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Abstract: We consider a multi-wavelet thresholding method for nonparametric es-

timation. An adaptive procedure based on a convex combination of weighted term-

by-term thresholded wavelet estimators is proposed. By considering the density

estimation framework, we prove that this procedure is optimal in the minimax

sense over Besov balls under the L2 risk, without an extra logarithm term.

Key words and phrases: Aggregation, density estimation, margin, oracle inequali-

ties, threshold estimators, wavelets.

1. Introduction

Wavelet shrinkage methods have been very successful in nonparametric func-
tion estimation. They provide estimators that are spatially adaptive and (near)
optimal over a wide range of function classes. Standard approaches are based
on the term-by-term thresholds. The well-known examples are the hard and soft
thresholded estimators introduced by Donoho and Johnstone (1995). The perfor-
mances of such constructions are truly dependent of the choice of the threshold.
In the literature, several techniques have been proposed to determine the ’best’
adaptive threshold. There are, for instance, the RiskShrink and SureShrink meth-
ods (see Donoho and Johnstone (1995)), the cross-validation methods (see, for
instance, Nason (1995) and Jansen (2001)), the methods based on hypothesis
tests (see, for instance, Abramovich, Benjamini, Donoho and Johnstone (2006)),
the Lepski methods (see Juditsky (1997)) and the Bayesian methods (see, for
instance, Abramovich, Sapatinas and Silverman (1998)).

In the present paper, we propose to study the performances of a new adaptive
wavelet estimator based on a convex combination of weighted local thresholding
estimators (hard, soft, non negative garotte, . . .). In the framework of nonpara-
metric density estimation, we prove that, in some sense, this is at least as good
as the term-by-term thresholded estimator defined with the ’best’ threshold. In
particular, we prove that the proposed estimator is optimal, in the minimax
sense, over Besov balls under the L2 risk. The proof is based on a non-adaptive
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minimax result proved by Delyon and Juditsky (1996), and some powerful oracle
inequalities satisfied by aggregation methods. Such methods use an exponential
weighting aggregation scheme, that has been studied by, among others, Augustin,
Buckland and Burnham (1997) Yang (2000), Catoni (2001), Leung and Barron
(2006), Bunea and Nobel (2005), and Lecué (2005, 2006, 2007a,b).

The paper is organized as follows. Section 2 presents general oracle inequal-
ities satisfied by the aggregation scheme using exponential weights. Section 3
describes the main procedure of the study and investigates its minimax perfor-
mances over Besov balls under L2 risk. Proofs are postponed to the last section.

2. Oracle Inequalities

2.1. Framework

Let (Z, T ) be a measurable space. Denote by P the set of all probability
measures on (Z, T ). Let F be a function from P with values in an algebra F .
Let Z be a random variable with values in Z and denote by π its probability
measure. Let Dn be a family of n i.i.d. observations Z1, . . . , Zn having the
common probability measure π. The probability measure π is unknown. Our
aim is to estimate F (π) from the observations Dn.

In our estimation problem, we assume that we have access to an “empirical
risk”. This means that there exists Q : Z × F 7−→ R such that the risk of
an estimator f ∈ F of F (π) is of the form A(f) = E [Q(Z, f)] . If the infimum
A∗ = inff∈F A(f) is achieved by at least one function, we denote by f∗ ∈ F such
a minimizer. In this paper we assume that inff∈F A(f) is achievable, otherwise
we replace f∗ by f∗

n, an element in F satisfying A(f∗
n) ≤ inff∈F A(f) + n−1.

In most cases f∗ will be F (π). The risk A is unknown, instead of minimizing
A over F , we consider an empirical version of A constructed from the observations
Dn. It is denoted by

An(f) =
1
n

n∑
i=1

Q(Zi, f). (2.1)

In order to illustrate this general statistical framework with a concrete problem,
let us focus our attention on nonparametric density estimation.

In the density estimation setup, (Z, T ) is endowed with a finite measure µ

and we assume that π is absolutely continuous w.r.t. to µ. One version of the
density function of π w.r.t. µ is denoted by f∗. Consider F be the set of all
density functions on (Z, T , µ). For any z ∈ Z and f ∈ F , the loss function
considered is

Q(z, f) =
∫
Z
|f(y)|2dµ(y) − 2f(z). (2.2)
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We have, for any f ∈ F ,

A(f) = E [Q(Z, f)] =
∫
Z
|f(y)|2dµ(y) − 2

∫
Z

f(y)f∗(y)dµ(y)

=
∥∥∥f∗ − f

∥∥∥2

2
−

∫
Z
|f∗(y)|2dµ(y).

Thus, the density function f∗ is a minimizer of A over F and A∗ = −
∫
Z |f∗(y)|2

dµ(y).
Now, we introduce an assumption which improves the quality of estimation in

our framework. This assumption was first introduced by Mammen and Tsybakov
(1999) for the problem of discriminant analysis, and by Tsybakov (2004) for the
classification problem. With it, parametric rates of convergence can be achieved,
for instance, in the classification problem (cf. Tsybakov (2004) and Steinwart
and Scovel (2007).

Margin Assumption (MA): Let κ ≥ 1, c > 0, and F0 be a subset of F . We say
that the probability measure π satisfies the margin assumption MA(κ, c,F0) if,
for any f ∈ F0, we have

E
[
|Q(Z, f) − Q(Z, f∗)|2

]
≤ c(A(f) − A∗)1/κ.

The margin assumption is linked to the convexity of the underlying loss. In
density estimation with integrated squared risk, we can show that all proba-
bility measures π on (Z, T ) absolutely continuous w.r.t. µ satisfy the margin
assumption MA(1, 16B2,FB) where FB is the set of all non-negative functions
f ∈ L2(Z, T , µ) bounded by B. Other values for the margin parameter can be
met in classification, for instance.

2.2. Aggregation procedures

We work with the notations introduced in the beginning of the previous
subsection. The aggregation framework considered, among others, by Juditsky
and Nemirovski (2000), Yang (2000), Nemirovski (2000), Tsybakov (2003), Leung
and Barron (2006), and Birgé (2006), is the following. Take F0 a finite subset
of F , our aim is to mimic (up to an additive residual) the best function in F0

w.r.t. the risk A. For this, we consider the Aggregation with Exponential Weights
aggregate (AEW) over F0. The resulting estimate is

f̃n =
∑
f∈F0

w(n)(f)f, (2.3)

where the exponential weights w(n)(f) are given by

w(n)(f) =
exp (−nAn(f))∑

g∈F0
exp (−nAn(g))

. (2.4)
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2.3. Oracle inequalities

In this subsection we state an exact oracle inequality satisfied by the AEW
procedure in the general framework at the beginning of Section 2. From this
exact oracle inequality, we deduce an oracle inequality in the density estimation
framework. Define the quantity γ = γ(n,M, κ,F0, π,Q) by

γ =


(
B1/κ log M

β1n

)1/2
if B ≥

(
log M
β1n

)κ/(2κ−1)
,(

log M
β2n

)κ/(2κ−1)
otherwise.

(2.5)

Here B = B(F0, π,Q) = minf∈F0 (A(f) − A∗), κ ≥ 1 is the margin parameter, π

is the underlying probability measure, Q is the loss function,

β1 = min
( log 2

96cK
,

3log 2
16K

√
2
,
(
8(4c +

K

3
)
)−1

, (576c)−1
)

(2.6)

β2 = min
(
8−1,

3 log 2
32K

,
(
2(16c +

K

3
)
)−1

,
β1

2

)
, (2.7)

where the constant c > 0 appears in the margin assumption MA(κ, c,F0), and
K surfaces below.

Theorem 2.1. In the general framework introduced at the beginning of Section
2, M ≥ 2 be an integer and F0 denote a finite subset of M elements f1, . . . , fM

in F . Assume that the underlying probability measure π satisfies the margin
assumption MA(κ, c,F0) for some κ ≥ 1, c > 0. Assume that f 7−→ Q(z, f) is
convex for π-almost z ∈ Z and, for any f ∈ F0, there exists a constant K ≥ 1
such that |Q(Z, f)−Q(Z, f∗)| ≤ K. Then, the AEW procedure f̃n defined by (2.3)
satisfies

E
[
A(f̃n) − A∗

]
≤ min

j=1,...,M
{A(fj) − A∗} + 4γ,

where γ = γ(n,M, κ,F0, π,Q) is defined by (2.5).

Corollary 2.2. Assume an underlying density function f∗ to estimate is bounded
by B > 0. Let M ≥ 2 be an integer. Let f1, . . . , fM be M functions such that
‖fj‖∞ ≤ B, ∀j = 1, . . . ,M . For β2 defined in (2.7) and any ε > 0, the AEW
procedure f̃n defined by (2.3) satisfies

E
[∥∥∥f̃n − f∗

∥∥∥2

2

]
≤ (1 + ε) min

j=1,...,M

{∣∣∣f∗ − fj

∣∣∣2
2

}
+

4 log M

εβ2n
. (2.8)

Thus, the AEW procedure mimics the best fj among the fj ’s, up to a residual
term which can be very small according to the value of M . A similar result can
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be found in Yang (2000, 2001), where a randomized aggregate using exponential
weights w.r.t. the Kullback-Leiber loss satisfies an oracle inequality like (2.8)
with a 2 in front of the main term minj=1,...,M ‖f∗ − fj‖2

2.

3. Multi-thresholding Wavelet Estimator

In this section, we propose an adaptive estimator constructed from aggre-
gation techniques and wavelet thresholding methods. For the density model, we
show that it is optimal in the minimax sense over a wide range of function spaces.

3.1. Wavelets and Besov balls

We consider an orthonormal wavelet basis generated by dilation and trans-
lation of a compactly supported “father” wavelet φ and a compactly supported
”mother” wavelet ψ. For our purposes, we use the periodized wavelets bases
on the unit interval. Let φj,k(x) = 2j/2φ(2jx − k), ψj,k(x) = 2j/2ψ(2jx − k)
be the elements of the wavelet basis and φper

j,k (x) =
∑

l∈Z φj,k(x − l), ψper
j,k (x) =∑

l∈Z ψj,k(x − l), their periodized versions, defined for any x ∈ [0, 1], j ∈ N and
k ∈ {0, . . . , 2j−1}. There exists an integer τ such that the collection ζ defined by
ζ = {φper

τ,k , k = 0, . . . , 2τ − 1; ψper
j,k , j = τ, . . . ,∞, k = 0, . . . , 2j − 1} constitutes

an orthonormal basis of L2([0, 1]). In what follows, the superscript ”per” will be
suppressed from the notations for convenience. A square-integrable function f∗

on [0, 1] can be expanded into a wavelet series

f∗(x) =
2τ−1∑
k=0

ατ,kφτ,k(x) +
∞∑
j=l

2j−1∑
k=0

βj,kψj,k(x),

where αj,k =
∫ 1
0 f∗(x)φj,k(x)dx and βj,k =

∫ 1
0 f∗(x)ψj,k(x)dx. Further details on

wavelet theory can be found in Meyer (1990) and Daubechies (1992).
Let L ∈ (0,∞), s ∈ (0,∞), p ∈ [1,∞) and q ∈ [1,∞), with βτ−1,k = ατ,k.

We say that a function f∗ belongs to the Besov balls Bs
p,q(L) if and only if there

exists L∗ > 0 such that the associated wavelet coefficients satisfy[ ∞∑
j=τ−1

[
2j(s+1/2−1/p)

( 2j−1∑
k=0

|βj,k|p
)1/p]q]1/q

≤ L∗, if q ∈ [1,∞),

with the usual modification if q = ∞. We work with the Besov balls because of
their exceptional expressive power; for a particular choice of parameters s, p and
q, they contain the Hölder and Sobolev balls (see, for instance, Meyer (1990)).

3.2. Term-by-term thresholded estimator

In this subsection, we consider the estimation of an unknown density function
f∗ in L2([0, 1]).
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A term-by-term thresholded wavelet estimator is given by

f̂λ(Dn, x) =
2τ−1∑
k=0

α̂τ,kφτ,k(x) +
j1∑

j=τ

2j−1∑
k=0

Υλj
(β̂j,k)ψj,k(x), (3.1)

where

α̂τ,k =
1
n

n∑
i=1

φτ,k(Xi) and β̂j,k =
1
n

n∑
i=1

ψj,k(Xi), (3.2)

j1 is an integer satisfying (n/ log n) ≤ 2j1 < 2(n/ log n), λ = (λτ , . . . , λj1) is a
vector of positive integers and, for any u > 0, the operator Υu is such that, for
any x, y ∈ R, there exist two constants C1, C2 > 0 satisfying

|Υu(x) − y|2 ≤ C1

(
|min(y, C2u)|2 + |x − y|21I{|x−y|≥2−1u}

)
. (3.3)

The inequality (3.3) holds for the hard thresholding rule Υhard
u (x) = x1I{|x|>u},

the soft thresholding rule Υsoft
u (x) = sign(x)(|x| − u)1I{|x|>u} (see Donoho and

Johnstone (1995), Donoho, Johnstone, Kerkyacharian and Picard (1995) and
Delyon and Juditsky (1996)), and the non-negative garrote thresholding rule
ΥNG

u (x) =
(
x − u2/x

)
1I{|x|>u} (see Gao (1998)).

In Delyon and Juditsky (1996), it is proved that, for the threshold λ =
(ρ

√
(j − js)+/n)j=τ,...,j1 where js is an integer such that n1/(1+2s) < 2js ≤

2n1/(1+2s) and ρ satisfying

ρ2 ≥ 4(log 2)(8B + (
8ρ

3
√

2
)(‖ψ‖∞ + B)), (3.4)

the term-by-term thresholded wavelet estimator f̂λ(Dn, .) achieves the minimax
rate of convergence n−2s/(1+2s) over Bs

p,q(L). In this study, we use aggregation
methods to construct an adaptive estimator at least as good, in the minimax
sense, as this non-adaptive estimator.

3.3. Multi-thresholding estimator

Divide the observations Dn into two disjoint subsamples Dm, of size m, made
of the first m observations and D(l), of size l, made of the remaining observations,
where we take l = dn/log ne and m = n− l. The first subsample Dm, sometimes
called ”training sample”, is used to construct a family of estimators (in our case,
the thresholded estimators) and the second subsample D(l), called the ”training
sample”, is used to construct the weights of the aggregation procedure.

Assume that we want to estimate a density function f∗ from [0, 1] bounded
by B. For any y ∈ R, we consider the projection function

hB(y) = max(0, min(y,B)). (3.5)
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For any u > 0, we consider the truncated estimator

f̂ t
m,u(x) = hB(f̂vu(Dm, x)),

where vu = (ρ
√

(j − u)+/n)j=τ,...,j1 and ρ satisfies (3.4).
We define the multi-thresholding estimator f̃n : [0, 1] → [0, B] at a point

x ∈ [0, 1] by the aggregate

f̃n(x) =
∑

u∈Λn

w(l)(f̂ t
m,u)f̂ t

m,u(x), (3.6)

where Λn = {0, . . . , dlog ne} and, for any u ∈ Λn,

w(l)(f̂ t
m,u) =

exp
(
−lA(l)(f̂ t

m,u)
)

∑
γ∈Λn

exp
(
−lA(l)(f̂ t

m,γ)
) .

Here A(l)(f) = (1/l)
∑n

i=m+1 Q(Zi, f) is the empirical risk constructed from the
l last observations, for any function f and for the choice of a loss function Q

defined at (2.2).
The multi-thresholding estimator f̃n realizes a kind of “adaptation to the

threshold” by selecting the best threshold vu for u describing the set Λn. Since
we know that there exists an integer j∗ in Λn, depending on the regularity of
f∗, such that the non-adaptive estimator f̂vj∗ (Dm, .) is minimax (see Delyon and
Juditsky (1996)), the multi-thresholding estimator is minimax independently of
the regularity of f∗. Moreover, the cardinality of Λn is only dlog ne, thus f̃n does
not require the construction of too many estimators.

4. Performance of the Multi-thresholding Estimator

4.1. Main result

Theorem 4.1 investigates the minimax performance of the multi-thresholding
estimator defined in (3.6) under the L2 risk over Besov balls in the density esti-
mation framework.

Theorem 4.1. Suppose the density function f∗ is bounded by B > 0. For any
p ∈ [1,∞], s ∈ (p−1,∞), and q ∈ [1,∞], there exists a constant C > 0, depending
only on s, p and q, such that the multithresholding estimator f̃n defined in (3.6)
satisfies, for n large enough,

sup
f∗∈Bs

p,q(L)
E

[
‖f̃n − f∗‖2

2

]
≤ Cn−2s/(2s+1).

Recall that, for the density model, the rate of convergence n−2s/(1+2s) is
minimax over Bs

p,q(L). Further details about the minimax rate of convergence
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Table 4.1. Rates of convergence achieved by various wavelet thresholding
estimators for the density model under the L2 risk over Besov balls Bs

p,q(L).

Rates of convergence over Bs
p,q(L)

2 > p ≥ 1 p > 2

Local thresh (lnn/n)2s/(2s+1) (lnn/n)2s/(2s+1)

Block thresh (lnn/n)2s/(2s+1) n−2s/(2s+1) ,
Multi thresh n−2s/(2s+1) n−2s/(2s+1)

over Besov balls under L2 risk for the density model can be found in Delyon and
Juditsky (1996), and Härdle, Kerkyacharian, Picard and Tsybakov (1998).

4.2. Minimax comparison with other estimators

If we focus our attention on the density model, there are several types of
estimators that enjoy good minimax performances under the L2 risk over Besov
balls. We distinguish the local thresholding estimators and the block thresholding
estimators. The local thresholding estimators include the soft thresholding and
the hard thresholding proposed by Donoho, Johnstone, Kerkyacharian and Picard
(1996); the block thresholding estimators include the BlockShrink method and
the BlockJS method investigated by Cai and Chicken (2005).

As seen in Table 4.1, the rates of convergence achieved by the Multithresh-
olding estimator is better than those achieved by the local and block thresholding
estimators, we gain a logarithmic term.

Finally, Yang (2000) also took the approach of combining procedures to ob-
tain adaptive density estimators over Besov classes. He used exponential weights
with respect to the Kullback-Leiber loss (in this case, exponential weights are
related to the likelihood of the model (cf., Lecué (2005))). The resulting aggre-
gate achieves the minimax rate of convergence over all Besov Balls Bs

p,q(L) for
any s ∈ (p−1,∞). Nevertheless, the estimators aggregated in Yang (2000) are
constructed by using a metric entropy argument and are not easily compared to
the wavelet estimators that we used here.

Remark 4.1. In the bounded regression framework with random uniform design,
we can construct an aggregate with exponential weights of term-by-term thresh-
olded wavelet estimator achieving the minimax rate of convergence n−2s/(2s+1)

over all Besov balls Bs
p,q(L) for any p ∈ [1,∞], s ∈ (p−1,∞) and q ∈ [1,∞].

5. Proofs

Proof of Theorem 2.1. For a detailed proof of this theorem, we refer the reader
to the supplement file available at the following http://www.stat.sinica.edu.
tw/statistica.

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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Proof of Corollary 2.2. In density estimation with integrated squared risk,
any absolutely continuous probability measure π on (Z, T ) satisfies the margin
assumption MA(1, 16B2,FB), where FB is the set of all non-negative function
f ∈ L2(Z, T , µ) bounded by B. To complete the proof we use, for any ε > 0,[

B(F0, π,Q) log M

β1n

]1/2

≤ εB(F0, π,Q) +
log M

β2nε
.

Proof of Theorem 4.1. We apply Theorem 2.2, with ε = 1, to the multi-
thresholding estimator f̂n defined in (3.6). Since Card(Λn) = dlog ne, m ≥ n/2
and the density function f∗ to estimate takes its values in [0, B], conditionally
on the first subsample Dm, we have

E
[
‖f∗ − f̂n‖2

2 |Dm

]
≤ 2 min

u∈Λn

(∥∥∥f∗ − hB(f̂vu(Dm, .))
∥∥∥2

2

)
+

4(log n) log(log n)
β2n

≤ 2 min
u∈Λn

(∥∥∥f∗ − f̂vu(Dm, .)
∥∥∥2

2

)
+

4(log n) log(log n)
β2n

, (5.1)

where hB is the projection function introduced in (3.5), and β2 is given in (2.7).
Now, for any s > 0, consider js an integer in Λn such that n1/(1+2s) ≤ 2js <

2n1/(1+2s). A result proved by Delyon and Juditsky (1996), says that the local
thresholding estimator defined with threshold vjs = ρ

√
(j − js)+/n satisfies

sup
f∗∈Bs

p,q(L)
E

[∥∥∥f∗ − f̂vjs
(Dm, .)

∥∥∥2

2

]
≤ Cn−2s/(1+2s).

Therefore, for any p ∈ [1,∞], s ∈ (1/p,∞), q ∈ [1,∞] and n large enough,
the previous inequality and (5.1) yield

sup
f∗∈Bs

p,q(L)
E

[
‖f̃ − f∗‖2

2

]
= sup

f∗∈Bs
p,q(L)

E
[
E

[
‖f̃ − f∗‖2

2 |Dm

]]
≤ 2 sup

f∗∈Bs
p,q(L)

E
[

min
u∈Λn

∥∥∥f∗ − f̂vu(Dm, .)
∥∥∥2

2

]
+

4(log n) log(log n)
β2n

≤ 2 sup
f∗∈Bs

p,q(L)
E

[∥∥∥f∗ − f̂vjs
(Dm, .)

∥∥∥2

2

]
+

4(log n) log(log n)
β2n

≤ Cn−2s/(1+2s).

This completes the proof of Theorem 4.1.
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Härdle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A. (1998). Wavelet, Approximation

and Statistical Applications. Volume 129 of Lectures Notes in Statistics. Springer Verlag,

New York.

Jansen, M. (2001). Noise Reduction by Wavelet Thresholding, Volume 161 of Lectures Notes

in Statistics. Springer Verlag, New York.

Juditsky, A. (1997). Wavelet estimators: adapting to unknown smoothness. Math. Methods

Statist. 1, 1-20.

Juditsky, A. and Nemirovski, A. (2000). Functional aggregation for nonparametric estimation.

Ann. Statist. 28, 681-712.
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