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Abstract: The two-stage design is a common cost-effective approach for genome-
wide association studies. The first stage serves as a screening to identify a subset
of single-nucleotide polymorphisms (SNPs) from 100,000 to 500,000 SNPs using a
fraction of case-control samples. In the second stage, only the selected SNPs are
genotyped using the remaining case-control samples. On the other hand, DNA
pooling is another common strategy to save genotyping cost. In this article, we
propose a method using DNA pooling in the first stage and genotype-based anal-
ysis in the second stage. A joint analysis to combine both stages is applied to a
two-stage design with DNA pooling when the underlying genetic model is known.
When the genetic model is unknown, we use a robust procedure in the joint analy-
sis by applying genetic model selection in the second stage based on the difference
of Hardy-Weinberg disequilibrium coefficients between cases and controls. Perfor-
mance of our method and comparison with other approaches are investigated by
simulation studies.
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1. Introduction

In candidate-gene association studies, one tests association between a dis-
ease and the candidate genetic marker. Since hundreds of thousands of single-
nucleotide polymorphisms (SNPs) can now be genotyped, genome-wide associa-
tion study (GWAS) becomes a promising and powerful approach to identify true
association between genetic markers and complex diseases. Although genotyping
costs have been reduced recently, cost-effective designs for GWAS are still desir-
able. Various two-stage designs have been proposed recently (see e.g.,
Verbel, Venkatraman, Offit and Begg| (2002)), [Satagopan and Elston| (2003),
ttagopan, Venkatraman and Begg| (2004)), Thomas, Xie and Gebregziabher]| (2004]),
Thomas, Haile and Duggan| (2005)), (2006)), Wang, Thomas, Pe’er and Stram|
(2006]), |Skol, Scott, Abecasis and Boehnke| (2006), [Zuo, Zou and Zhao| (2006,
Bukszar and van den Oord! (2006)), |Ji, Stephen, Chad, Nancy and Derek! (2007)),
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and Dube, Schmidt and Hauser| (2007)). One common feature of these two-stage
designs is that a fraction of samples are genotyped for all SNPs in a first stage.
An association test is then applied to one SNP at a time. The most significant
SNPs are selected and then genotyped for the remaining samples. Association
analysis is then conducted for the selected SNPs in a second stage conditional
on the results in the first stage (Elston, Lin and Zheng| (2007)). After a small
fraction of SNPs is identified by the above two-stage scan, more powerful and fo-
cused analysis can be conducted, e.g., haplotype analysis, multi-marker analysis,
fine mapping, and replication (Hoh and Ofttl (2003)), Marchini, Donnelly and Car-|
(2005)), [Schaid, McDonnell, Hebbring, Cunningham and Thibodeau| (2005)),
and Wang, Zhu and Elston| (2007))). Most research papers focus on cost-effective
two-stage designs for GWAS. In this article, however, we do not consider the
cost-effectiveness but focus on some analysis strategies for a given design (e.g.,
given the proportion of samples used and percentage of SNPs selected in each
stage).

DNA pooling is another cost-effective technique (Barcellos, Klitz, Field, To-|
Ibias, Bowcock, Wilson, Nelson, Nagatomi and Thomson! (1997),
|Craig, O’Donovan and Owen| (2002)), and Norton, Williams, O’Donovan and|
(2004))) in which several pools of DNA are allelotyped rather than each
individual being genotyped. (2006)) applied the DNA pooling to the
first stage of a two-stage design. In their second stage, each individual of the
remaining samples is genotyped for the selected SNPs. In (2006)),
individuals are genotyped in both stages. Thus, the design of [Zuo et al. (2006])
would save more genotyping cost than that of (2006). For the analy-
sis, (2006)) combined case-control data in the two stages into a single
case-control sample and applied a single allele-based test (ABT) statistic. On
the other hand, (2006) considered a joint analysis by weighting the
two ABTSs from the two stages with weights proportional to sample sizes in the
two stages. One advantage of using the joint analysis is that it allows differ-
ent allele frequencies in samples (heterogeneity) from the two stages. When the
ABT is used, ignoring possible measurement errors, application of DNA pooling
with a joint analysis would reduce more genotyping cost while retaining the same
statistical power compared to individual genotyping with a joint analysis.

The Cochran-Armitage trend test (CATT) is proposed for analysis of or-
dered case-control data (1955), (1954), and (1997)).
Optimal CATTs are available for different genetic models (Sasieni (1997) and
[Freidlin, Zheng, i and Gastwirthl (2002)). We integrate the DNA pooling of
Zuo et _all (2006) with the joint analysis of (2006)) to examine the
power gain while the optimal CATT and the ABT-based two-stage strategies are
employed. This, however, requires us to know the genetic model. When the ge-
netic model is unknown, which is usually the case in practice, we propose a robust
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joint analysis with genetic model selections followed by using the corresponding
optimal CATT in the second stage, while DNA pooling technique is used in the
first stage. Numerical and simulation results are presented to compare power
and robustness of our method with the existing procedures.

2. Background
2.1. Notation, genetic models and association tests

Consider a SNP with alleles A and a and frequency P(A) = p. Denote the
three genotypes by gg = aa, g1 = Aa and g = AA, the disease prevalence by K =
P(case), and the penetrance by f; = P(case|g;) for [ = 0,1,2. For a case-control
study with r cases and s controls, let z; and y; be, respectively, the number of
allele A for the ith case and the jth control for i = 1,...,r and j = 1,...,s.
Write py = P(z; = 1) and ¢ = P(y; = 1) for [ = 0,1,2. The null hypothesis
is Hy : pp = q = P(g;). Genotype counts are r; in cases and s; in controls for
91,1 =0,1,2. Then r; =377 I(z; = 1) and s; = 327, I(y; = ), where I(-) is
the indicator function. The counts (rg,r1,72) and (s, 1, s2) follow multinomial
distributions Mul(r, (po, p1,p2)) and Mul(s, (o, q1,q2)), respectively. Denote the
margins by n; = r; + s; and the total sample size by n = r + s.

Denote genotype relative risks (GRRs) by Ay = fi/fo and Ao = f2/fo
(fo > 0). We assume that A is the risk allele and that risk increases with
the number of allele A in the genotype, i.e., Ay > A\; > 1. Four commonly
used genetic models are recessive (REC), additive (ADD), multiplicative (MUL),
and dominant (DOM), corresponding to A\; = 1, Ay = (A2 +1)/2, A2 = A} and
Ao = A1, respectively.

Two common association tests are ABT and CATT (Sasieni (1997)). The
ABT compares the frequencies of allele A in cases and controls, while the CATT
compares the genotype distributions in cases and controls. Three CATTs are
available depending on the genetic models. The same CATT is used for ADD
or MUL (Freidlin et al. (2002) and Zheng, Freidlin, Li and Gastwirth| (2003))).
When Hardy-Weinberg equilibrium (HWE) holds in the combined case-control
samples, the ABT and the additive CATT (optimal for the ADD model) are
asymptotically equivalent (Sasienil (1997)). The ABT (Tapr) and CATT (7p)
are given by

Tapr — (P1/2 +P2) — (41/2 + ¢2)
{p(1 = p)(1/(2r) +1/(2s))}1/2
T, = (P2 +0p1) — (¢2 + 041) (2.2)
[{(P2 + 0%p1) — (P2 + 0p1)?}(1/r + 1/5)|1/%
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where p; = r/r, ¢ = s1/s, p = ny/n, and 6 = 0,1/2,1 for the REC, ADD/MUL
and DOM models. Under Hj, both tests are asymptotically N (0, 1).

2.2. Genetic model selections

When the true genetic model is unknown, 7y cannot be directly used. The
genetic model, however, may be detected using Hardy-Weinberg disequilibrium
(HWD) coefficient, denoted by § = P(AA) — {P(AA) + P(Aa)/2}%. [Zaykin and
Nielsen| (2000) and [Song and Elston| (2006) applied the difference of HWD in
cases and controls for testing association. Denote the HWD coefficients in cases
and controls by d; and dp. The HWD trend test (Song and Elston| (2006])) can be
written as Thwp = (rs/n)Y2(6; — 60)/[{1 — ng/n — n1/(2n)Hng/n +n1/(2n)}],
which asymptotically follows N (0,1) under Hy.

Wittke-Thompson, Pluzhnikov and Cox| (2005), [Suh and Lil (2007)) and [Zheng
and Ng| (2008) studied the relationship between genetic models and HWD. [Zheng
and Ng| (2008) showed that, when HWE holds in the population, §; > &y under
the REC model and é; < dg under DOM model, regardless of the risk allele.
Thus, they used T}/, to test association unless Tywp > cp, under which they
selected the REC model, and used Tj, or Tywp < —cg, under which they selected
the DOM model and used T3, where ¢y = 1.645 was used. This approach was
referred to as genetic model selection (GMS), which is more robust than some
existing methods and also robust to departure from HWE (Zheng and Ng| (2008))).

3. Two-stage Design with DNA Pooling and Joint Analysis

Here we integrate the DNA pooling and the joint analysis of [Skol et al.l (2006))
into a two-stage design. Due to DNA pooling, the ABT is the only test that can
be used for the first stage. In the second stage, we could use the ABT as did in
Skol et _all (2006), the optimal CATT when the genetic model is known, or the
GMS when the model is unknown.

Similar to[Zuo et al.l (2006)), in addition to r cases and s controls allelotyped
in stage 1 with DNA pooling, an additional 7, cases and s, controls are individ-
ually genotyped in stage 2 for the selected SNPs. In stage 1, cases and controls
are grouped into m pools and the numbers of cases and controls in each pool
are hy and hg, respectively (r = mhy and s = mhg). We assume a simple pool-
ing measurement error mechanism (Barratt, Payne, Rance, Nutland, Todd and
Clayton| (2002)) that assumes the estimated allele frequencies from the pooled
samples is equal to the true frequencies in the samples plus a disturbance vari-
able that is N(0,€?). Usually, €2 needs to be estimated using the replicates of
the DNA pooling from other sources (existing pooled data or prior knowledge).
Here, however, we assume €2 is known, because it can be estimated in practice
during the genotyping process with a given genotyping platform (Barratt et al.
(2002)).
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3.1. Using the ABTs in both stages
The ABT for pooled data can be written as

~pool _ ~pool
T — 1 0
P 2 g ol (1 = pooT) {(1/(2r) + 1/(28) 11172
~pool  pool

where p,, p;  and pPo°l are the estimates of allele frequency in controls,
cases, and combined samples (details are given in Appendix A). Under Hy, Tpool
is asymptotically N(0,1). For the second stage with additional r, cases and s,
controls, we denote the ABT test as Tagt. Denote the sample proportion in the
first stage as w = n/(n + n.) and n, = r. + s.. Following the joint analysis
method of [Skol et al| (2006), we propose the following joint test

JABT = w2 Thool + (1 — w)/*Tapr. (3.1)

The test statistic in (B.I)) combines the design of [Zuo et all (2006) with DNA
pooling in stage 1 and the joint analysis of [Skol et all (2000) in stage 2. To
apply JapT with a total of M SNPs, we assume a fraction of 1001 % top-ranked
SNPs are selected in stage 1. Then, following [Skol et all (2006), to control the
genome-wide level at «, we need to determine thresholds ¢; and ce such that,
assuming A is the risk allele after stage 1 analysis,

PHo (|Tpool| > Cl) =, (3.2)
«

PHO (‘Tpooly > C1, ’JABT’ > ca, Tpool : TABT > 0) - M (33)

The two ABTs have the same sign because the same risk allele is identified. The
formula for calculating ¢y and asymptotic power derived by [Skol et al.| (2006]) can
be applied, but the asymptotic covariances of the statistics 1},,01 and Japt under
Hj and a specific alternative Hp are different because of DNA pooling (Appendix
A). The asymptotic power of the joint analysis JapT can be written as (3.3]), but
evaluated under H; (see Appendix A).

3.2. Using the ABT in stage 1 and optimal CATT in stage 2

Because of the DNA pooling, the T}, is the only statistic to use in stage
1. In stage 2, since individual genotypes are obtained, the CATT (2.2)) can be
calculated. Therefore, we modify Japr in (B.]) as

J9 = wl/szool + (1 - w)l/QTea (34)

where 6 is chosen based on the known genetic model. Accordingly, (83]) becomes

% (0%
Py, (|Tp001| > c1, 1ol > &, Toool - Ty > 0) == (3.5)
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Because TapT and Ty have the same asymptotic distribution and they are both
independent of stage 1 analysis, ¢; = co. The asymptotic power using Jp is
similar to (3.5]), but evaluated under H; (see Appendix B).

3.3. Using the ABT in stage 1 and GMS in stage 2

In Section 3.2, the genetic model is assumed to be known. For many common
and complex diseases, however, the genetic models are usually unknown to the
researchers. In this case, Jy cannot be directly applied without specifying 6. In
practice, Jy /5 or JapT may be applied as a robust choice regardless of the true
genetic model. Here we apply the GMS (Zheng and Ng (2008)) in the second
stage.

The two-stage GMS method works as follows. If T},,o1 > 0, then allele A is
regarded as the risk allele and we set Tiode1 = To if THwD > €0, Tmodel = 11 if
Tiywp < co, and Tinedet = 112 if [Tawp| < co, where ¢ = 1.645 as in [Zheng and
Ng (2008). On the other hand, if T},001 < 0, then we can switch alleles A and a
and apply the above GMS similarly. The joint analysis is written as

JGMS - Wl/QTpool + (1 - w)l/QTmodel- (36)

Note that in [Zheng and Ngj (2008), the risk allele is also the minor allele or it is
known. In our two-stage design, the risk allele is determined in stage 1. Thus,
we do not need to know the risk allele or to use the minor allele as the risk
allele. This is one advantage of the two-stage analysis. In the second stage, the
information about the risk allele is free because the Type I error for determining
the risk allele has been paid in the first stage. In fact, by the symmetry of the
normal distribution, it can be shown that the above procedure has the same
asymptotic Type I error.

To apply the joint analysis Jgms the threshold value ¢; is given as before,
and c5* for stage 2 is determined by

o

Py, (‘Tpool| > c1, |JGMS’ > 05*7 Tinodel - Tpool > 0) = M (37)

The asymptotic power for the joint analysis Jgums can be obtained from (B.7)
evaluated under H; (see Appendix C).

4. Results

4.1. Simulation studies

Three joint analysis strategies (JapT, Jp and Jgoums) for the two-stage design
with DNA pooling have been discussed in Section 3. They all have DNA pooling
with the ABT in the first stage, but have different procedures (the ABT, optimal
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CATT and GMS) in the second stage. In the following, we refer to these three
approaches as procedures II-ABT, II-CATT and II-GMS. [Zuo et all (2006]) and LJi
et al.l (2007)) showed that the two-stage design is often more powerful with equal
fraction of samples in the two stages. Thus, we conducted simulation studies
using 1,000 cases and 1,000 controls that were split for the two stages with equal
proportion (r = s = r, = s, = 500). We also conducted simulations using
smaller sample size and got similar results (results are not reported here).

Four common genetic models were considered: REC, ADD, MUL and DOM.
For each model we set GRR (A2) at 1.5, 1.8, 2.0 and 2.5 and the risk allele
frequency in the population to be p = 0.1, 0.3 and 0.5. Our GRR was taken to
be much smaller than that in [Zuo et all (2006]) in which GRR was taken to be
4.0 under various models. The measurement error was assumed to be fixed at
€2 =0, 0.005, 0.01 and 0.03. We considered two DNA pooling settings: a single
pool (m = 1) and four pools (m = 4), similar to those used in [Zuo et al. (2006)).
Note that [Zuo et all (2006]) only presented numerical results with a single pool.
The genome-wide level for testing 300,000 SNPs is 0.05, so the Type I error for a
single SNP was 1.67 x 10~7 by the Bonferroni correction. After the DNA pooling,
the top 5% (aq = 0.05) SNPs were selected for stage 2. [Zuo et all (2006) and
Gail, Pfeiffer, Wheeler and Pee| (2007) both suggested choosing the top 5% for
genome-wide scans. Given the above settings, our numerical results showed that
the threshold values are ¢; = 1.96, ca = ¢5 = 5.232, and ¢3* = 5.308 (5.319,
5.323) when the minor allele frequency p = 0.1 (0.3, 0.5), where only ¢5* depends
on the allele frequency. In each setting, results were obtained based on 100,000
replicates. We estimated the power for the above three procedures and report
relative power ratios under different parametric settings.

4.2. Comparing procedures II-ABT and II-CATT

Table 1 reports the power comparison between Jy and JapT when the genetic
model is known (either recessive or dominant). We define the relative efficiency
(RE) as the ratio of the empirical power of II-CATT over that of II-ABT. When
m = 1 and €? = 0, there is no difference between DNA pooling and individual
genotyping in estimating the allele frequency. Thus, the RE is equal to that of
the comparison between using the ABT and the optimal CATT based on the
joint analysis of [Skol et al. (2006). When the underlying genetic model was REC
or DOM (Table 1), using the second design was always more powerful than using
the first design. The gain in power could be substantial (RE is up to 3.5) for
common allele p and moderately large GRR. The gain also increased with e, which
indicates that the design with optimal CATTs in stage 2 is more robust to the
measurement errors under the REC and DOM models. The gain in power under
these two models is not surprising because the optimal CATTs are used for the
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Table 1. Relative efficiency (RE) of joint analysis in stage 2 (RE = empirical
power of the optimal CATT over the power of the ABT) when DNA pooling
is employed in stage 1: REC and DOM models.

p
m=1 m=4

Model A2 D 0 0.005 0.01 0.03 0 0.005 0.01 0.03
REC 1.5 0.1 * * * * * * * *
0.5 1.63 1.64 1.73 227 1.59 1.64 1.67 1.89

0.3 2.63 2.64 2.75 3.35 2.60 2.62 2.67 3.19

0.5 1.17 1.19 1.26 1.54 1.16 1.16 1.18 1.36

0.3 2.0 2.18 2.43  3.49 2.08 2.09 2.25 2.61

0.5 1.03 1.03 1.06 1.28 1.03 1.03 1.03 1.12

0.3 1.16 1.20 132  1.87 1.16 1.17 1.20 1.47

0.5 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

DOM 15 0.1 1.13 1.14 1.23  1.25 1.15 1.15 1.15  1.21
0.3 145 1.47 1.56  1.80 1.48 1.50 1.53 1.62

0.5 2.38 2.85 3.27 347 2.55 2.77 2.80 3.33

1.8 0.1 1.04 1.06 1.10 1.21 1.03 1.05 1.06 1.13

0.3 1.09 1.12 1.20 1.54 1.10 1.10 1.13 1.27

0.5 2.8 2.30 2.56 4.15 2.14 2.26 2.30 2.84

20 0.1 1.01 1.01 1.03 1.13 1.01 1.01 1.01  1.07

0.3 1.01 1.02 1.06 1.28 1.01 1.02 1.02  1.11

0.5 1.71 1.82 2.07  3.30 1.74 1.76 1.82  2.38

2.5 0.1 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

0.3 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00

0.5 1.15 1.18 1.32  2.06 1.15 1.16 1.18  1.52

* The powers of the ABT and the CATT are approximately 0.

REC and DOM models (Sasieni (1997) and Freidlin et all (2002))). The results
for the ADD and MUL models are reported in Table 2. From [Sasienil (1997)
and [Zheng et al] (2003), the ABT and the additive CATT are asymptotically
equivalent. Thus, the REs in Table 2 are all close to 1 under the ADD model. For
the MUL model, the ABT seems to be slightly more powerful than the additive
CATT . The REs in Table 2 do not change noticeably with the measurement
errors €. To summarize, when the underlying genetic models are known, using
optimal CATT was preferable to using the ABT in the second stage.

4.3. Comparing II-ABT, II-CATT and II-GMS

To examine the performance of II-GMS, we first compared it with [I-CATT
under the REC and DOM models even when the underlying models were known.
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Table 2. Relative efficiency (RE) of joint analysis in stage 2 (RE = empirical
power of the optimal CATT over the power of the ABT) when DNA pooling
is employed in stage 1: ADD and MUL models.

2
m=1 m=4
Model  Ag P 0 0.005 0.01 0.03 0 0.005 0.01 0.03
ADD 15 0.1 * * * * * * * *
03 097 099 1.00 1.00 0.98 0.95 0.98 0.97
05 098 099 094 0.93 0.98 0.97 0.98 0.98
1.8 0.1 1.00 098 099 1.00 1.01 097 095 1.03
0.3 1.00 1.00 1.00 0.99 1.00  1.00 1.00 0.98
0.5 1.00 099 098 0.98 1.00 099 0.99 0.99
20 0.1 099 1.00 096 0.98 0.99 099 099 0.95
0.3 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.99
0.5 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
25 0.1 1.00 1.00 0.99 0.97 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00
MUL 1.5 0.1 * * * * * * * *
0.3 097 099 098 0.84 0.98 0.97 096 0.99
05 095 092 094 0.93 0.97 097 097 0.95
1.8 0.1 09 095 094 094 0.98 0.97 095 0.96
0.3 098 098 0.98 0.92 0.98 0.99 098 0.97
0.5 098 098 098 0.96 0.99 099 098 0.98
20 0.1 098 098 096 0.89 0.98 0.98 097 0.95
0.3 099 099 098 0.96 0.99 099 099 0.98
0.5 1.00 099 099 0.96 1.00 099 099 0.98
25 01 099 098 096 0.98 0.99 098 0.98 0.97
0.3 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

* The powers of the ABT and the CATT are approximately 0.

Results are reported in Table 3. Note that II-GMS performed reasonably well
compared to II-CATT for the given models. Most REs were greater than 0.85,
with one RE less than 0.80.

For genome-wide association studies, however, the underlying genetic models
of SNPs with true association are usually unknown. Thus, we propose to use the
joint analysis using GMS for two-stage design with DNA pooling. We compare
the REs, defined as before, of II-ABT with II-GMS in stage 2. Results for the
REC and DOM models are reported in Table 4 and for the ADD and MUL
models in Table 5. From Table 4, II-GMS was overall more powerful than II-
ABT. Similar to Tables 1 and 2, II-GMS could gain substantial power compared
to IIL-ABT. The gain in power also increased with the measurement errors e. On
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Table 3. Relative efficiency (RE) of joint analysis in stage 2 (RE = empirical
power of the GMS over the power of the optimal CATT) when DNA pooling
is employed in stage 1: REC and DOM models. The underlying genetic
model is known.

2
m=1 m =4
Model  As D 0 0.005 0.01 0.03 0 0.005 0.01 0.03
REC 1.5 0.1 * * * * * * * *
0.5 0.8 0.88 0.86 0.83 0.88  0.89 0.86 0.85
03 0.8 0.89 0.87 0.86 0.89 0.89 0.88 0.86
0.5 097 097 096 0.93 0.98  0.98 0.97 0.95
0.3 0.94 0.93 0.92  0.88 0.93 0.93 0.92 0.89
0.5 1.00 1.00 0.99 0.96 1.00 1.00 1.00 0.98
0.3 0.99 0.99 0.98 0.95 0.99 0.99 0.99 0.98
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DOM 15 0.1 088 0091 0.86 0.83 0.88  0.89 0.90 0.88
0.3 0.91 0.91 0.89 0.87 0.91 0.91 0.92  0.89
05 0.8 083 0.8 0.76 0.88  0.85 0.86 0.81
1.8 0.1 098 097 095 0.91 098 097 097 093
03 099 098 098 094 0.99 0.99 0.98 0.97
0.5 0.93 0.92 0.91 0.85 0.92 0.93 0.93 0.89
20 01 100 099 098 095 1.00 1.00 0.99 0097
0.3 1.00 1.00 1.00 097 1.00 1.00 1.00 0.99
0.5 0.96 0.96 0.95 091 0.96 0.96 0.96 0.93
25 0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 099 099 097 1.00 1.00 099 0.99

* The powers of the GMS and the CATT are approximately 0.

the other hand, in Table 5, since the ABT is asymptotically equivalent to the
additive CATT, II-GMS was less powerful compared to II-ABT under the ADD
or MUL models in the two-stage design. However, the loss of power from using
II-GMS was slight in most situations, although the power loss increased with e
and decreased with Ao. Under the REC model, when GRR = 1.8 and p = 0.3, the
RE was about 2.5 using [I-GMS compared to using [I-ABT. For the DOM model,
II-GMS and II-ABT had similar power except for the common allele frequencies,
under which, e.g., the RE was about 2 when GRR = 1.8 and p = 0.5. For the
ADD and MUL models, the largest loss of the power using [I-GMS occured when
GRR = 1.5. When GRR = 1.8 , the RE using II-GMS was greater than 0.8 for
p = 0.1, and greater than 0.90 for p = 0.3. Thus, based on the results of the
four genetic models, II-GMS was more robust than II-ABT in the sense that it
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Table 4. Relative efficiency (RE) of joint analysis in stage 2 (RE = empir-
ical power of the GMS over the power of the ABT) when DNA pooling is
employed in stage 1: REC and DOM models. The underlying genetic model

is unknown.

m=1 m=4

Model Ay P 0 0.005 0.01 0.03 0 0.005 0.01 0.03
REC 1.5 0.1 * * * * * * * *
0.5 088 088 0.8 0.83 0.88 0.89 0.86 0.85

1.8 0.1 * * * * * * * *

0.3 0.8 0.89 0.87 0.86 0.89 0.89 0.88 0.86

0.5 097 097 096 0.93 098 098 097 0.95

03 094 093 092 0.88 093 093 092 0.89

0.5 1.00 1.00 0.99 0.96 1.00 1.00 1.00 0.98

03 099 099 098 0.95 099 099 099 0.98

0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00  1.00

DOM 15 01 088 091 086 0.83 0.88 0.89 090 0.88
03 091 091 089 0.87 091 091 092 0.89

05 0.8 083 086 0.76 0.88 0.85 0.86 0.81

1.8 01 098 097 095 091 098 097 097 0.93

0.3 099 098 098 094 099 099 098 097

05 093 092 091 0.85 092 093 093 0.89

20 01 1.00 099 098 0.95 1.00 1.00 099 0.97

0.3 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.99

05 096 096 095 0.91 096 096 0.96 0.93

25 0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 1.00 099 099 097 1.00 1.00 0.99 0.99

* The powers of the GMS and the CATT are approximately 0.

suffered minor power loss under the ADD/MUL models, relative to more gains
in power under the REC/DOM models.
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Table 5. Relative efficiency (RE) of joint analysis in stage 2 (RE = empir-
ical power of the GMS over the power of the ABT) when DNA pooling is
employed in stage 1: ADD and MUL models. The underlying genetic model
is unknown.

2
m=1 m=4
Model Ao P 0 0.005 0.01 0.03 0 0.005 0.01 0.03
ADD 15 0.1 * * * * * * * *
0.3 090 090 091 1.00 0.88 0.95 093 0.85
0.5 089 090 0.8 0.83 0.89 0.95 0.90 0.93
1.8 0.1 085 086 0.84 0.86 0.92 0.87 0.84 0.88
03 096 096 095 0.89 0.96 0.97 096 0.92
05 095 094 092 0.88 0.96 096 095 0.92
20 0.1 092 092 087 0.86 0.92 091 0.89 0.83
03 099 098 097 0.93 0.98 0.98 0.98 0.96
0.5 098 098 097 0.92 0.98 0.97 0.97 0.96
25 0.1 098 097 096 0.91 0.98 098 097 0.95
0.3 1.00 1.00 1.00 0.99 1.00  1.00 1.00 1.00
0.5 1.00 1.00 0.99 0.98 1.00  1.00 1.00 0.99
MUL 1.5 0.1 * * * * * * * *
03 085 090 1.00 0.79 0.88 0.96 0.88 0.84
0.5 0.8 0.8 0.84 0.80 0.89 090 0.92 0.84
1.8 0.1 084 0.8 073 0.81 0.86 0.81 0.86 0.86
0.3 093 092 090 0.82 0.93 0.93 0.93 0.87
0.5 094 094 093 0.84 0.95 095 094 0.93
20 0.1 08 0.8 0.83 0.70 0.86 0.88 0.83 0.80
03 096 095 094 0.86 0.96 096 096 0.92
0.5 098 096 095 0.90 0.97 098 0.97 0.93
25 0.1 093 091 087 0.82 0.93 093 092 0.84
0.3 1.00 1.00 0.99 0.95 1.00 1.00 1.00 0.98
0.5 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.99

* The powers of the GMS and ABT are approximately 0.

have greatly improved our presentation.

Appendix A

Let x;; (yi;) be the number of allele A carried by the jth individual in the
ith pool in cases (controls), and w; and v; be the i.i.d. disturbance variables from
N(0,€2). Let ﬁﬁ’fd = 2hf1 Z;il x;; + u; and ﬁg;ml = Qhal Z?gl Yij + v;. Then
write p° = m =t ST pE, pE = m Tt ST A and g0t = pf 4+ (1 -
1/1)]38001, where 1) = r/n.

Note that c¢; is the 100(1 — ay/2)th percentile of N(0,1). For co, under Hy,
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Thool and Tapr are independent and asymptotically N(0,1), distribution ®(x)
and density ¢(x). Thus, ca asymptotically satisfies

(0%

/] e@otmasay=2 [[ sotasay = . (A1)

where Ry = {|z| > ¢, !wlx + woy| > cg, xy > 0}, Re = {x > ¢1, wiz + way >
o,y > 0}, w; = w'/?, and wy = (1 — w)/2. Further, (AI) can be written as

/w12 — (n4n,) " 2e 2 a
/. ‘D( T >d4’< 0= ) = o

from which ¢y can be solved numerically.

In order to calculate the asymptotic power for JapT for a given genetic model
with the joint distribution of T},001 and TapT under Hy, we need to compute the
means and variances of the two statistics under H;. Write pr001 = p2+p1/2 and

pgo‘)l = ¢2 + q1/2, with estimates given before. Since (u;,v;) are independent
of genotypes, p = EHl(APOOI - 158001) = prOOI p8001 and Varp, (1311)001 - 138001) =

0*2 4+ 2¢2/m, where 02 = {dpy + p1 — (2p2 + p1)?}/(4r) + {4q2 + @1 — (2q2 +
) }/(4s). Let p* = ¢pP° + (1 — )pt°. Then Ey, (p*°°') = p*. Define
o? =p*(1 —p*){1/(2r) + 1/(2s)}. Let Z; ~ N(u1,0%), where

o s 02422 /m
o= .
02422 /m)1 /2" Tt g2 £ 2e2/m

Mlz(

Then, under Hy, Tyo01 and Z; have the same asymptotic distribution.

For stage 2, let ¢, = r,/n, and pease With peont used to denote the allele A’s
frequencies in case and control groups, p. = ¥sPease + (1 — Vs )Peont = Emr, (P), and
P, given in TapT, is the allele frequency estimate from data in stage 2 under the
null. Write 02 = p.(1 — p«){1/(2r+) + 1/(2s4)}. Similar to the above derivations
for stage 1, for stage 2, we have asymptotically that Tapr and Z5 have the same
asymptotic distribution where Zy ~ N(ug,03) under H;p, with ug = p/oy and
03 = 0*2/02. Let ®;(z) be the distribution function of N(u;,o?) for i = 1,2,
then the asymptotic power of JagT, maBT, is

FABT—// d®q(x)dPo(y // d® (2)dPy(y // d®q (x)d®s(y),
Ry R> R3

where R3 = {z < —c1, w1z + way < —ca, y < 0}.

Appendix B

The asymptotic power of Jy, moarT, is similar to mapT with TapT being
replaced by Ty. The correlations among the test statistics are different under Hi.
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In the following, the higher order terms are omitted. Let Uy = ps +0p1 — g2 — 0q1
and Uy = po + 0p1 — G2 — 01, where p; = T« /T and §; = sy /s« for [ =0,1,2.
(Note that p; = r;/r and §; = s;/s were used before.) Under Hy, p; = q; = m for
1 =0,1,2. Then Eg,(Us) = 0, VarHO(Ug) = {mo+0%m1 — (ma+071)2 (1 /7 +1/54),
which can be estimated by VarHO(Ug) where ) = (74 + S41) /T = Nag /s Write
o3 = n*@HO(Ug), so Ty can be written as Ty = ni/QUQ/U; in distribution. Let
1o = i, (Uy) and o3 = Varg, (n2/*Ug) = {(0%p1 + p2 = (0p1 + p2)2)}(nu /1) +
{(6%q1 + g2 — (0q1 + ¢2)®)}(n«/5+). Then, under Hy, Ty and Z3 have the same
asymptotic distribution, where Z3 ~ N(u3,032) with distribution function ®3(x),
where pus = n*/ po/op and 03 = 0'9/0' . Then the asymptotic power can be
written as

TCATT = // d@l dCI)g // dq)l dq)3 // d(I)1 ch)g )
Ry Ry R3

Appendix C
Write under either Hy or Hy,

<ﬁ1> 1 (p(1=p1) —pip2
=Var(" | = — )
D2 T4 —pip2 p2(l—p2)

j 1 (q(1— -
5, = Var<?1> _ 1 a(l—q) ne |

G2 S —102  ¢2(1 — q2)
Let f(z,y) = x(1—2)(x/2+y)* + 2zy(x/2+y)(1 -z —2y) +y(1 —y)(1 -z — 2y)
Under H(), EH0(61 — (5()) = (0 and VarH0(51 — (5()) = f(7T1,7T2 (1/7“* + 1/8*)
oW = n*VarHO((Sl 60) = f(#1,72) (s /T4 + Ny /54), We can write Tawp as

ny/2 (81 — o)
THwD

We can write ofywp = nuVarw, (01 — 00) = f(p1,p2)(na/74) + F(q1,q2)(ns/52)
by the Delta method. Therefore, Tywp and Z4 have the same asymptotic dis-
tribution, where Zy ~ N(ug,07) under Hy with py = ny/? (01 — d0)/otrwp and

Tawp =

2 _
o} = ofiwp/ofiwp-
Let Tpoo1 = . To find the threshold c¢5* in (1), the left hand side of (B.1)

can be written as
Py, (x > c1, Tawp > co, wix + w2Ty > 5™, Ty > 0)
+Pp,(x > c1, Tawp < —co, w1z + waTh > 5,11 > 0)
+ Py, (z <
+Pp,(x < —c1, Tawp < —co, w1z + weTpy < —c5*, Ty < 0)
+Puy (|2 > e1,|Tawp| < co, [wiz + waTy o] > 5%, T1j -2 > 0), (A.2)

—c1, Tawp > co, w1z + w1 < —02 ,T1 < 0)
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where each probability is a function of the correlation between Tiwp and Ty
in the second stage. From [Zheng and Ng| (2008), corry,(Tuwp,Zo) = {(1 —
p)/(L+p)}? +0(n1), corrpy(Tawn, T1) = —{p/(2 = p)}'/* + O(n™"), and
Tuwp and Ty are asymptotically independent under Hy with order O(n=1).
Let po = {(1-p)/(1+p)}'/? and p1 = —{p/(2—p)}'/*. Let ®°(y, 2) and ' (y, 2)
be the distribution of bivariate normal with mean (0,0) and covariance matrices
Ay = (1 po> and A = <1 p1>’ respectively. Let 41 = {x > c1,y >
po 1 p1 1

co,z > 0,wix + waz > &'}, Ay = {x > c1,y < —co, 2 > 0, w1z + waz > ¥},
As ={x < —c1,y > 0,2 < 0, w1z + wez < —c5*}, Ay = {x < —c1,y < —cp, 2 <
0, wix + wez < —c3*}, and As = {|z| > c1,|y| < co,2 < 0, |wix + waz| >
c5*}. Then ([A2) can be written as fA d®(x)d®°(y, z) + S, d®(x Yd®(y, ) +
[a, d®(2)d® (y, 2) + [, dP(2)dD°(y, » +fA d®(x d<I>( )d®(2).

To obtain the power of Jaoums, we need the correlation between Ty and Tiwp
under Hy,

* _ Tl N d o N
pe = COI‘I"H1 (THWD, Tg) = 70’1{\7\/])09 {COVH1 ((51, Ug) COVH1 (50, U@) }
Let fi(z,y) =y — (y + 2/2)? and fao(z,y) = y + Oz. Then

Covp, (51, Ue) = Covp, (fl(ﬁlapé), f2(ﬁ171f2)>.

A similar expression can be obtained for Covp, (50, Ug). Using the Delta method,

0f2(p1,p2)
Coviy (31,Ua> _ <6f1(p17p2) 8f1(p17p2)>21< p1 ) (A3)

Ip1 dp2 0 fa(p1.p2)
Op2

Write gg(z,y) = 0{z(1 — z)(y + 2/2) + zy(1 — x — 2y)} — {zy(y + 2/2) + y(1 —
y)(1 — 2z —2y)} and ¢, = limr,/n,.

Let &5 = —{90(p1,p2)/ b+« + 96(q1,42) /(1 — ¢+)}/(0hwaoe). Under Hy, Zs has
a bivariate normal distribution with mean vector (u4, u3)" and covariance matrix

2

Ohwd o 5* Ohwd09
o ‘o hwd 79
hwd W
it % . (A.4)
—55 hwd06 Y9
* * " o%
Thwd 90 99

Then (Thwd, Tp)" and Z5 have same asymptotic distribution under Hy. If i)e(x, Y)
is the joint distribution function of Tywp and Ty, the power function of Jgms
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can be written as

TS — /A 4D (2)d®"(y, 2) + /A 4D (2)dd (y, 2) + /A 4 (2)dB (y, 2)

+ / d®(2)dd(y, 2) + / d®(2)dd' /% (y, ). (A.5)
A4 A5
Regions A;, i =1,...,5 are given as above.
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