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Abstract: Given a convex-shape inhomogeneous region embedded in a noisy image,

we consider the conditions under which such an embedded region is detectable.

The existence of low order-of-complexity detection algorithms is also studied. The

main results are (1) an analytical threshold (of a statistic) that specifies what is

detectable, and (2) the existence of a multiscale detection algorithm whose order

of complexity is roughly the optimal O(n2 log2(n)).

Our analysis has two main components. We first show that in a discrete image,

the number of convex sets increases faster than any finite degree polynomial of the

image size n. Hence the idea of generalized likelihood ratio test cannot be directly

adopted to derive the asymptotic detectability bound. Secondly, we show that the

maximally embedded hv-parallelogram is at least 2/9 of the convex region (in area).

We then apply the results of hv-parallelograms in Arias-Castro, Donoho, and Huo

(2005) on detecting convex sets. Numerical examples are provided.

Our results have potential applications in several fields, which are described

with corresponding references.
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1. Introduction

Detectability is a fundamental problem in many image processing tasks. It is

to determine whether detecting an object via computer is doable. Furthermore,

when it is doable, what is an appropriate order of complexity for the associated

algorithm? Regarding detecting the presence of a geometric object in an image

with additive Gaussian noises, Arias, Donoho and Huo (2005) proved a range of

powerful results: for a given class of geometric objects, the asymptotic threshold

of the detectability is a multiplier of 2
√

log(n), where the image size is n by n.

For many classes, the efficient detection algorithm can have orders of complexity

such as O(n) or O(n2).

It is useful to consider an illustration at this point. Figure 1.1 (a) contains a

convex set in a square and Figure 1.1 (b) presents the same convex set in a noisy

Gaussian random field in the same square. The detectability problem is to ask:

when is the convex set detectable and what is the lowest order of complexity for
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(a) a convex set (b) a noisy Gaussian random field
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Figure 1.1. A convex set (a) and its embedding in a random field (b).

the detecting algorithms? A statistical formulation of the above is as follows.

The intensity at each pixel follows a normal distribution. Inside the convex set,

the normal mean is a positive constant (which makes the pixel darker in the

above figure); while outside, the normal mean is zero.

Detectability plays a key role in many applications. In the processing of cryo-

EM images, due to the low doses of electron that can be applied to the specimen,

the signal-to-noise ratio can be extremely low. Before any image processing tasks

are applied, one should ask: does the image have the quality to provide any useful

information. Detectability addresses this issue. Moreover, a cryo-EM image can

be contaminated. Detectability can be utilized to detect the presence of such

contaminations. In processing satellite images, due to the resolution of these

images, certain tasks, e.g., detecting the presence of a certain class of targets,

may not be doable. Detectability can be adopted to decide if a satellite image

matches a quality requirement. More applications will be discussed later.

A detection problem is equivalently a hypothesis testing problem. We have a

simple null hypothesis and a composite alternative hypothesis. We would like to

characterize a neighborhood of the null hypothesis, such that when a subcase of

the alternative hypothesis is inside (resp., outside) this neighborhood, it can not

(resp., can) be reliably distinguished from the null hypothesis. The key in finding

such a neighborhood of the null hypothesis is to study the statistical distribution

of the test statistic when the null hypothesis is assumed to be true. The content

of this paper can be summarized as follows:

• The infeasibility of adopting the generalized likelihood ratio test is revealed

by the study of the cardinality of the convex sets in an n by n image. We

give a recursive formula to compute the number of convex sets. From this
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(a) µ = 1 (b) µ = 1/2 (c) µ = 1/8 (d) µ = 1/16
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Figure 1.2. A convex object in a white-noise image with µ = 1, 1/2, 1/8, and
1/16, respectively.
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Figure 1.3. Boxplots of the test statistics in four cases that are illustrated

in Figure 1.2.

formula, it can be argued that the number of convex sets grows faster than

any finite-degree polynomial of n.

• The efficiency of the multiscale detection approach via hv-parallelograms is

analyzed by studying the minimax proportion of an hv-parallelogram included

in a convex set. We show that the proportion is a constant 2/9. Hence we

provide a method that has the same asymptotic testing power as detecting

convex sets directly. However, it has much lower order of complexity.

To see how our result can be utilized in determining detectability, consider

the four figures in Figure 1.2. In each figure, a convex region is embedded in a

white-noise image. Inside the convex region, the pixel intensities are i.i.d. ran-

dom variables that satisfy N(µ, 1). Outside, the pixel intensities satisfy N(0, 1).

Note that when µ = 0, we claim no embedded object. The values of µ are

in the titles of subfigures. When we have µ = 1 or 1/2, the convex object is
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clearly visible. When µ = 1/8 or 1/16, the convex object can barely be found.
According to our result, to determine the existence of an embedded convex ob-
ject, an enumeration of all possible convex subsets is not feasible. However, it is
doable to compute the maximal test statistic for all hv-parallelograms. The def-
inition of hv-parallelogram will be given later. The computation is of low order
of complexity—O(n2 log2(n)), where the image size is n by n. The maximal test
statistic is then compared with a threshold, which can be obtained either ana-
lytically, or empirically. If the maximal statistic is significantly larger than the
threshold, we claim that there is an embedded convex object. For each value of
µ, we generate 30 random images like those in Figure 1.2. An X∗-statistic (which
will be defined later) is computed for each noisy image. The boxplots of the X∗-
statistics are shown in Figure 1.3; Each column corresponds to one case (i.e., one
value of µ) that is illustrated in a subfigure of Figure 1.2. The solid horizontal
line is the theoretical threshold 2

√
log(n) that is given in Arias, Donoho and Huo

(2005). The dashed line is the 90th percentile of the X∗-statistics when µ = 0
with 1, 000 repetitions. It is not surprising that in the first two cases—when
µ = 1, 1/2—the boxplots are way above the threshold lines, indicating strong ev-
idence of an embedded convex object. A more interesting case is when µ = 1/8.
The boxplot is still apparently above the threshold lines. However visually, it
is hard (or even impossible) to observe any embedded object in the noisy image
(referring to Figure 1.2 (c)). When µ = 1/16, the embedded object is not de-
tectable: the test statistic is not significantly above the theoretical thresholds.
In other words, nobody will be able to detect those objects unless additional
information regarding the object is known.

This paper is organized as follows. Section 2 discusses a detection approach

that is based on the generalized-likelihood-ratio-test principle, counts the num-

ber of convex sets in a digital image, and shows the impracticability of this

approach. Section 3 describes the multiscale approach to detect rectangles or

hv-parallelograms, computes the minimax proportion of an hv-parallelogram in

a convex set, and consequently demonstrates its effectiveness. Simulations are

described in Section 4. Section 5 discusses potential applications and relation to

other works. A brief conclusion and some discussions are furnished in Section 6.

2. Formulation and a Direct Approach via Likelihood Ratios

We describe our formulation in Section 2.1. A likelihood ratio based de-

tection approach is described in Section 2.2. Section 2.3 proves an infeasibility

result.

2.1. Statistical model

To describe the problem, we first establish some notations for a digital image.

An n × n digital image has double indices: (i, j), 0 ≤ i, j ≤ n − 1. Each pair of
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indices indicates a pixel of the image. A subset of pixels is denoted by Ω, i.e.,

Ω ⊂ {(i, j), 0 ≤ i, j ≤ n − 1}. A pixel p is called a boundary pixel of Ω, iff (if

and only if) it belongs to Ω and one of its neighbor (up, down, left, or right) is

outside of Ω. Ω is a convex set if and only if for any two points x, y ∈ Ω, the

line segment connecting x and y is inside the Ω. More rigorous definition for

convex sets in a digital image will be given later, when we consider more specific

detection approaches.

For a pixel p (with indices (i, j)), let X(p) (or X(i, j)) denote the intensity

of the image at p, i.e., (i, j). We have

X(p)
independent∼

{
N(0, σ2), if p 6∈ Ω,

N(µ, σ2), if p ∈ Ω,

where N(µ, σ2) stands for a normal distribution with mean µ and standard de-

viation σ. An illustration of such sampled image is in Figure 1.1 (b). For future

convenience, in this paper we assume σ = 1. That is, if the image has no em-

bedded signal (i.e., the image is a white noise image), then X(i, j) ∼ N(0, 1), for

all 0 ≤ i, j ≤ n − 1. This situation is defined as the null hypothesis (denoted

by H0). On the other hand, if there is a subset of pixels (denoted by Ω) sat-

isfying that for a constant µ > 0, X(i, j) ∼ N(µ, 1) when pixel (i, j) ∈ Ω, and

X(i, j) ∼ N(0, 1) when pixel (i, j) is outside Ω, then Ω is an “embedded” object.

Such a case is defined as the alternative hypothesis (denoted as Ha(Ω, µ)). Note

that by varying subset Ω and the value of parameter µ, there are infinite num-

ber of possibilities for the alternative hypotheses. The objective of our detection

problem is to decide whether or not such an object Ω exists. More specifically,

how large should the value of µ and the area of Ω be so that the corresponding

alternative hypothesis can be distinguished from the null hypothesis.

2.2. Likelihood ratio based approach

In the statistical model established above, we consider the following hypoth-

esis testing problem:

H0 : X(i, j) ∼ N(0, 1) for all 0 ≤ i, j ≤ n − 1;

Ha(Ω, µ) : X(i, j) ∼ N(µ, 1) for some µ > 0 when (i, j) ∈ Ω.

In this paper, we are interested in the case when Ω is a convex set. The

following is an approach that can be easily derived. A useful reference regarding

this is Arias, Donoho and Huo (2005). The analysis is based on an asymptotic

viewpoint.



1444 XIAOMING HUO AND XUELEI (SHERRY) NI

First, if Ω and µ are given, we have a simple null hypothesis versus a simple

alternative. Define

X(Ω) =
∑

(i,j)∈Ω

X(i, j)√
|Ω|

,

where |Ω| is the number of pixels in Ω. Under H0, it is not hard to derive that

X(Ω) ∼ N(0, 1), while under Ha(Ω, µ), we have X(Ω) ∼ N(µ
√

|Ω|, 1). Hence,

one can easily conduct the likelihood ratio test of H0 against Ha(Ω, µ) by asking

if X(Ω) > τ , for a threshold τ .

For the composite alternative hypothesis, where µ(> 0) and Ω are both un-

known, it is straightforward to consider the maximum among all X(Ω)’s (denoted

by X∗). That is, we consider

X∗ = max
Ω∈Fn

X(Ω), (2.1)

where Fn denotes the collection of all the subsets that are under consideration.

For example, when we consider the problem of detecting a convex set, the Fn =

{all convex sets in an n × n image}.
Now we derive a detection rule so that for the simple null and the composite

alternative, the type-I error probability (i.e., Prob(reject H0|H0)) converges to 0

as the image size n goes to infinity. Given a constant τ > 0, and taking advantage

of a property of N(0, 1), we know that under H0,

(1) for any Ω, P (X(Ω) > τ) < (1/τ)e−(1/2)τ2
(Pollard (1984, p.191));

(2) P (X∗ > τ) ≤ |Fn| · P (X(Ω) > τ) ≤ |Fn|(1/τ)e−(1/2)τ2
. The first inequality

is due to Bonferroni. The second one is a direct substitution. Here |Fn| is

the cardinality of the set Fn.

Notice that if τ∗ =
√

2 log |Fn| → +∞, then under H0, P (X∗ > τ∗) → 0.

This gives us a powerful hypothesis testing method for the probability of the

type-I error of this test goes to zero. On the other hand, considering a subset Ω

within which there is a nonzero mean µ, we have X(Ω) ∼ N(µ
√

|Ω|, 1). If the

mean of this normal distribution µ
√

|Ω| > τ∗ (respectively, µ
√

|Ω| < τ∗), such a

subset will (respectively, will not) be distinguishable from the null. Hence, the

aforementioned choice of τ∗ =
√

2 log |Fn| gives a threshold on when a subset is

detectable. Note the above argument implies an asymptotic argument: we omit

the notion of n → ∞.

Now we explain why a polynomial expression for the size of set Fn (i.e., |Fn|)
could be useful in determining the asymptotic detectability of convex sets. If the

cardinality of set Fn can be a polynomial of image size n, i.e., for an integer

k > 0, |Fn| = O(nk) (or limn→+∞(|Fn|/nk) = constant), then τ∗ = C1
√

2k log n,
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where C1 is a constant. Note that to increase the value of τ∗ by a factor of 10,

the value of n needs to be increased to n100. The slow growth of τ∗ when |Fn|
is a polynomial is an interesting feature of this type of detection problems. In

summary, the existence of a polynomial formula for the quantity |Fn| is of strong

interest to us.

2.3. The infeasibility

We show that the aforementioned proposal is infeasible. We first establish a

definition for convex sets in digital images. Note that due to the discreteness of

the problem, there are other ways to define a convex set.

Definition 1. (convex set) A set Ω is convex iff

1. there exists a close chain of pixels: (a1, b1), (a2, b2), · · · , (ak, bk), and (a1, b1),

which belong to Ω, and their centers form the vertices of a convex non-

degenerated polygon;

2. ∀p ∈ Ω, the center of p is inside or on the boundary of the above mentioned

polygon, and vice versa.

We have clarified the importance of the cardinality of convex sets in an

n×n digital image for evaluating the detectable threshold τ∗. We hope that the

cardinality can be expressed in a polynomial of image size n. However, this is

not true.

Theorem 2. Under the above definition of a convex set, the number of convex

sets increases faster than any finite degree polynomial of image size n, as n → ∞.

This result implies that the approach we introduced in the previous section

for determining the asymptotic threshold of the detectability of convex sets can-

not work. However, we would like to point out that, even though Theorem 2

states that the number of convex sets is not polynomial, it would still be possible

to have τ∗ ∼
√

log(n). In other words, the nonexistence of a polynomial formula

merely invalidates a sufficient condition. The result τ∗ ∼
√

log(n) can still be

true. In fact, Arias, Donoho and Huo (2005) gives a result of this kind. We refer

to that paper for further details. Apparently, such a result cannot be derived by

counting the number of convex sets.

The proof of Theorem 2 is in Appendix A, see also Ni (2005). The proof is

easy to read, not requiring any advanced knowledge in mathematics. The key

idea in the proof is establishing an inequality (referring to (A.4)), from which,

Theorem 2 becomes provable. After our work, we discovered that the number of

convex sets is exp{cn2/3}, see Bárány (2002). Such an advanced result confirms

our finding.
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3. A Multiscale Approach via Hv-parallelograms

Detecting the presence of a convex set in a Gaussian random field is consid-

ered further. A multiscale strategy described in Arias, Donoho and Huo (2005)

can have the order of complexity O(n2 log2(n)) for detecting an hv-parallelogram

in an n by n noisy image. So, instead of detecting convex sets directly, we

can detect hv-parallelograms that are embedded in convex regions with a pos-

itive Gaussian mean. We prove that 2/9 is the minimax proportion of an hv-

parallelogram included in a convex set. Such a constant indicates the effectiveness

of a multiscale detection method. Section 3.1 reviews the multiscale approach

for detecting hv-parallelograms. Section 3.2 gives the main result of the hv-

parallelogram-based method.

3.1. Multiscale detection

In this section, we detect a more basic shape—hv-parallelogram—as a surro-

gate for convex sets. It is relatively easy to compute the X(·)-statistic for the new

geometric objects. By investigating the relationship between an hv-parallelogram

and a convex set, we can build a method to find an inhomogeneous convex region

indirectly.

The hv-parallelogram was introduced in Arias, Donoho and Huo (2005). We

give the definition and some related information.

Definition 3. (hv-parallelogram) An h-(resp. v-) parallelogram is a paral-

lelogram having two sides horizontal (resp. vertical) and its horizontal (resp.

vertical) projection to the y- (resp. x-) axis on a Cartesian plane is a dyadic

interval.

Without loss of generality, we assume that the size of the image, n, is 2m

for some integers m. We transfer the index set of pixels from {0, . . . , n − 1} to

{0, 1/2m, 2/2m, . . . , 1 − 1/2m}.
Definition 4. (dyadic interval) Interval (a, b) is a dyadic interval if and only

if there exist two non-negative integers s and ℓ, s ≤ m and ℓ < 2s, such that

a = ℓ/2s and b = (ℓ + 1)/2s.

We reformat the testing scheme as follows. Take

X(i, j) ∼
{

N(0, 1), if x 6∈ Ω,

N(µ, 1), if x ∈ Ω,

where µ > 0 and Ω is a convex set. Given a region Ω̃, we can calculate

X(Ω̃) =
∑

(i,j)∈eΩ

X(i, j)√
|Ω̃|

,
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where |Ω̃| denotes the number of pixels inside the set Ω̃. If set Ω̃ does not intersect

with the “high activity” convex set Ω (i.e., Ω̃∩Ω = ∅), we have X(Ω̃) ∼ N(0, 1).

Otherwise, we have

X(Ω̃) ∼ N

(
µ · |Ω̃ ∩ Ω|√

|Ω̃|
, 1

)
.

In Section 2, we chose the detection region Ω̃ to be a convex set. In this

section, we focus on hv-parallelograms. That is, we calculate

X̃∗ = max
eΩ is an hv-parallelogram

X(Ω̃). (3.1)

It can be shown that X̃∗ is upper bounded by a quantity which is a function

of n. Specifically, if

H0 : X(i, j) ∼ N(0, 1) for all 0 ≤ i, j ≤ n − 1;

Ha(Ω̃, µ) : X(i, j) ∼ N(µ, 1) for some µ > 0 when (i, j) ∈ Ω̃,

it can be shown as in Arias, Donoho and Huo (2005) that there exists a constant

Γn,
Γn√

2 log(n2)
→ 1,

such that, as n → ∞, we have

P{X̃∗ > Γn|H0} + P{X̃∗ < Γn|Ha} → 0.

That is, if we observe a X(Ω̃) that is larger than Γn, the presence of an embedded

hv-parallelogram can be claimed.

At resolution n (i.e., given an n by n image), there are O(n) dyadic intervals,

including both vertical and horizontal directions. For each dyadic interval, there

are at most O(n3) hv-parallelograms: O(n) options for each lower corner, and

the height of the parallelogram adds another O(n) possibilities. Hence the total

number of the hv-parallelograms is O(n4), much lower than the cardinality of all

the convex sets.

Hence, within O(n4) operations, we can detect the significant hv-parallelo-

grams in an n×n image. Actually, a lower order algorithm can be derived by using

a multiscale methodology with the help of Beamlets and Beamlet algorithms

(Donoho and Huo (2002)). We omit the details and only mention the results

with the emphasis that detecting hv-parallelogram can be done efficiently.

Note that we are interested in detecting convex sets, not simple parallel-

ograms. We should ask whether the above detecting rule can be adopted for
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convex sets. Furthermore, how to adopt? We give the answer in the following

section.

3.2. The minimax proportion of embedded Hv-parallelograms

In this section, we analyze the relationship between an hv-parallelogram and

a convex set.

Theorem 5. For any convex set, there exists an included h- or v- parallelogram

that occupies at least 2/9 of the convex set. Moreover, the constant 2/9 cannot

be increased.

A formal proof is lengthy and tedious. We refer to an online downloadable

technical report—Ni and Huo (2005); see also Ni (2005).

Recall that we consider all the h- and v- parallelograms and have the new

statistics X̃∗ and X(Ω̃) as in (3.1). Comparing with X∗ and X(Ω) in (2.1), we

can easily verify that if there exists an inhomogeneous convex region Ω0, which

leads to X(Ω0) ∼ N(µ
√

|Ω0|, 1), then this Ω0 includes an hv-parallelogram Ω̃0

that occupies at least 2/9 of Ω0 in area, and X(Ω̃0) ∼ N(µ

√
|Ω̃0|, 1). Thus

E(X(Ω̃0)) ≥
√

2

9
E(X(Ω0)).

Hence an powerful test can be based on the comparison between (3/
√

2)X̃∗ and

Γn given earlier.

From the above, we claim that the asymptotic detectability threshold for

convex sets is 2
√

log(n), while the order of complexity for the efficient algorithm

is O(n2 log2(n)).

4. Simulations

We start with a synthetic study that was mentioned in the Introduction. We

then provide an application in cryo-EM image processing (Section 4.2).

4.1. The synthetic example in introduction

At the end of Introduction, we described a simulation study with four levels

of µ. There could be an embedded convex object; if a pixel is on the embedded

object, its intensity satisfies N(µ, 1), µ 6= 0; if not, pixel intensity satisfies i.i.d.

N(0, 1). For clarity, bigger versions of the noisy images for the four cases given in

Figure 1.2. are replotted in Figure 4.9. Our objective is to determine whether or

not an embedded convex object exists. Based on previous analysis, if X̃∗ (which

is defined in (3.1)) is well above a threshold, we can declare the existence of a
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(a) µ = 1 (b) µ = 1/2
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(c) µ = 1/8 (d) µ = 1/16
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Figure 4.9. A convex object in a white-noise image with µ = 1, 1/2, 1/8, and
1/16, respectively. Bigger images are shown here.

convex object. Consequently we can design an approach to uncover this object—

this part is not included in the present paper. If the X̃∗ is close to the threshold,

then the problem itself is in principle unsolvable.

A value, based on an image size n going to infinity, of the threshold is

2
√

log(n). However, for finite n, the analytical expression may not apply. One

can alternatively use simulations to determine the threshold. In Figure 4.10, we

plot the histogram of X̃∗ based on 1,000 simulations with µ = 0. The theoretical

value (2
√

log(n)) is plotted as a vertical line. The key observation is that if there

is no embedded object (i.e., the image is a pure white-noise image), then the

value of X̃∗ is almost never more than 6.0. The two horizontal lines in Figure 1.3

were based on this finding. From Figure 1.3, we can declare that with this shape

of convex set, when µ ≥ 1/8, the embedded convex object is detectable, and it

can be detected via hv-parallelograms. When µ = 1/16 or smaller, the detection

problem is not doable—the noisy image is too much like a white-noise image.

Note that when µ = 1/8, it is impossible to see any embedded object in the
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Figure 4.10. A histogram for X∗-statistics when µ = 0, based on 1,000

simulations. The vertical line is the position of 2
√

log(n)—the theoretical
threshold.

noisy picture (Figure 4.9 (c), but our analysis demonstrates that the underlying

convex region is still detectable.

It is reasonably fast to compute the X̃∗-statistic. On a laptop running Win-

dows XP with 2.26 GHz CPU and 1.92 GB of RAM, in Matlab, the running time

for calculating the X̃∗-statistic for a 128 by 128 image is about 2 seconds.

4.2. A case from CryoEM image processing

The dtectability problem is motivated by challenges in cryo-electron micro-

scope (cryoEM) image processing. CryoEM has become an indispensable tool in

biology to study molecular structures. Figure 4.11 (a) presents a typical cryoEM

imagery of a molecule. Because these imageries are taken by electron micro-

scopes, improving image resolution (or signal-to-noise-ratio) would require an

increment of voltage of an electron beam. Such an action could burn the bio-

logical sample. On the other hand, since the images are taken at nano-scale, it

is extremely costly to improve the image quality. Statistical computing is ap-

parently a cost-effective alternative. One big problem in CryoEM is to select

imageries that are useful. In statistics, usefulness can be defined as saying that

the imagery contains sufficient information so that it can be utilized. Under the

framework that is presented in this paper, a useful imagery must be significantly

different from the background noise (Figure 4.11 (b)) in CryoEM.

A background cryoEM image can be approximated by a white-noise; though

the existence of the contrast transfer function in cryoEM images makes this as-

sumption not completely true. Our numerical study on this is still preliminary.
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(a) Projection of a Molecule (b) Background
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Figure 4.11. Noisy cryo-EM images. (a) A typical cryo-electron microscope

imagery—projection of a molecule; (b) pure background noise.

Assuming that the background is nearly white-noise, we can compute the afore-

mentioned X̃⋆-statistics. After standardizing the two noisy pictures in Figure

4.11, we found that the corresponding X̃⋆-statistics were 73.4 (for the molecular

projection) and 14.5 (for the background), respectively. Notice that the latter is

much larger than the theoretical threshold (2
√

log 512 = 4.9953) that is derived

from white-noise images. Such an inconsistency is likely due to the effect of the

contrast transfer function. Discussion regarding removing such an effect is going

to be lengthy and beyond the scope of this paper. The fact that the former

X̃⋆-statistic is nearly 5 times large as the latter indicates the promise of such an

approach.

5. Related Works and Applications

We discuss related works (Section 5.1) and potential applications (Section

5.2).

5.1. Related works

Useful constants in other scenarios. The constant 2/9 is a major technical

achievement of this paper. Similar works, regarding the constants related to

multiscale methods in other problems, can be found in, e.g., Huo (2005a,b).

In Huo (2005a), the lower bound of the proportion of a maximally embedded

beamlet is shown to be 1/7. In Huo (2005b), the minimax correlation between

a line segment and a beamlet is proved to be 2−3/4. The beamlet has been

described in Arias, Donoho and Huo (2005). The above constants are useful in

deriving threshold regarding line segment detectability.
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Fundamental detectability in Bayesian estimation. Our approach can be

classified as a frequentist approach. We consider a simple null hypothesis versus a

composite alternative hypothesis. The objective is to characterize a neighborhood

of the null hypothesis, such that when the alternative is inside (resp., outside)

this neighborhood, the alternative is indistinguishable (resp., distinguishable)

from the null hypothesis. Another approach is to weight the alternatives by

a prescribed prior distribution, i.e., a Bayesian framework. Researchers have

successfully applied it to detection problems, see Yuille and Coughlan (2000) and

Yuille, Coughlan, Wu and Zhu (2001). They derived the fundamental bound of

detectability below which the target is not detectable, and vice versa. Such a

bound depends on a constant that is a function of the distributions determined

by the detection problem. Due to the differences in formulation, there will be

different applications of both types of theorems. It is interesting to compare

them and to discuss where a particular type of result should be used.

5.2. Applications

Constantly improved imaging technology and cheaper and better computers

give rise to demands and wishes to use digital images as tools for evaluation

and analysis. Automatic analysis and extraction of information from an image

becomes more and more important in many fields. In most of these applications,

data (images) are collected by standard sensors such as cameras and radars.

The collected images are analyzed for the detection and the recognition of the

targets, either stationary or moving, with unknown background. Detecting an

inhomogeneous region with a convex shape in a noisy environment is one of many

problems. We discuss several potential applications in the following.

In electron cryomicroscopy Van Heel, Gowen, Matadeen, Orlova, Finn, Pape,

Cohen, Stark, Schmidt, Schatz and Patwardhan (2000) and Yu (2003)), accurate

and automatic particle detection from cyro-electron microscopy (Cryo-EM) im-

ages is very important for fast and correct reconstruction of macromolecular

structures. Since achieving high-resolution reconstruction often requires over

hundreds of thousands of particles, it is extremely important to design a fast and

automatic algorithm for particle detection. Detectability could lead to a quality

measure of cryoEM images.

Filament detection and image alignment in Cryo-EM. Automated filament

identification plays an important role in the image reconstruction of helical ob-

jects from electron micrographs (Zhu, Carragher, Kriegman, Milligan. and Potter

(2001)). Due to the necessity of using low doses of electrons to image the spec-

imen, the signal-to-noise-ratio is low in these images. A three-level perceptual

organization algorithm is proposed in Zhu et al. (2001). What is of interest is
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how strong the signal-to-noise-ratio should be so that the filament identification

can be considered doable. Answering this question will lead to the detectability

problem that is studied in our paper. We notice the difference in the problem

formulation. However, many analytical techniques developed here can be utilized

in both problems.

Contamination detection. The presence of contaminants can severely harm

the performance of a particle detection algorithm. Detecting contaminants is

necessary, due to the low signal-to-noise-ratio of cryoEM images. In the liter-

ature of contaminant detection, e.g., Zhu, Carragher and Potter (2004), convex

shaped regions have been considered. Even though Zhu et al. (2004) consider an

algorithmic approach, instead of the detectability problem that is studied here,

their use of convex hulls lends us support for considering convex objects.

In geomorphology (Kim, Muller and Morley (2004), Celebi, Aslandogan and

Bergstresser (2005), and Xu, Jackowski, Goshtasby, Yu, Roseman, Bines, Dhawan

and Huntley (1999)), impact crater detection and crater size frequency counting

have a very high priority in Extra Terrestrial Mapping and planetary chronolog-

ical research. For example, in the Mars exploration, the existence of numerous

impact craters in one area will provide witness to the evolving surface process

on Mars and may help us find the geological evidence for running water on (or

just below) the surface of Mars. Hence, automation of crater detection is an im-

portant initial step toward making more efficient the work of the analyst facing

huge volumes of images produced by missions.

In medical science (Kalender, Polacin and Suess (1994)), for accurate diag-

nosis, it is crucial to accurately locate and isolate the lesions in a brain or a skin

image. Detection of lesions in the early stages considerably reduces morbidity

and mortality. However, automated detection is a challenging task for several

reasons: (a) low contrast between the lesion and its surroundings, (b) reflections

and shadows due to wrong illumination, and (c) artifacts such as skin texture,

air bubbles, and hair. The detectability problem is: how different the signal of

the lesion should be, so that the detection is a solvable problem.

Qi (2004) and Qi and Huesman (2001) adopt a different formulation than

ours. We consider hypothesis testing, in which the null hypothesis is simple and

the alternative hypothesis is composite, while Qi (2004) and Qi and Huesman

(2001) consider a simple null hypothesis versus a simple alternative hypothesis.

They quantify the detectability as the area under the ROC curve (UAC), where

the ROC stands for ‘receiver operating characteristic.’ They further establish the

relation between the UAC and the signal-to-noise-ratio (SNR): the UAC changes

monotonically with the value of SNR. Consequently, they derive a closed form

approximate for SNR for the purpose of characterizing detectability. The closed
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form is obtainable under specific situations, e.g., when the estimate is a maximum

a posteriori (MAP).

The formulation of the lesion detection problem provides us with a potential

future research topic. Under a similar framework, we can study our detectability

problem; their definition of detectability demonstrates that our formulation is

not the only aspect of the detection problem.

Ellipses detection. Ellipses detection (Bennett, Burridge and Saito (1999))

is a special case of convex region detection. In medical images, ellipses detection

has been used in automated detection of bronchial abnormalities on computed

tomography (CT) lungs (Chabat, Hu, Hansell and Yang (2001)). Ellipses are

convex. Hence the content of this paper can be utilized to decide when ellipses

detection algorithm can work.

Rooftop and building detection. Rooftop detection is an important step

of building detection and description in aerial images (Noronha and Nevatia

(1997)). Maloof, Langley, Binford, Nevatia and Sage (2003) give a survey on in-

corporating learning algorithms in this problem. In a handcrafted system, like

the one in Noronha and Nevatia (1997), detecting parallelograms is an important

intermediate step. This coincides with our usage of hv-parallelograms, although

the purposes are not completely identical. All methods rely on some preprocess-

ing steps, such as edge detection and grouping in finding buildings’ boundaries.

Note that boundaries are highly fragmented; when multiple images are utilized,

as in Noronha and Nevatia (1997), the results of boundary detector can be unre-

liable. In our framework, we can analyze the condition under which the rooftop

detection is feasible. Such a condition will depend on the quality of the im-

ages, as well as how the rooftops differ from the clutters. Many specific domain

knowledge should be taken into account, as in Noronha and Nevatia (1997) and

Maloof et al. (2003). Here, we merely mention the possibility as a future re-

search topic. We point out that the area under the ROC curves is also used in

Maloof et al. (2003) to evaluate different classifiers.

In summary the concept of detectability has many potential applications.

6. Conclusion and Discussion

Detectability is an important concept in contemporary image processing.

We show that the threshold of detectability is not derivable via the traditional

generalized likelihood ratio test, because the number of convex subsets is not

a polynomial of the image size. However, a multiscale approach initiated in

Arias, Donoho and Huo (2005) can give the asymptotic threshold. A key in

adopting the threshold in Arias, Donoho and Huo (2005) to convex sets is the

minimax ratio 2/9, which is derived in this paper. Such a constant determines



MULTISCALE ANALYSIS AND DETECTABILITY 1455

the effectiveness of numerical implementation of a multiscale method that uti-

lizes hv-parallelograms in detection of convex objects. Potential applications are

discussed. Literature pointers are provided.

We discuss some key assumptions in our analysis framework, as well as their

impacts on the practicality of the proposed approach. We have assumed that

the pixel intensities are random variables, which are independent and normally

distributed. It appears that both assumptions can be relaxed to some degree. A

key fact that we utilized in deriving the asymptotic threshold is the inequality

on the tail probabilities of a weighted partial sum—see item (1) shortly after

(2.1). It is known that a similar inequality can be established for independent

sub-Gaussian random variables. We may not require the pixel intensities to be

identically distributed—in a white-noise image, the pixel intensities are iden-

tically distributed. Such a change of formulation can dramatically change the

presentation of the current paper. The purpose of this paper is to introduce the

multiscale approach—and the use of hv-parallelograms.

The assumption that the underlying object is convex shaped may be too

restrictive in some applications. This paper is concerned with convex objects,

while the methodology may be modified for other geometric objects (including

non-convex ones). The convex assumption is general and, under it, we can derive

some insightful theoretical results. On the other hand, we do not expect our

results to be applicable in all practical problems.

We make a homogeneous assumption—the pixel intensities inside (or outside)

the embedded region have identical distributions. Such an assumption makes

some asymptotic thresholds (e.g., 2
√

log(n) for convex regions) possible. As

mentioned above, we may relax the assumption of identical distribution; however,

in the current framework, some conditions on the homogeneity seem unavoidable.

This may oversimplify practical problems. At this stage, we consider our work

more of a theoretical analysis than an applied project.

An interesting fact associated with multiscale approaches—in this case, the

adoption of hv-parallelograms—is that multiscale methods render the correct

asymptotic rate; on the other hand, a direct application of the Bonferroni’s ap-

proach cannot. A reason behind such a fact is that the hypotheses (particularly

the alternative hypotheses) are dependent since the embedded regions may over-

lap with each other. A direct application of the Bonferroni’s approach ignores

such a dependency. At the same time, it is unclear how to incorporate the depen-

dence structure into a straightforward Bonferroni’s framework. The multiscale

decomposition—such as the decomposition of convex sets into hv-parallelograms,

see Arias, Donoho and Huo (2005) for more technical details—turns out to be the

effective way to count the complexity in the hypothesis testing problem. Specif-

ically, the multiscale decomposition gives the correct rate of degrees of freedom
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in the corresponding hypotheses testing problem, hence leads to the accurate
asymptotic rate. The computational advantage of a multiscale approach has
been widely recognized as well.

Acknowledgement

This project is partially supported by NSF Grants 0604736 and 0700152.

Appendix A: Proof of Theorem 2

We need some new notation. (Recall that a convex set is determined by a
convex polygon whose vertices are the centers of some boundary pixels.) Let
a1 = min{i : (i, j) ∈ Ω}, b1 = min{j : (i, j) ∈ Ω}, b2 = max{j : (i, j) ∈ Ω},
and a2 = max{i : (i, j) ∈ Ω}. The rectangle [a1, a2] × [b1, b2] is the minimum
bounding rectangle of the convex set Ω. Let t1 = a2 − min{i : (i, b1) ∈ Ω},
t2 = b2 − min{j : (a2, j) ∈ Ω}, t3 = max{i : (i, b2) ∈ Ω} − a1, and t4 = max{j :
(a1, j) ∈ Ω} − b1. An illustration is given in Figure 6.12.

We need another notation: H(a, b). For a, b ≥ 0, a sequence of points—(0, 0),
(c1, d1), (c2, d2), . . ., (cℓ, dℓ), (a, b)—determines a convex curve iff the chain of line
segments that connect the centers of these pixels, in the same order, is convex.
If this convex curve lies within the boundary of the right triangle with vertices
(0, 0), (a, 0), and (a, b) (boundary is included), we call it a restricted convex curve

between (0, 0) and (a, b). Apparently, for a restricted convex curve, we must have
0 ≤ c1 ≤ c2 ≤ · · · ≤ cℓ ≤ a and 0 ≤ d1 ≤ d2 ≤ · · · ≤ dℓ ≤ b. More restrictively, if
∀ℓ, cℓ < a, we claim that this restricted convex curve does not with the vertical
line i = a. The total number of restricted convex curves that do not intersect
with the vertical line i = a is denoted by H(a, b). Without much effort, one can
derive (i) H(0, b) = 0, for b ≥ 0; (ii) H(a, 0) = 1, for a ≥ 1; and (iii) H(1, b) = 1,
for b ≥ 1. We would like to draw attention to the fact that, because cℓ < a, the
last segment ((cℓ, dℓ) to (a, b)) cannot be the vertical line passing through point
(a, b). Furthermore, notice that under our definition, H(a, b) and H(b, a) could
be unequal, for example, H(0, b) 6= H(b, 0) when b ≥ 1.

Recall Figure 6.12. It is not hard to prove that the following is the total
number of convex sets under our definition:

n∑

k1,k2=1

(n − k1)(n − k2)G(k1, k2), (A.1)

where k1 = a2 − a1, k2 = b2 − b1, and G(k1, k2) is the number of convex sets
whose minimal bounding rectangle is of size k1×k2. One can verify that, assuming
H(0, 0) = 1, we have

G(k1, k2) =
∑

0≤t1,t3≤k1,

0≤t2,t4≤k2

H(t1, k2−t2)H(t2, k1−t3)H(t3, k2−t4)H(t4, k1−t1). (A.2)
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Figure 6.12. Notations for the second case.

(a, b)

(a, 0)(a−b, 0)

(a−b, b)

(0, 0)

Figure 6.13. Illustration for the proof of Lemma 6.

Now the importance of H(a, b) in our analysis is clear. To get our main result,

we proceed by proving the following lemmas regarding H(a, b).

Lemma 6. The number of restricted convex curves between points (0, 0) and

(a, b), a > b, and with slopes < 1, is H(a − b, b). Here, “slopes” refer to the

slopes of line segments that make up the convex curve.

This can be proved similarly to Lemma 6. We omit the details and only give the

illustration in Figure 6.14.

Proof. Readers can refer to Figure 6.13 for an illustration of the proof. First of

all, the convex curves satisfying the condition of the Lemma will lie within the

triangle ((0, 0), (a−b, 0), (a, b)), without touching the edge between (a−b, 0) and

(a, b), except at the last point. For simplicity, we use C1 to denote this set of

convex curves . At the same time, H(a− b, b) is the number of restricted convex

curves between (0, 0) and (a− b, b) that do not intersect with line i = a− b. We

use C2 to denote this set of convex curves. We want to show |C1| = |C2|. Note
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(a, b)

(a, 0)(0, 0)

(a, a)

(a, b−a)

Figure 6.14. Illustration for the proof of Lemma 7.

(a, b)

(a, 0)(0, 0)

(a, a)

(a−x1, a−x1−x2)

x1

x2

x2

Figure 6.15. Illustration of the proof of Lemma 8.

that ∀ {(0, 0), (c1 , d1), . . . , (cl, dl), (a, b)} ∈ C1, one can easily verify {(0, 0), (c1 −
d1, d1), . . . , (cl − dl, dl), (a− b, b)} ∈ C2. On the other hand, ∀ {(0, 0), (e1 , f1), . . .,

(em, fm), (a − b, b)} ∈ C2, {(0, 0), (e1 + f1, f1), . . . , (em + fm, fm), (a, b)} ∈ C1.

Hence, there exists a one-to-one mapping between the curves in C1 and the

curves in C2. The Lemma is proved.

Lemma 7. The number of restricted convex curves that are between points (0.0)

and (a, b), a < b, with slopes ≥ 1, and not intersecting with line i = a, is

H(a, b − a).
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Lemma 8. Recursive Rule) For b ≥ a > 0,

H(a, b) = H(a, b − a) +
∑

x1+x2≤a,

x1,x2≥1

H(x2, a − x1 − x2)H(x1, b − a + x2), (A.3)

Proof. We describe it graphically. Refer to Figure 6.15.

For any curve that can be counted into H(a, b), there are two possibilities

(and only these two):

1. Case 1. The slopes of the curve are all ≥ 1.

2. Case 2. One of the vertices of the curves, (p1, p2), which is the center of a

pixel p, satisfies the following: starting from the left, until reaching its center,

the slope of the convex curve is strictly less than 1; after this vertex, the slope

of the convex curve is at least 1.

Hence,

H(a, b) = #{curves from Case 1} + #{curves from Case 2}
= #{curves from Case 1}

+
∑

p

#{curves ending at p} · #{curves starting from p}.

Under the first circumstance, the restricted convex curves have been analyzed in

Lemma 7. So #{curves from Case 1} = H(a, b − a).

Under the second circumstance, since the slopes of the convex curve before

(p1, p2) (including the edge ending at p) are strictly less than 1, (p1, p2) should

be strictly under the line that connects (0, 0) and (a, a), i.e., p2 < p1. We can

rewrite p2 = p1 − x2, where x2 ≥ 1, illustrated in Figure 6.15. Also, since the

convex curve cannot intersect with the vertical line i = a, p1 should be strictly

less than a. So we can rewrite p1 = a−x1, with integer x1 ≥ 1, also illustrated in

Figure 6.15. The center of pixel p becomes (a− x1, a− x1 − x2), x1 ≥ 1, x2 ≥ 1.

At last, because p2 ≥ 0, we have x1+x2 ≤ a. Actually, one can check from Figure

6.15 that (p1, p2) must lie strictly within the triangle with vertices (0, 0), (a, b),

and (a, 0), or lie on the line segment connecting (0, 0) and (a, 0) (excluding the

ending points). The geometric meanings of x1 and x2 are illustrated in Figure

6.15. Conditions x1 ≥ 1, x2 ≥ 1, and x1 + x2 ≤ a give an enumeration of all the

possible positions of p.

Now, we have

H(a, b) = H(a, b − a) +
∑

x1+x2≤a,x1,x2≥1
p=(a−x1,a−x1−x2)

#{curves ending at p}

×#{curves starting from p}.
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From Lemma 6, the number of restricted convex curves between (0, 0) and (a −
x1, a − x1 − x2), with slopes < 1, is H((a − x1) − (a − x1 − x2), a − x1 − x2) =

H(x2, a − x1 − x2).

Consider the last term, #{curves ending at p}. By switching the origin (0, 0)

to (a − x1, a − x1 − x2), we observe that the number of restricted convex curves

between (a− x1, a − x1 − x2) and (a, b), with slopes ≥ 1, is equal to the number

of convex curves between (0, 0) and (a − (a − x1), b − (a − x1 − x2)) = (x1, b −
a + x1 + x2), with slopes ≥ 1. The latter, from Lemma 7, is H(x1, b − a + x2).

From the above, the Lemma is proved.

As a direct application of Lemma 8, one can verify the following.

• H(2, b) = 2 + ⌊((b − 1)/2)⌋, for b ≥ 1 where ⌊x⌋ is the largest integer that is

no larger than x. This can be verified from H(2, b) = H(2, b−2)+1 for b ≥ 2,

which is stated by Lemma 8, and H(2, 0) = 1, H(2, 1) = 2.

• H(3, b) = H(3, b − 3⌊(b/3)⌋) + 2⌊(b/3)⌋ +
∑⌊(b/3)⌋

i=1 (⌊((b + 4 − i)/2)⌋ − i).

• H(3, 1) = 3, H(3, 2) = 4, and H(3, 3) = 5.

Another way to utilize Lemma 8 is to derive the following.

Corollary 9. For a ≥ 1, H(a, a) ≥ 1 + (a(a − 1))/2.

Proof.

H(a, a) = H(a, 0) +
∑

x1+x2≤a

x1,x2≥1

H(x2, ·)H(x1, ·) ≥ 1 +

a−1∑

x1=1

a−x1∑

x2=1

1 = 1 +
1

2
a(a − 1).

Recall that we have H(1, 1) = 1, H(2, 2) = 2, H(3, 3) = 5.

Proof of Theorem 2. From Lemma 8, one can prove for a > 0,

H(a, b) ≥ ba−1

a2a
. (A.4)

By choosing a large enough and b = 2a2, the right hand side of (A.4) increases

faster than any polynomial with a prescribed degree. Verifying (A.4) via (A.3)

is a simple exercise. We describe it briefly below.

Proof of (A.4).

• When b < a, H(a, b) > 1 > [(ba−1)/(a2a)].
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• When b ≥ a > 0, from Lemma 8 and induction,

H(a, b) = H(a, b − a) +
∑

x1+x2≤a,

x1,x2≥1

H(x2, a − x1 − x2)H(x1, b − a + x2)

≥ (b − a)a−1

a2a
+

∑

x1+x2≤a,

x1,x2≥1

(a − x1 − x2)
x2−1

x2x2
2

(b − a + x2)
x1−1

x2x1
1

≥ (b − a)a−1

a2a
+

[
(b − a)a−2

(a − 1)2(a−1)
+

(b − 1)a−3

(a − 2)2(a−2)
+ · · ·

]

>
1

a2a

[
(b − a)a−1 +

(
a

1

)
a(b − a)a−2 +

(
a

2

)
a2(b − a)a−3 + · · ·

]

=
ba−1

a2a
.

From (A.1) and (A.2), it is not hard to see that the number of convex sets

also grows faster than any finite-degree polynomial of n. Theorem 2 is proved.
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