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Abstract: Principal components analysis is perhaps the most widely used method for

exploring multivariate data. In this paper, we propose a variability plot composed of

measures on the stability of each eigenvector over samples as a data exploration tool.

We also show that this variability measure gives a good measure on the intersample

variability of eigenvectors through asymptotic analysis. For distinct eigenvalues,

the asymptotic behavior of this variability measure is comparable to the size of the

asymptotic covariance of the eigenvector in Anderson (1963). Applying this method

to a gene expression data set for a gastric cancer study, many hills on the proposed

variability plot are observed. We are able to show that each hill groups a set of

multiple eigenvalues. When the intersample variability of eigenvectors is considered,

the cutoff point on informative eigenvectors should not be on the top of the hill

as suggested by the proposed variability plot. We also try the proposed method

on functional data analysis through a simulated data set with dimension p greater

than sample size n. The proposed variability plot is successful at distinguishing the

signal components, noise components and zero eigenvalue components.

Key words and phrases: Dimension reduction, eigenvector, functional data analysis,

principal components analysis, resampling, the multiplicity of eigenvalues, the scree

plot.

1. Introduction

During the last two decades, analyzing huge data sets has become common
to scientists in many fields. Thus one sees microarray data in gene expression
experiments, 3-D microscopy reconstruction of macromolecules, and MRI image
analysis in brain neural network studies, for example. Among many statistical
approaches for huge data sets, principal components analysis (PCA) is often used
as the key step for data dimension reduction (Jolliffe (2002)). Often, examina-
tion of the chosen components may lead to insight into underlying factors, in
the microarray experiments in Raychaudhuri, Stuart, and Altman (2000), for
instance.

The scree plot (Cattell (1966)) is designed as a visualization tool to search
for an elbow or an inflection point on the sorted eigenvalue curve to choose the
signal components. When the obvious distinct eigenvalue components do not
explain enough variance, a specified percentage of total variance is recruited as
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an additional criterion to strip off redundant information. However, the spec-
ified percentage may not be convincing when the difference between the least
eigenvalue of the chosen components and the largest eigenvalue of the unchosen
components is not significantly different; for example, see Figure 1 in Section 2
and Mori, Y., Selaru, F. M., Sato, F., Yin, J., Simms, L. A., Xu, Y., Olaru, A.,
Deacu, E., Wang, S., Taylor, J. M., Young, J., Leggett, B., Jass, J. R., Abraham,
J. M., Shibata, D. and Meltzer, S. J. (2003).

In this paper, we propose the stability of eigenvectors as a figure of merit to
help make the choice of components. The proposed measure offers a clue as to
whether the instability of eigenvectors over different studies can be attributed to
sample variability. Thus, in North, Bell, Cahalan and Moeng (1982), one reads

“That is, a particular sample will lead to one linear combination and
another sample may pick out a drastically different linear combination
of the nearby eigenvectors. The result is widely differing patterns from
one sample to the next.”

To assess stability over sample variability, it is natural to use data resampling,
for example the bootstrap (Efron (1979)) as in Beran and Srivastava (1985), to
reveal the variability of eigenvectors.

There exists many works on the stability of eigenvectors. Krzanowski (1984)
evaluated the robustness of the eigenvector to outliers by adding a user-
determined perturbation to the eigenvalues. Sinha and Buchnan (1995) proposed
an empirical rule to predict the stability measure as a function of eigenvalues, the
dimension p, and the sample size n, after extensive simulation to decide which
principal components were stable. Daudin, Dubey and Trecourt (1988) and Besse
(1992) used a so-called risk estimate, the number of principal components minus
the measure defined in Daudin et al. (1988), and inserted those risk estimates
into the scree plots as a graphical device to choose the stable components.

This paper is organized as follows. In Section 2, we describe the proposed
stability measure, and we demonstrate it on gastric cancer gene expression data.
In Section 3, we present a large sample justification on the proposed measure;
proofs are deferred to the Appendix. In Section 4, we bring in simulations to
demonstrate the usefulness of the proposed stability measure for both large,
n = 1, 000 and small, n = 25, sample size. Furthermore, for n = 25, we allow
p = 25 and 50. The proposed method performs well in all these cases. The paper
ends with discussion.

2. Proposed Stability Measure

We employ the bootstrap resampling method to create variations of the data
set. A gene expression data set is used to demonstrate the general characteristics
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Figure 1. Variability plot and scree plot for gene expression data set: PCA is
applied on the covariance matrix. This plot shows the possible multiplicity
pairs among the first 20 components: (7, 8), (11, 12), (14, 15), (18, 19) and
(19, 20).

of this plot that are further explained by an asymptotic analysis in Section 3.
Let X = (xij) denote the n × p data matrix of n observations in p variables and
let Sn be the sample covariance matrix. We set

Āk = 1 − 1
B

B∑
b=1

|ek · e∗bk |,

where ek is the kth eigenvector of Sn, and e∗bk is the kth eigenvector of the bth
resample covariance matrix. The number B needs to be large enough such that
Āk is close to the population mean 1 − E|ek · e∗k| under bootstrap resampling,
B = 600 appeared to suffice here. A scatter plot of (k, Āk) is generated as a
visualization tool for helping choose the components, henceforth, referred to as
the variability plot.
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Table 1. Comparison of Chosen Number of Components for the Gene Ex-
pression Data Set. The proposed variability plot suggests to look into four
batches of components since they will remain stable using the sampling vari-
ability criteria. They are the first 10, the first thirteen, the first sixteen, and
the first twenty one.

Methods Suggested Significant PC numbers
scree plot somewhere between 15 to 30

Cumulated Percentage Cuts 13(60%) 26(70%) 32(80%) 53(90%)
Variability Plot-cov 10 13 16 21

An application of the variability plot on a gene expression data set is pre-
sented in Figure 1. It is common to use array sample as the variable when
applying PCA on gene expression data (Alter, Brown and Botstein (2000), Mori
et al. (2003) and Raychaudhuri et al. (2000)). Such an analysis creates a set
of “principal array components” that indicate the experimental conditions or
sample characteristics which best explain the gene behaviors they elicit (Ray-
chaudhuri et al. (2000)). Throughout this paper, array samples are used as the
variables in performing PCA.

The gene expression data set is for a study on gastric cancer in Leung, Chen,
Chu, Yuen, Mathy, Ji, Chan, Li, Law, Troyanskaya, Tu, Wong, So, Botstein
and Brown (2002). The authors profiled a total of p = 126 mRNA populations
from 90 primary gastric adenocarcinomas, 14 lymph node metastases, and 22
samples of nonneoplastic gastric mucosa; n = 6, 688 clones were extracted by
preprocessing filtration. The first six eigenvalues are obviously distinct from
all other eigenvalues on the scree plot which accumulate less than 40% of total
variance. One usual approach is to identify an elbow in the scree plot from the
right, thus, the choice of the first 15 to 30 components is reasonable.

The variability plots describe the variability level for each eigenvector. The
top plot of Figure 1 shows strong stability for the first six eigenvectors where the
Āk is close to 0. The level of variability increases as the eigenvalues aggregate
more seriously. Of most interest on the variability plot are the four hills between
the highly stable eigenvectors (the first six) and the highly varied eigenvectors
after component 21. Each hill represents a group of non-distinct eigenvalues
which are confirmed by Bartlett’s test of sphericity (Bartlett (1950)). The p-
values are shown in Figure 2.

Thus, we suggest not choosing the eigenvectors up to the point where there is
a high point on a hill in the variability plot. Table 1 shows the numbers of chosen
components by the percentage of total variance criteria and by the variability
plot. We also list the accumulated percentages of total variance accordingly.

3. Asymptotic Results
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Figure 2. Marginal p-values for Bartlett’s test for sphericity applied to test
the first 20 (jth, (j + 1)th) pairs under the null hypothesis λj = λj+1. Low
p-values correspond to distinct eigenvalue, while the pairs (7, 8), (11, 12),
(14, 15), (18, 19), and (19, 20) are in agreement with the null hypothesis.

In this section, we present a theorem and its corollary to describe the con-
sistency and rate of convergence of the proposed variability measure Āk. As-
sumption 1, which sets the condition for finite fourth moment of the covariance
matrix, is to bound the difference between the resample covariance and sample
covariance to within order 1/

√
n (Beran and Srivastava (1985)). Theorem 1(a)

states that Āk converges to 0 in probability when the corresponding eigenvalue is
distinct from all other eigenvalues. Theorem 1(b) states that, for a non-distinct
eigenvalue, Āk converges to a positive constant. With Assumption 2, which sets
the symmetric distribution of the covariance among the multiplicity components,
we can derive a lower bound for Āk in Theorem 1(c). Corollary 1 extends The-
orem 1 to the case of a few distinct eigenvalues and one degenerate eigenvalue,
on which the scree plot targets.

Assumption 1. Suppose the observations {(xi1, . . . , xip); 1 ≤ i ≤ n} are i.i.d. p×
1 random vectors with covariance matrix Σ = (σj`)p×p and finite fourth moment.

Let Sn = (sj`) denote the sample covariance matrix. For each Sn, there
exists an orthogonal transformation basis U composed of eigenvectors such that
UTSnU = Λ, where Λ is the diagonal matrix with eigenvalues λ1 ≥ · · · ≥ λp

along the main diagonal. To simplify the notation, we use the eigenvectors as
our coordinate basis. Let V =

√
n(S∗ − Sn), where S∗ is the sample covariance

matrix from the resampling.
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Assumption 2. Vjj/
√

n−(λj−λ1), 1 ≤ j ≤ p, are identically and symmetrically
distributed with mean 0 such that

P

(
Vjj√

n
− (λj−λ1) >

V``√
n
− (λ`−λ1)

)
= P

(
V``√

n
− (λ`−λ1) >

Vjj√
n
− (λj−λ1)

)
,

and Vj`, j 6= `, are identically symmetric with mean 0 such that P (Vj` > Vrs) =
P (Vrs > Vj`).

Theorem 1. Under Assumption 1, for 1 ≤ k ≤ p,

(a) if λk is distinct from all other eigenvalues, Āk converges to zero in probability
and

Āk =
1
2n

[∑
j 6=k

EV 2
kj

(λk − λj)2

]
+ OP

( 1
n3/2

)
;

(b) when maxj |λj −λj+1| = OP (n−1/2), all eigenvalues of S∗ are around λ1 and
the Āk’s converge to nonzero constants;

(c) when maxj |λj − λj+1| = OP (n−1/2), under Assumption 2, Āk ≥ 1 − (1/q)∑q
`=1(1/

√
`) in probability, where q is the size of the multiplicity and q = p

in this case.

The proof of Theorem 1 is in the Appendix.

Remark 1. An interesting point is that Āk in Theorem 1(a) is comparable with
the asymptotic covariance of eigenvector ek provided by Anderson (1963) and
Mardia, Kent and Bibby (1979). Anderson (1963) derived the asymptotic covari-
ance of eigenvector with distinct eigenvalues under the Gaussian assumption:

λk

∑
1≤h6=k≤p

λh

(λh − λk)2
eheT

h ,

comparable to the leading term in Theorem 1(a). We suggest a simple version
for the kth variability: B̄k =

∑
h6=k[λhλk/((λh−λk)2)]. The comparison between

Āk and B̄k on the gene expression data set is in Figure 3. For those eigenvalues
which are distinct from others, the (Āk, B̄k) fall around a line.

Remark 2. Some B̄k’s become very large for multiple eigenvalues; this is not a
surprise because the asymptotic covariance matrix provided by Anderson (1963)
and Mardia, Kent and Bibby (1979) does not hold for non-distinct eigenvalues.
On the other hand, Āk is bounded by 1, by definition, and by the lower bound
in Theorem 1(b). Thus, Āk presents a more friendly visualization plot.

Corollary 1. Suppose that Assumption 1 holds, that λ1, . . . , λq are distinct from
other eigenvalues, and that λq+1 − λp = OP (1/

√
n).
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Figure 3. Āk vs. B̄k. The top plot is the scatter plot for (Āk, B̄k), where
1 ≤ k ≤ 20. The bottom plot is the scatter plot for (Āk, B̄k) excluding
non-distinct eigenvalue components.

(a) For k ≤ q, Āk converges to zero and

Āk =
1
2n

∑
j 6=k

EV 2
kj

(λk − λj)2
+ Op

( 1
n3/2

)
.

(b) For k > q, the Āk’s converge to nonzero constants.
(c) If Assumption 2 holds for those indices {q + 1, . . . , p}, then Āk ≥ 1 − (p −

q)−1
∑p−q

`=1 1/
√

` in probability.

The proof of Corollary 1 is omitted since it follows the arguments found in
the proof of Theorem 1.

4. Simulation Studies

We applied the common factor model (Spearman (1904) and Kshirsagar
(1961)) to generate data for simulation:

xT =
K∑

j=1

gT
j fj + εT , (4.1)

where x = (x1, . . . , xp), the gj ’s are constructed as orthogonal vectors with gj =
(gj1, . . . , gjp), gj` ∈ {1, 0,−1}, and we let Gj =

∑
` |gj`|. Let ε = (ε1, . . . , εp)

be i.i.d. noise. In this model, the fj ’s are unobservable latent variables that
influence the surrogate variables xk’s, and the εk’s and fj ’s are all uncorrelated,
with Efj = 0, E(εk) = 0, Var (fj) = σ2

j and Var (εk) = σ2
ε . The parameters

we used in this comparison were σ2
j = j/16, σ2

ε = 1, p in {16, 32, 64, 128}, and
Gj = p. We took n = 1, 000 and repeated 1, 000 times to calculate the means.
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Figure 4. Mean variability plots for p = 16, 32, 64, 128, and K = 1, 0 are
plotted. In all four plots, Ā1 is very close to 0 for K = 1. The horizontal
lines are the derived lower bounds of the Āk’s for multiplicity p, under the
assumption that the diagonal terms of the resampled covariance matrix have
identically symmetric distributions and the off diagonal terms have identi-
cally symmetric distributions.

When K = 1, one signal component is hidden in p-dimensional i.i.d. noise.
When K = 0, the data is p-dimensional i.i.d. noise. Ā1 and Ā2 are listed in Table
2. Figure 4 gives the mean curve of those 1, 000 variability plots. The variability
measure Āk is quite consistent with the asymptotic results. We observe that,
as the data dimension p increases, the relevant variability increases also. The
derived lower bound in Theorem 1(c), 1 − (1/p)

∑p
`=1 1/

√
`, is an increasing

function of p. This can be explained by the fact that an increase in multiplicity
leads to an increase in the degrees of freedom for the eigenvectors to be reordered.

Figure 5 shows another example with K = 8 factors, n = 1, 000, p = 64.
The eight common factors were spread over the first G = Gj = 32 dimensions for
1 ≤ j ≤ 8. PCA was applied on both the correlation matrix and the covariance
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Table 2. Mean and SD of mean distances with σ2
1 = 1/16, σ2

ε = 1 and G = p.

K = 0(No Signal) K = 1(One Signal)
p Ā1(→ nonzero) Ā2(→ nonzero) Ā1(→ 0) Ā2(→ nonzero)
16 0.4098 0.5837 0.0158 0.4040
32 0.4989 0.6510 0.0119 0.5002
64 0.5877 0.7071 0.0100 0.5876

128 0.6797 0.7580 0.0090 0.6805

Figure 5. Scree Plot and Variability Plot: PCA was applied to the covariance
and the correlation matrix of a data set with n = 1, 000 and p = 64. These
plots are based on a mean of 1,000 repeats. The data were generated through
the common factor model with K = 8 factors and these factors were spread
over the first G = 32 dimensions, the Gaussian noise was spread out over
the p = 64 dimensions. Thus, seven distinct eigenvalues and two groups of
multiple roots were generated when the correlation matrix was applied.

matrix. The variability plots were successful in grouping the multiplicity eigen-
value components as a hill and the Āk’s were close to zero for distinct eigenvalues.

We also applied this algorithm to the case p ≥ n. We generated a functional
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Figure 6. Scree Plot and Variability Plot for p ≥ n The data were generated
with n = 25, 3 signal components and 10 noise components; p = 25 for the
left column and p = 50 for the right column.

data set through the model from Hall and Vial (2007):

x(t) =
K∑

j=1

ηjψj(t) + 0.01n−0.25
p0∑

j=2

ζjχj(t),

where the ηj ’s for signal components and the ζj ’s for noise components were
uncorrelated Gaussian random variable’s with variance j−2 and j−1.6, ψj(t) =√

2 cos(jπt), and χj(t) =
√

2 sin(jπt). We took K = 3, p0 = 10, n = 25 and let p

be 25 and 50. We let t take values on 2`π/p, where 1 ≤ ` ≤ p. Figure 6 shows the
scree plots and the variability plots. The number of intrinsic components was K+
p0 − 1 = 12, which means that there was multiplicity with size p− 12 taking zero
value. From the scree plot, the noise components and 0 eigenvalue components
were not distinguishable. Variability plots are useful for separating the distinct
eigenvalue components, noise components and 0 eigenvalue components.
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5. Discussion

As stated in Stewart (1973), a small perturbation of a matrix will only lead to
a small change of eigenvalues and also a small change of eigenvectors for distinct
eigenvalue, while the behavior of eigenvectors can be quite different for non-
distinct eigenvalues as demonstrated in Theorem 1. In this paper, we employ
the bootstrap to give a measure of the stability of eigenvectors over different
samples. Using the proposed variability plot to choose components, we can avoid
the problem, of offering widely differing patterns from one sample to the next,
which can be encountered in using a specified percentage of total variance.

We also demonstrated that this algorithm can be applied to the case p > n.
When the number of intrinsic components is well controlled, then no matter how
large p is, the asymptotic results of Theorem 1 still hold. We believe this tool can
bring statisticians more insights in exploring high dimensional data. Although
the computing time is proportional to p2 ×B, this may not be a major concern.
For example, in generating the variability plot for the gene expression data set
with n = 6, 688, p = 128 and B = 1, 000, it took 618 seconds on a PC with
Pentium 4, CPU 3.4Ghz and 3GB RAM.

6. Appendix

Proof of Theorem 1(a). Write the bth bootstrap resampling covariance matrix
as

S∗
b = Sn +

1√
n
V.

Let ek and λk, 1 ≤ k ≤ p, be the eigenvectors and the eigenvalues of Sn. Accord-
ing to Beran and Srivastava (1985), Vj` = OP (1) for any 1 ≤ j 6= ` ≤ p. For the
bth resampling, denote the kth eigenvalue and the kth eigenvector by λ∗b

k and
e∗bk , respectively. When λk is the simple root of the characteristic polynomial
of Sn, it follows from Theorems 8.1.4, 8.1.5, and 8.1.12 of Golub and Van Loan
(1996) that

λ∗b
k = λk +

δ√
n

and e∗bk = ek +
1√
n
fk,

where the Frobenius norm of fk is bounded.
By comparing the equations

Snek = λkek,(
Sn +

1√
n
V

)(
ek +

1√
n
fk

)
=

(
λk +

δ√
n

)(
ek +

1√
n
fk

)
,

we get

(Sn − λkI)fk = (δI − V)ek + OP

( 1√
n

)
.
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Take the inner product of the above with ek to get δ = Vkk + OP (1/
√

n), and
take the inner product with ej to get

(λj − λk)fkj = −Vkj + OP

( 1√
n

)
,

where fkj = fk · ej . With the constraint |e∗bk | = 1, we have(
1 +

fkk√
n

)2

+
∑
j 6=k

(
fkj√

n

)2

= 1.

Thus

fkk = − 1
2
√

n

∑
j 6=k

(
Vkj

λj − λk

)2

+ OP

( 1
n

)
,

which leads to

Āk = 1 − 1
B

B∑
b=1

|ek · e∗bk | → 1 − E|ek · e∗bk | =
1
2n

∑
j 6=k

EV2
jk

(λj − λk)2
+ OP

( 1
n3/2

)
as B → ∞.

Proof of Theorem 1(b)
For non-distinct eigenvalues λ1, . . . λp, we give a proof by arguing that E|ek ·

e∗k| < 1. We first determine the eigenvalues of S∗ that are roots of det|Λ +
V/

√
n − λ∗I| = 0, where Λ is the eigenvalue diagonal matrix, using

(λ∗ − λk)p −

[
p∑

j=1

(
Vjj√

n
− τj

)]
(λ∗−λ1)p−1

+

[∑
j<`

(
Vjj√

n
−τj

)(
V``√

n
−τ`

)
−

∑
j<`

V 2
j`

n

]
(λ∗−λ1)p−2+OP

( 1
n3/2

)
= 0, (6.1)

where τj = λ1 − λj is of the order 1/
√

n.
The p roots of (6.1) are λ1 + o(1). The kth eigenvector e∗k is determined by

the linear system(
λ1 +

Vjj√
n
− τj

)
e∗kj +

∑
` 6=j

Vj`√
n

e∗k` = λ∗
ke

∗
kj , 1 ≤ j ≤ p, (6.2)

where e∗kj = e∗k · ej . Recall that

Āk = 1 − 1
B

B∑
b=1

|ek · e∗bk | → 1 − E|e∗kk| = 1 − E
|e∗kk|√∑p
j=1(e

∗
kj)

2

= 1 − E
1√

1 +
∑

j 6=k(|e∗kj/e∗kk|2)
. (6.3)
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Now Āk → 0 if and only if e∗kj = 0 with probability 1 for all j 6= k, which
cannot be true in view of (6.1) and (6.2). This concludes the proof.

Proof of Theorem 1(c) We give the lower bound of Āk under the symmetric
assumption by showing that the projections of the resample eigenvector on the
multiple root eigenvectors have the same distribution. Therefore, the probability
for each projection to be of an order from 1 to p is equally likely. Note that the
solutions for e∗kj are functions of Vj` and τj , where 1 ≤ j, ` ≤ p. Due to the
symmetric expression of e∗k1, . . . , e

∗
kp at (4), both e∗k1 and e∗k` can be written as

a function of Vrs and τr, 1 ≤ r, s ≤ p, in which the indices for Vrs and τr are
adjusted by permuting index 1 with index `, where 1 ≤ ` ≤ p.

Under Assumption 2: symmetric distributions of Vjj/
√

n − τj , 1 ≤ j ≤ p,
and symmetric distribution of Vj`, 1 ≤ j 6= ` ≤ p, the rank of |e∗kj | among
{|e∗k1|, . . . , |e∗kp|} is equally likely from 1 to p. Thus we can give a crude lower
bound of Āk: each term |e∗kj/e∗kk| in the denominator is replaced by 0 if it is less
than 1, and by 1 otherwise. Then the denominator is replaced by

√
j when |e∗bkk|

is the jth order statistic of {|e∗k`|, 1 ≤ ` ≤ p}. Accordingly, the probability of the
above event is 1/p. Thus we have

Āk ≥ 1 − 1
p

p∑
`=1

1√
`

in probability.
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