,

E
∣∣∣β̂κ − βκ

∣∣∣p = O
(
n−αp/22−jp/2(1−α)

)
= O(σp

j c
p(n))

and taking λ = λj = ησjcn,

Pr
(
|β̂κ − βκ| > ησjcn/2

)
≤ exp

(
− log n

η2

8

)
= O(c2p

n )

provided η >
√

8pα. The similar argument applies to 1 < p < 2. In this case we
require η >

√
16α.

S3 Temlyakov property

As seen in Johnstone, Kerkyacharian, Picard and Raimondo (2004, appendix A),
the basis (σjψj,k(.)) satisfies Temlyakov property as soon as∑

Λn

2j σ2
j ≤ C sup

Λn

(
2jσ2

j

)
,

and ∑
Λn

2jp/2 σp
j ≤ C sup

Λn

(
2jp/2σp

j

)
, 1 ≤ p < 2,

which is clearly satisfied when σ2
j = τ2 2−j(1−α).
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S4 Fine resolution tuning

Here we check that condition (S1.3) is satisfied. Using (S1.2),

µ(Λn) =
∑
j≤j1

2j−1∑
k=0

µ(j, k) =
∑
j≤j1

2jµ(j, k) = τp
∑
j≤j1

2j 2j( p

2
−1− p(1−α)

2
) = O(2

j1
2 ),

which with the choice of j1 and p > 1 yields

µ(Λn)cpn =
( n

log n

)α

2
((log n)

1
2

n
αp

2

)
= O

(
cp−1
n (

log n
(log n)α

)
1
2

)
= o(1),

which shows that condition (S1.3) is satisfied.

S5 Besov embedding and Maxiset condition

S5.1 Part I

For both the dense (S1.9) and sparse (S1.10) regime, we look for a Besov scale δ
such that

Bδ
π,r ⊆ lq,∞.

As usual we note that it is easier to work with

lq(µ) =

f ∈ Lp : f =
∑

j,k∈Aj

|βjk|q

σq
j

‖σjψj,k‖p
p <∞

 ,
where Aj is a set of cardinality proportional to 2j . Since ‖σjψj,k‖p

p = σp
j 2j( p

2
−1) =

2j( αp

2
−1), we see that f ∈ lq(µ) if

∑
j≥0

2j (αp−2+(1−α)q)
2

2j−1∑
k=0

|βj,k|q =
∑
j≥0

2
jq

[
α(p−q)

2q
+ 1

2
− 1

q

]
2j−1∑
k=0

|βj,k|q < +∞.

The latter condition holds when f ∈ Bδ
q,q for

δ =
α

2

(p
q
− 1

)
. (S5.16)

Now depending on whether we are in the dense (S1.9) or sparse phase (S1.10)
we look for s and π such that

Bs
π,r ⊆ Bδ

q,q. (S5.17)

The dense phase. By definition (S1.9) of q = qd we have π ≥ qd. Hence (S5.17)
follows from (S5.21) as long as s ≥ δ = α

2 (p
q − 1) which is always true under the
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dense regime where q = qd. Note that δ = α
2 ( p

qd
− 1) = s, thus automatically

δ > 0.

The sparse phase. Take q = qs and δ = α
2

(
p
qs
− 1

)
= α

sp− p

π
+1

αp−2 . We consider
two cases. If π > qs we use the embedding (S5.21). We have to check that
s > α

sp− p

π
+1

αp−2 which is equivalent to s < α
2

( p
π − 1

)
, which is true in the sparse

case. Further, we must guarantee that δ > 0 which leads to the two conditions
i) p > 2/α and s > 1

π −
1
p or ii) p < 2/α and s < 1

π −
1
p . However, the last one is

not relevant since we have s > 1
π . Thus we established (S5.17) for qs < π < qd.

If π < qs we introduce a new Besov scale s′ and index q = qs such that

s− 1
π

= s′ − 1
q
, s′ =

α

2

(p
q
− 1

)
. (S5.18)

In this case, (S5.22) and (S5.16) ensures that

Bs
π,r ⊆ Bs′

q,q ≡ lq(µ),

as had to be proved. Solving (S5.18) yields definition (S1.10) of q under the
sparse regime.

S5.2 Part II

First we look for a Besov scale δ such that for any f ∈ Bδ
p,r the maxiset condition

(S1.8) is satisfied. We have

cq−p
n ‖f −

∑
κ∈Λn

βκΨκ‖p
p = cq−p

n 2−j1δp ‖f‖Bδ
p,r

= O
(
cq−p+2δp
n (

(log n)α

log n
)δp
)
.

Thus condition (S1.7) holds for any f ∈ Bδ
p,r if

δ =
1
2

(1− q

p
). (S5.19)

Now we look for s and π such that

Bs
π,r ⊆ Bδ

p,r. (S5.20)

To answer this question, we will use two different types of Besov embedding,
depending on whether π ≥ p or π < p. We recall that

Bs
π,r ⊆ Bs′′

p,r, provided that π ≥ p, and s ≥ s′′. (S5.21)

Bs
π,r ⊆ Bs′′

p,r, provided that π < p, and s− 1
π

= s′′ − 1
p
. (S5.22)
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The case π ≥ p. We note that in this case we are always in the dense phase
since s must be non-negative. Here we use (S5.21) with s′′ = δ at (S5.19). Hence
we see that (S5.20) holds as long as s ≥ 1

2(1 − q
p). Using definition (S1.9) of

q = qd this will happen when s ≥ 1−α
2 .

The dense case when π < p. Here we introduce a new Besov scale s′′ such
that s− 1

π = s′′− 1
p and use embedding (S5.22). For (S5.20) to hold in the dense

case we need s′′ ≥ δ for q = qd at (S1.9), we obtain the following condition:

s ≥ 2
2s+ α

+
1
π
− 1
p
.

The sparse case when π < p. Here we introduce a new Besov scale s′′ such
that s− 1

π = s′′− 1
p and use embedding (S5.22). For (S5.20) to hold in the sparse

case we need s′′ ≥ δ for q = qs at (S1.10), we obtain the following condition:

s >
1
π
− α

2

which is always true since s > 1
π .

S6 Final step

Recall
γ =

αsp

2(s+ α
2 )
, if s ≥ α

2
(
p

π
− 1), (S6.23)

γ =
αp(s− 1

π + 1
p)

2(s− 1
π + α

2 )
, if

1
π
< s <

α

2
(
p

π
− 1). (S6.24)

The proof(s) are a direct application of Theorem S1.1 with our choice of σj , cn
and η. Combining results of sections S3,..., S5.2 we see that all the assumptions
Theorem S1.1 are satisfied. Using the embedding results of Section S5.1 we
derive rate exponent (S6.23) for any f ∈ Bs

π,r from definition (S1.9) of q when
s ≥ α

2 ( p
π − 1). Finally we derive rate exponent (S6.24) for any f ∈ Bs

π,r using
definition (S1.10) of q when 1

π −
1
p < s < α

2 ( p
π − 1).


