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University of Caen, and University Pierre et Marie Curie, Paris VI

Supplementary Material

This note contains the proof of Theorem 2.1.

S1. Notations.

Aggregation Procedures. Let us recall that we consider the following aggregation

procedure:

f̃n =
∑
f∈F0

w(n)(f)f, (2.1)

where the exponential weights w(n)(f) are defined by

w(n)(f) = exp (−nAn(f))/
∑
g∈F0

exp (−nAn(g)). (2.2)

Oracle Inequalities. Let us recall that the quantity γ = γ(n,M, κ,F0, π,Q) is

defined by

γ =


(
B1/κ logM/(β1n)

)1/2
if B ≥ (logM/β1n)κ/(2κ−1) ,

(logM/(β2n))κ/(2κ−1) otherwise,

(2.3)

where B = B(F0, π,Q) = minf∈F0 (A(f)−A∗), κ ≥ 1 is the margin parameter,

π is the underlying probability measure, Q is the loss function,

β1 = min
(

log 2/(96cK), 3log 2/(16K
√

2), (8(4c+K/3))−1, (576c)−1
)

(2.4)

and

β2 = min
(

8−1, 3 log 2/(32K), (2(16c+K/3))−1, β1/2
)
, (2.5)
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where the constant c > 0 appears in the margin assumption MA(κ, c,F0) and K

is considered in the following theorem.

S2. Main result.

Theorem 2.1 Let us consider the general framework introduced in the beginning

of Section 2. Let M ≥ 2 be an integer. Let F0 denote a finite subset of M

elements f1, . . . , fM in F . Assume that the underlying probability measure π

satisfies the margin assumption MA(κ, c,F0) for some κ ≥ 1, c > 0. Assume

that f 7−→ Q(z, f) is convex for π-almost z ∈ Z and, for any f ∈ F0, there exists

a constant K ≥ 1 such that |Q(Z, f)−Q(Z, f∗)| ≤ K. Then, the AEW procedure

f̃n defined by (2.1) satisfies

E
[
A(f̃n)−A∗

]
≤ min

j=1,...,M
{A(fj)−A∗}+ 4γ,

where γ = γ(n,M, κ,F0, π,Q) is defined by (2.3).

Proof of Theorem 2.1: preliminaries. First of all, let us recall the nota-

tions of the general framework introduced in the beginning of Section 2. Consider

a loss function Q : Z × F 7−→ R, the risk A(f) = E[Q(Z, f)], the minimum risk

A∗ = minf∈F A(f), where we assume, w.l.o.g., that it is achieved by an element

f∗ in F and, for any f ∈ F , the empirical risk An(f) = (1/n)
∑n

i=1Q(Zi, f).

Now, let us consider the convex set C defined by

C =
{

(θ1, . . . , θM ) : θj ≥ 0, ∀j = 1, . . . ,M, and
M∑
j=1

θj = 1
}
. (2.6)

For any θ ∈ C, we define the functions Ã(θ) and Ãn(θ) by

Ã(θ) =
M∑
j=1

θjA(fj) and Ãn(θ) =
M∑
j=1

θjAn(fj).

The first function is the linear version of the risk A. The second is the empirical

version of this risk.

We are now in position to explain the form of the exponential weights de-

scribed by (2.2). By virtue of the Lagrange method of optimization, we find
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that the exponential weights w = (w(n)(fj))1≤j≤M are the unique solution of the

minimization problem

min
(θ1,...,θM )∈C

{
Ãn(θ) + (1/n)

M∑
j=1

θj log θj
}
, (2.7)

where we use the convention 0 log 0 = 0. Take ̂ ∈ {1, . . . ,M} such that An(f̂) =

minj=1,...,M An(fj). If ej denotes the vector in C with 1 for j-th coordinate and

0 elsewhere, then, by (2.7), the vector of exponential weights w satisfies

Ãn(w) + (1/n)
M∑
j=1

w(n)(fj) logw(n)(fj) ≤ Ãn(ê).

Using the fact that
∑M

j=1w
(n)(fj) log(Mw(n)(fj)) ≥ 0 (because this is the Kullback-

Leibler divergence between the weights w and the uniform weights), we obtain

Ãn(w) ≤ Ãn(ê) + logM/n. (2.8)

Now, observe that a linear function achieves its maximum over a convex polygon

at one of the vertices of the polygon. Thus, for j0 ∈ {1, . . . ,M} such that

Ã(ej0) = minj=1,...,M Ã(ej) (= minj=1,...,M A(fj)), we have Ã(ej0) = minθ∈C Ã(θ).

We obtain the last inequality by linearity of Ã and the convexity of C. We define

ŵ by either:

ŵ = w or ŵ = ê. (2.9)

According to (2.8), we have

Ãn(ŵ) ≤ min
j=1,...,M

Ãn(ej) + logM/n ≤ Ãn(ej0) + logM/n. (2.10)

This inequality, justified by the form of our weights, will be at the heart of

the proof. Now, let us set two auxiliary lemmas.

Lemma 2.2 Consider the framework introduced in the beginning of Section 2.

Let F0 = {f1, . . . , fM} be a finite subset of F . We assume that π satisfies
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MA(κ, c,F0), for some κ ≥ 1, c > 0 and, for any f ∈ F0, there exists a con-

stant K ≥ 1 such that |Q(Z, f)−Q(Z, f∗)| ≤ K. Then, for any positive numbers

t, x and any integer n, we have:

P
[
max
f∈F

A(f)−An(f)− (A(f∗)−An(f∗))
A(f)−A∗ + x

> t

]
≤M

[(
1 +

4cx1/κ

n(tx)2

)
exp

(
−n(tx)2

4cx1/κ

)
+
(

1 +
4K

3ntx

)
exp

(
−3ntx

4K

)]
.

The proof of Lemma 2.2 is postponed at the end of the proof of Theorem 2.1.

Lemma 2.3 Let α ≥ 1 and x, y > 0. An integration by part yields∫ +∞

x
exp (−ytα) dt ≤ exp(−yxα)/(αyxα−1).

Proof of Theorem 2.1: technical details. Denote by ÃC the minimum

minθ∈C Ã(θ) where C is the set defined by (2.6). Using the following elementary

inequality: for any u ∈ R and random variable W ∈]−∞,K], we have E(W ) =

E(W1I{W<u} + W1I{W≥u}) ≤ u +
∫K
0 P(W1I{W≥u} ≥ ε)dε = 2u + 2

∫K/2
u/2 P(W ≥

2ε)dε, we obtain:

E[A(f̃n)− ÃC ] ≤ E
[
Ã(ŵ)− ÃC

]
≤ 2u+ 2

∫ K/2

u/2
P
[
Ã(ŵ) > ÃC + 2ε

]
dε, (2.11)

where ŵ is defined by (2.9).

Now, let us investigate the upper bound of the term P
[
Ã(ŵ) > ÃC + 2ε

]
.

Let us consider D, the subset of C defined by

D =
{
θ ∈ C : Ã(θ) > ÃC + 2ε

}
.

If ŵ ∈ D then the inequality (2.10) implies the existence of θ ∈ D such that

Ãn(θ)− Ãn(f∗) ≤ Ãn(ej0)− Ãn(f∗) + logM/n. Hence, for any ε > 0, we have

P
[
Ã(ŵ) > ÃC + 2ε

]
≤ P

[
inf
θ∈D

Ãn(θ)−An(f∗) ≤ Ãn(ej0)−An(f∗) + logM/n

]
≤ V1 + V2,
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where

V1 = P
[

inf
θ∈D

Ãn(θ)−An(f∗) < ÃC −A∗ + ε

]
and

V2 = P
[
Ãn(ej0)−An(f∗) ≥ ÃC −A∗ + ε− logM/n

]
.

Let us investigate the upper bounds for V1 and V2, in turn.

The upper bound for V1. We recall that ÃC denotes the minimum minθ∈C Ã(θ).

Assume that, for any x > 0, we have

sup
θ∈D

Ã(θ)−A∗ − (Ãn(θ)−An(f∗))
Ã(θ)−A∗ + x

≤ ε

ÃC −A∗ + 2ε+ x
.

Since, for any θ ∈ D, Ã(θ)−A∗ ≥ ÃC −A∗ + 2ε, we obtain

Ãn(θ)−An(f∗) ≥ Ã(θ)−A∗ − ε(Ã(θ)−A∗ + x)
(ÃC −A∗ + 2ε+ x)

≥ ÃC −A∗ + ε.

Hence, for any x > 0, we can bound V1 by

V1 ≤ P

[
sup
θ∈D

Ã(θ)−A∗ − [Ãn(θ)−An(f∗)]
Ã(θ)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x

]
. (2.12)

If, for any x > 0, we assume that

sup
θ∈C

Ã(θ)−A∗ − [Ãn(θ)−An(f∗)]
Ã(θ)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x
,

then, there exists θ(0) = (θ(0)
1 , . . . , θ

(0)
M ) ∈ C, such that

Ã(θ(0))−A∗ − [Ãn(θ(0))−An(f∗)]
Ã(θ(0))−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x
.

The linearity of Ã yields

Ã(θ(0))−A∗ − (Ãn(θ(0))−An(f∗))
Ã(θ(0))−A∗ + x

=

∑M
j=1 θ

(0)
j [A(fj)−A∗ − (An(fj)−An(f∗))]∑M

j=1 θ
(0)
j [A(fj)−A∗ + x]

.

Let us notice that, for any numbers a1, . . . , aM and positive numbers b1, . . . , bM ,

we have
∑M

j=1 aj/
∑M

j=1 bj ≤ maxj=1,...,M (aj/bj). It follows that

max
j=1,...,M

A(fj)−A∗ − (An(fj)−An(f∗))
A(fj)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x
,
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where ÃC = minj=1,...,M A(fj) (which is equal to the ÃC previously defined).

Now, we use the relative concentration inequality of Lemma 2.2 to obtain

P
[

max
j=1,...,M

A(fj)−A∗ − (An(fj)−An(f∗))
A(fj)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x

]
≤ M

(
1 +

4c(ÃC −A∗ + 2ε+ x)2x1/κ

n(εx)2

)
exp

(
− n(εx)2

4c(ÃC −A∗ + 2ε+ x)2x1/κ

)

+M

(
1 +

4K(ÃC −A∗ + 2ε+ x)
3nεx

)
exp

(
− 3nεx

4K(ÃC −A∗ + 2ε+ x)

)
.(2.13)

Putting (2.12) and (2.13) together, for any x > 0, we obtain:

V1 ≤ M

(
1 +

4c(ÃC −A∗ + 2ε+ x)2x1/κ

n(εx)2

)
exp

(
− n(εx)2

4c(ÃC −A∗ + 2ε+ x)2x1/κ

)

+M

(
1 +

4K(ÃC −A∗ + 2ε+ x)
3nεx

)
exp

(
− 3nεx

4K(ÃC −A∗ + 2ε+ x)

)
.(2.14)

The upper bound for V2. Using the margin assumption MA(κ, c,F0) to up-

per bound the variance term and applying Bernstein’s inequality (cf. Massart

(2006)), for any ε > logM/n, we get

V2 ≤ exp
(
− n(ε− (logM)/n)2

2c(ÃC −A∗)1/κ + (2K/3)(ε− logM/n)

)
, (2.15)

Combining the obtained upper bounds of V1 with x = ÃC −A∗ + 2ε and V2,

then, for any logM/n < ε < K/2, we have

P
(
Ã(ŵ) > ÃC + 2ε

)
≤ V1 + V2

≤ exp
(
− n(ε− logM/n)2

2c(ÃC −A∗)1/κ + (2K/3)(ε− logM/n)

)
+M

(
1 +

16c(ÃC −A∗ + 2ε)1/κ

nε2

)
exp

(
− nε2

16c(ÃC −A∗ + 2ε)1/κ

)
+M

(
1 +

8K
3nε

)
exp

(
−3nε

8K

)
.

It follows from (2.11) that, for any 2 logM/n < u < K/2, we have

E[A(f̃n)− ÃC ] ≤ 2u+ 2
∫ K/2

u/2
[T1(ε) +M(T2(ε) + T3(ε))] dε, (2.16)
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where the quantities T1(ε), T2(ε) and T3(ε) are defined by

T1(ε) = exp
(
− n(ε− (logM)/n)2

2c(ÃC −A∗)1/κ + (2K/3)(ε− logM/n)

)
,

T2(ε) =

(
1 +

16c(ÃC −A∗ + 2ε)1/κ

nε2

)
exp

(
− nε2

16c(ÃC −A∗ + 2ε)1/κ

)
and

T3(ε) =
(

1 +
8K
3nε

)
exp

(
−3nε

8K

)
.

Now, let us investigate the upper bounds of
∫ 1
u/2 T1(ε)dε,

∫ 1
u/2 T2(ε)dε and

∫ 1
u/2 T3(ε)dε,

in turn. We distinguish two cases: the case where ÃC−A∗ ≥ (logM/(β1n))κ/(2κ−1)

and the case where ÃC − A∗ < (logM/(β1n))κ/(2κ−1). Let us recall that β1 is

defined in (2.4).

- The case ÃC − A∗ ≥ (logM/(β1n))κ/(2κ−1) . Denote by µ(M) the unique

solution of the equation µ0 − 3M exp(−µ0) = 0. Then, clearly (logM)/2 ≤
µ(M) ≤ logM . Take u such that (nβ1u

2)/(ÃC − A∗)1/κ = µ(M). Using the

fact that ÃC − A∗ ≥ (logM/(β1n))κ/(2κ−1) and the definition µ(M), we get

u ≤ ÃC −A∗. Moreover, since u ≥ 4 logM/n, we have∫ K/2

u/2
T1(ε)dε ≤

∫ (ÃC−A∗)/2

u/2
exp

(
− n(ε/2)2

(2c+K/6)(ÃC −A∗)1/κ

)
dε

+
∫ K/2

(ÃC−A∗)/2
exp

(
− n(ε/2)2

(4c+K/3)ε1/κ

)
dε.

Using Lemma 2.3 and the inequality u ≤ ÃC −A∗, we obtain∫ K/2

u/2
T1(ε)dε ≤ 8(4c+K/3)(ÃC −A∗)1/κ

nu
exp

(
− nu2

8(4c+K/3)(ÃC −A∗)1/κ

)
.

(2.17)

Since 16c(ÃC −A∗ + 2u) ≤ nu2, Lemma 2.3 yields∫ K/2

u/2
T2(ε)dε ≤ 2

∫ (ÃC−A∗)/2

u/2
exp

(
− nε2

64c(ÃC −A∗)1/κ

)
dε

+2
∫ K/2

(ÃC−A∗)/2
exp

(
−nε

2−1/κ

128c

)
dε

≤ 2148c(ÃC −A∗)1/κ

nu
exp

(
− nu2

2148c(ÃC −A∗)1/κ

)
.(2.18)
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Since 16(3n)−1 ≤ u ≤ ÃC −A∗, we have∫ K/2

u/2
T3(ε)dε ≤ 16K(ÃC −A∗)1/κ

3nu
exp

(
− 3nu2

16K(ÃC −A∗)1/κ

)
. (2.19)

From (2.16), (2.17), (2.18), (2.19) and the definition of u (and, a fortiori, µ(M)),

we obtain

E
[
A(f̃n)− ÃC

]
≤ 2u+ 6M

(ÃC −A∗)1/κ

nβ1u
exp

(
− nβ1u

2

(ÃC −A∗)1/κ

)
= 4u ≤ 4

√
(ÃC −A∗)1/κ logM/(nβ1).

- The case ÃC − A∗ < (logM/(β1n))κ/(2κ−1). We now choose u such that

nβ2u
(2κ−1)/κ = µ(M), where µ(M) denotes the unique solution of the equa-

tion µ0 − 3M exp(−µ0) = 0 and β2 is defined in (2.5). Using the fact that

ÃC−A∗ < (logM/(β1n))κ/(2κ−1) and the definition of µ(M), we get u ≥ ÃC−A∗

(since β1 ≥ 2β2). Using the fact that u > 4 logM/n and Lemma 2.3, we find∫ K/2

u/2
T1(ε)dε ≤ 2(16c+K/3)

nu1−1/κ
exp

(
− 3nu2−1/κ

2(16c+K/3)

)
. (2.20)

Since u ≥ (128c/n)κ/(2κ−1), Lemma 2.3 yields∫ K/2

u/2
T2(ε)dε ≤ 256c

nu1−1/κ
exp

(
−nu

2−1/κ

256c

)
. (2.21)

Since u > 16K/(3n), we have∫ K/2

u/2
T3(ε)dε ≤ 16K

3nu1−1/κ
exp

(
−3nu2−1/κ

16K

)
. (2.22)

Putting (2.16), (2.20), (2.21) and (2.22) together and using the definition of u

(and, a fortiori, µ(M)), we obtain

E
[
A(f̃n)− ÃC

]
≤ 2u+ 6M

exp
(
−nβ2u

(2κ−1)/κ
)

nβ2u1−1/κ
= 4u ≤ 4(logM/(nβ2))κ/(2κ−1).

This completes the proof of Theorem 2.1.
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Proof of Lemma 2.2. We use a ”peeling device”. Let x > 0. For any

integer j, we consider Fj = {f ∈ F : jx ≤ A(f)−A∗ < (j + 1)x} . Define the

empirical process Zx(f) by

Zx(f) =
A(f)−An(f)− (A(f∗)−An(f∗))

A(f)−A∗ + x
.

Using Bernstein’s inequality and margin assumption MA(κ, c,F0) to upper bound

the variance term, we have

P
[
max
f∈F

Zx(f) > t

]
≤

+∞∑
j=0

P
[
max
f∈Fj

Zx(f) > t

]

≤
+∞∑
j=0

P
[

max
f∈Fj

A(f)−An(f)− (A(f∗)−An(f∗)) > t(j + 1)x
]

≤ M

+∞∑
j=0

exp
(
− n[t(j + 1)x]2

2c((j + 1)x)1/κ + (2K/3)t(j + 1)x

)

≤ M

+∞∑
j=0

exp
(
− n(tx)2(j + 1)2−1/κ

4cx1/κ

)
+ exp

(
− (j + 1)

3ntx
4K

)
≤ M

[
exp

(
−nt

2x2−1/κ

4c

)
+ exp

(
−3ntx

4K

)]

+M
∫ +∞

1

[
exp

(
−nt

2x2−1/κ

4c
u2−1/κ

)
+ exp

(
−3ntx

4K
u

)]
du.

Lemma 2.3 completes the proof.


