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Abstract: In 1961, for detecting a change in the drift of a Brownian motion, Shiryaev

introduced what is now usually referred to as the Shiryaev-Roberts procedure. This

procedure has a number of optimality and asymptotic optimality properties in var-

ious settings. Shiryaev (1961, 1963), and more recently Feinberg and Shiryaev

(2006), established exact optimality properties in the context of monitoring a Brow-

nian motion for a (known) change of drift. Their method of proof relies on tech-

niques particular to Brownian motion that are not applicable in discrete time. Here

we establish analogous results in a general discrete time setting, where surveillance

is not relegated to a change of mean or to normal observations only. Our method

of proof relies on asymptotic Bayesian analysis and on renewal theory.
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1. Introduction

Changepoint problems deal with detecting a change in the state of a process,
where information one has about the state of affairs is in the form of observations.
In the sequential setting, observations are obtained one at a time and, as long
as their behavior is consistent with the initial (or target) state, one is content to
let the process continue. If the state changes, then one is interested in detecting
that a change is in effect, usually as soon as possible after its occurrence.

Any detection policy may give rise to false alarms. Intuitively, the desire to
detect a change quickly causes one to be (relatively) trigger-happy, which will
bring about many false alarms if there is no change. On the other hand, attempt-
ing to avoid false alarms too strenuously will lead to a long delay between the
time of occurrence of a real change and its detection. Common operating charac-
teristics of a sequential detection policy are ARL2FA = the Average Run Length
(the expected number of observations) to False Alarm (assuming that there is
no change) and the AD2D = Average Delay to Detection (the expected delay
between a real change and its detection). The gist of the changepoint problem is
to produce a detection policy that (at least approximately) minimizes the AD2D
subject to a bound on the ARL2FA. The constitution of a good policy depends
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very much on what is known about the stochastic behavior of the observations,
both pre- and post-change.

Let X1, X2, . . . denote the series of observations, and let ν be the serial
number of the first post-change observation. Let Pk and Ek denote probabil-
ity and expectation when ν = k, and let P∞ and E∞ denote the same when
ν = ∞ (i.e., there never is a change). A sequential change detection procedure
is identified with a stopping time N on X1, X2, . . ., i.e., {N ≤ n} ∈ Fn, where
Fn = σ(X1, . . . , Xn) is the sigma-algebra generated by the first n observations
(F0 = {∅, Ω}). We assume that all random objects are defined on a complete
probability space (Ω, F , P), F = ∨n≥0Fn; {Fn}n≥0 satisfies the usual condi-
tions.

In this paper, we consider the simple changepoint problem setting where
the observations X1, X2, . . . are independent, iid pre-change and iid post-change,
with known pre- and post-change distributions. Specifically, it is assumed that
Xn has density f0 (pre-change) for n < ν and density f1 (post-change) for n ≥ ν,
where both f0 and f1 are known, and only the value of ν, the point of change,
is unknown. (In practice, often f0 is known. Realistically, f1 is not known, but
the simple setting yields a benchmark for the best one can hope for.)

In this setting, Moustakides (1986) proved that the Cusum procedure (intro-
duced by Page (1954)) is optimal in the sense of minimizing the worst-worst case
(essential supremum) expected detection delay supk≥1 ess supω Ek[(N−k)+|Fk](ω)
over all stopping times N for which

ARL2FA(N) = E∞N ≥ B, (1.1)

where B > 1 is a value set before the surveillance begins. See also Lorden (1971)
and Ritov (1990). For detecting a change in the drift of a Brownian motion, a
similar result has been established by Beibel (1996) and Shiryaev (1996).

In 1961, for detecting a change in the drift of a Brownian motion, Shiryaev
introduced what is now usually referred to as the Shiryaev-Roberts procedure
(Shiryaev (1961, 1963) and Roberts (1966)). Shiryaev (1961, 1963) considered
the problem of detecting a change in the mean of a Brownian motion when a
stationary regime is in place, effected by a change possibly occurring in a distant
future, after many false alarms have been experienced. He used features of Brow-
nian motion to prove that, subject to a constraint on the rate of false alarms,
this procedure is optimal for minimizing expected delay in detecting a change
taking place at a far horizon against a stationary background of false alarms.
This problem setting, called by Shiryaev “Quickest Detection of a Disorder in a
Stationary Regime,” has a variety of important surveillance applications. Fein-
berg and Shiryaev (2006) have shown that this procedure is also optimal in terms
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of minimizing
∫ ∞
0 Et[(N − t)+]dt (for the same Brownian motion model). They

refer to this as “A Generalized Bayesian Setting”.
For the general changepoint problem in a discrete time setting, Pollak (1985)

introduced a randomized version of the Shiryaev-Roberts procedure that starts
from a point sampled from the quasi-stationary distribution, and proved that it
is asymptotically (as B → ∞) almost optimal (within an additive term of order
o(1)) in the sense of minimizing the supremum AD2D supk≥1 Ek(N − k|N ≥ k)
over all stopping times N that satisfy (1.1). It can be also deduced from Pollak
(1985, 1987) that the conventional Shiryaev-Roberts procedure is asymptotically
minimax for a low false alarm rate within an additive term of order O(1).

In the present paper, we establish results analogous to those of Shiryaev
(1961, 1963) and Feinberg and Shiryaev (2006) in a general discrete time setting
where surveillance is not limited to a change of mean or to normal observations.

To be specific, in Section 2 we prove that the Shiryaev-Roberts procedure is
(exactly) optimal in the sense of minimizing the “integral AD2D”=

∑∞
k=1 Ek(N−

k)+ for every B > 1 in the class of procedures with the ARL2FA constraint (1.1).
This is instrumental in Section 3, where we consider the setting in which a change
occurs in a distant future (i.e., ν is large) after being preceded by a stationary
flow of false alarms. We prove that the Shiryaev-Roberts procedure is the best
(exactly) that one can do in terms of minimizing the expected detection delay
asymptotically when ν → ∞ in the class (1.1), for every B > 1.

Since Brownian motion techniques are not applicable in discrete time, our
methods of proof are necessarily different from those of Shiryaev (1961, 1963)
and Feinberg and Shiryaev (2006). In particular, the proof of Theorem 2 is
based solely on our results in Section 2 and on renewal-theoretic considerations.

2. Minimizing Integral AD2D

Using the notation of the previous section, the Shiryaev-Roberts procedure
calls for stopping and raising an alarm at

NAB
= min {n ≥ 1 : Rn ≥ AB} , (2.1)

where

Rn =
n∑

k=1

p(X1, . . . , Xn|ν = k)
p(X1, . . . , Xn|ν = ∞)

=
n∑

k=1

n∏
i=k

f1(Xi)
f0(Xi)

, (2.2)

and AB is such that E∞NAB
= B.

Note that the Shiryaev-Roberts statistic Rn defined in (2.2) can be also
computed recursively as

Rn = (1 + Rn−1)
f1(Xn)
f0(Xn)

, n ≥ 1, R0 = 0. (2.3)
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For ease of exposition we assume throughout the paper that the likelihood
ratio f1(X)/f0(X) is P∞-continuous. The case where the likelihood ratio is not
continuous requires randomization on the stopping boundary AB, i.e., deciding
whether to continue or to stop when Rn = AB. All our results are valid for this
case as well, but presenting the fine points clutters the exposition with details
that obscure the main ideas.

In Theorem 1 we prove that the Shiryaev-Roberts procedure is exactly op-
timal in the sense of minimizing the integral AD2D =

∑∞
k=1 Ek(N − k)+ in the

class of detection procedures ∆B = {N : ARL2FA(N) ≥ B}, when the mean
time to false alarm is not less than the given number B > 1. We begin with a
sketch of the argument why one may expect this to be true.

Consider first the following Bayesian problem, denoted by B(ρ, c). Suppose
ν is a random variable independent of the observations that has a geometric prior
distribution

P (ν = k) = ρ(1 − ρ)k−1, k ≥ 1, (2.4)

and the losses associated with stopping at time N are 1 if N < ν and c · (N − ν)
if N ≥ ν, where 0 < ρ < 1 and c > 0 are fixed constants. For A ∈ F , define the
probability Pρ(A) =

∑∞
k=1 ρ(1−ρ)k−1Pk(A) and let Eρ denote the corresponding

expectation.
Solution of B(ρ, c) requires minimization of the expected loss

ϕc,ρ(N) = Pρ(N < ν) + cEρ(N − ν)+, (2.5)

and the Bayes rule for this problem is given by the Shiryaev procedure (cf.
Shiryaev (1963, 1978))

Tρ,c = min {n ≥ 1 : Pρ(ν ≤ n|Fn) ≥ δρ,c} , (2.6)

where 0 < δρ,c < 1 is an appropriate threshold.
Obviously, the B(ρ, c) problem is equivalent to maximizing

1
ρ
[1 − ϕc,ρ(N)] =

Pρ(N ≥ ν)
ρ

− c
Eρ(N − ν)+

ρ
.

In the proof of Theorem 1 we show that, for any stopping time N ,

Pρ(N ≥ ν)
ρ

−−−→
ρ→0

E∞N,
Eρ(N − ν)+

ρ
−−−→
ρ→0

∞∑
k=1

Ek(N − k)+.

Hence
1
ρ
[1 − ϕc,ρ(N)] −−−→

ρ→0
E∞N − c

∞∑
k=1

Ek(N − k)+,
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which should be maximized in the class ∆B.
We also show that the Shiryaev procedure Tρ,c converges to the Shiryaev-

Roberts procedure NAB
as ρ → 0. Therefore, it stands to reason that the integral

AD2D =
∑∞

k=1 Ek(N − k)+ is minimized subject to E∞N ≥ B.

Theorem 1. Let AB be chosen so that ARL2FA(NAB
) = B. Then the Shiryaev-

Roberts procedure defined by (2.1) and (2.3) minimizes

∞∑
k=1

Ek(N − k)+ (2.7)

over all stopping times N that satisfy E∞N ≥ B, i.e.,

inf
N∈∆B

∞∑
k=1

Ek(N − k)+ =
∞∑

k=1

Ek(NAB
− k)+ for every B > 1,

where ∆B = {N : ARL2FA(N) ≥ B}.

Proof. Consider the Bayesian problem B(ρ, c) with the geometric prior distri-
bution (2.4) and the average loss (2.5). Shiryaev (1963, 1978) proved that the
expected loss (2.5) for the problem B(ρ, c) is minimized by the stopping time
(2.6). Applying Bayes’ formula, it is easy to see that

Pρ(ν ≤ n|Fn) =
Rρ,n

Rρ,n + 1/ρ
,

where

Rρ,n =
n∑

k=1

n∏
i=k

(
1

1 − ρ

f1(Xi)
f0(Xi)

)
.

Hence, the Shiryaev rule can be written in the equivalent form

Tρ,c = min {n ≥ 1 : Rρ,n ≥ Aρ,c} , (2.8)

where Aρ,c = (1/ρ)[δρ,c/(1 − δρ,c)].
Note first that Rρ,n −−−→

ρ→0
Rn.

By Theorem 1 of Pollak (1985), there exist a constant 0 < c∗ < ∞ and a
sequence {ρi, ci}∞i=1 with ρi −−−→

i→∞
0, ci −−−→

i→∞
c∗, such that NAB

is the limit of

the Bayes rules Tρi,ci as i → ∞. Furthermore,

lim sup
ρ→0,c→c∗

1 − ϕc,ρ(Tρ,c)
1 − ϕc,ρ(NAB

)
= 1, (2.9)

where ϕc,ρ(N) is the expected loss associated with using the stopping time N for
B(ρ, c).
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Now, for any stopping time N ,
1
ρ
[1 − ϕc,ρ(N)] =

1
ρ

[
(1 − Pρ(N < ν)) − cEρ(N − ν)+

]
=

Pρ(N ≥ ν)
ρ

[1 − cEρ(N − ν|N ≥ ν)] .

Since

Pρ(N ≥ ν)
ρ

=
1
ρ

∞∑
k=1

Pk(N ≥ k)ρ(1 − ρ)k−1

=
∞∑

k=1

P∞(N ≥ k)(1 − ρ)k−1

−−−→
ρ→0

∞∑
k=1

P∞(N ≥ k) = E∞N

(where we used the fact that {N < k} ∈ Fk−1 and, hence, Pk(N ≥ k) =
1 − Pk(N < k) = 1 − P∞(N < k) = P∞(N ≥ k)) and

Pρ(N ≥ ν)Eρ(N − ν|N ≥ ν)
ρ

=
Eρ(N − ν; N ≥ ν)

ρ

=
1
ρ

∞∑
k=1

Ek(N − k;N ≥ k)ρ(1 − ρ)k−1

=
∞∑

k=1

Ek(N − k; N ≥ k)(1 − ρ)k−1

−−−→
ρ→0

∞∑
k=1

Ek(N − k; N ≥ k) =
∞∑

k=1

Ek(N − k)+,

it follows that for any stopping time N that has finite ARL2FA

1
ρ

[
1 − ϕc,ρ(N)

]
−−−→
ρ→0

E∞N − c

∞∑
k=1

Ek(N − k)+, (2.10)

which together with (2.9) establishes that the Shiryaev-Roberts procedure mini-
mizes (2.7) over all stopping times that satisfy E∞N = B. Note that if B1 > B,
then NAB1

is stochastically larger than NAB
, i.e., all expectations in (2.7) become

larger. This implies that the Shiryaev-Roberts procedure minimizes (2.7) in the
class ∆B. This completes the proof of the theorem.

Corollary 1. The Shiryaev-Roberts procedure defined by (2.1) and (2.2) mini-
mizes ∑∞

k=1 Ek(N − k|N ≥ k)P∞(N ≥ k)∑∞
j=1 P∞(N ≥ j)

(2.11)
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over all stopping times N that satisfy E∞N ≥ B, i.e.,

inf
N∈∆B

∞∑
k=1

wk(N)Ek(N − k|N ≥ k) =
∞∑

k=1

wk(NAB
)Ek(NAB

− k|NAB
≥ k),

where
wk(N) =

P∞(N ≥ k)∑∞
j=1 P∞(N ≥ j)

,

and the threshold AB is selected so that E∞NAB
= B.

Proof. Obviously,
∑∞

j=1 P∞(N ≥ j) = E∞N = B, so the denominator in (2.11)
is constant over all stopping times with exact equality E∞N = B. As for the
numerator,

Ek(N − k|N ≥ k)P∞(N ≥ k) = Ek(N − k|N ≥ k)Pk(N ≥ k)
= Ek(N − k;N ≥ k) = Ek(N − k)+. (2.12)

Application of Theorem 1 concludes the proof for stopping times {N : E∞N =
B}. It remains to prove that this is true for all stopping times N ∈ ∆B.

Write

J (N) =
∑∞

k=1 Ek(N − k|N ≥ k)P∞(N ≥ k)∑∞
j=1 P∞(N ≥ j)

=
∑∞

k=1 Ek(N − k)+

E∞N
,

and let N be such that E∞N = B1 > B.
Define a randomized stopping time

T =

{
N with probability p

0 with probability 1 − p,

where p = B/B1.
Note that J (T ) = J (N) for every 0 < p ≤ 1, since Ek(T−k)+ = pEk(N−k)+

and E∞T = pE∞N . Therefore, for any stopping time N such that E∞N > B, we
can find another stopping time T with E∞T = B and such that J (T ) = J (N),
which means that it is sufficient to optimize over stopping times that satisfy
exact equality E∞N = B. Finally, since the optimum over stopping times with
E∞N = B is the Shiryaev-Roberts procedure that does not randomize 0, it
follows that this procedure is optimal in the class ∆B.

Remark 1. It is not feasible to obtain an analytic closed form for AB (to guar-
antee the exact equality E∞NAB

= B) and, if precision is absolutely necessary,
the calculation is done best by (very tedious) Monte Carlo or by solving integral
equations numerically. An approximation (cf. Pollak (1987) and Yakir (1995))

E∞NA ≈ A

γ
(2.13)
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can be obtained by noticing that Rn − n is a P∞ - martingale with zero expec-
tation, so that by the optional sampling theorem E∞(RNA

− NA) = 0. Hence
E∞NA = E∞RNA

, and, since RNA
is the first excess over A, renewal theory can

be applied to the “overshoot” log(RNA
)−log A. The constant γ in (2.13) depends

on the model, satisfies 0 < γ < 1, and can be computed numerically. Therefore,
A = Bγ guarantees E∞NA ≈ B. This approximation is asymptotically accurate
when B → ∞ and is fairly accurate already for small values of B (say B ≥ 10).
See, e.g., Pollak and Tartakovsky (2008).

While Theorem 1 and Corollary 1 are of interest in their own right, they are
useful for proving another interesting optimality result, as will become apparent
in the next section.

3. Optimality for a Change Appearing after Many Re-Runs

Consider a context in which it is of utmost importance to detect a real change
as quickly as possible after its occurrence, even at the price of raising many false
alarms (using a repeated application of the same stopping rule) before the change
occurs. This essentially means that the changepoint ν is very large compared to
the constant B which, in this case, defines the mean time between consecutive
false alarms.

To be more specific, let N
(1)
AB

, N
(2)
AB

, . . . be sequential independent repetitions
of NAB

defined in (2.1) and let, for j ≥ 1,

Qj = N
(1)
AB

+ N
(2)
AB

+ · · · + N
(j)
AB

(3.1)

be the time of the j-th alarm, i.e.,

N
(i)
AB

= min
{

n ≥ Qi−1 + 1 : R(i)
n ≥ AB

}
− Qi−1, (3.2)

where N
(0)
AB

= Q0 = 0 and

R(i)
n =

(
1 + R

(i)
n−1

) f1(Xn)
f0(Xn)

for Qi−1 + 1 ≤ n ≤ Qi, R
(i)
Qi−1

= 0. (3.3)

Thus R
(i)
n , n ≥ Qi−1 + 1, is nothing but the Shiryaev-Roberts statistic that is

renewed from scratch after the (i− 1)st false alarm (under P∞) and is applied to
the segment of data XQi−1+1, XQi−1+2, . . . .

Note that E∞N
(i)
AB

= B for i ≥ 1.
Let Jν = min{j ≥ 1 : Qj ≥ ν}, i.e., QJν is the time of detection of a true

change that occurs at ν after Jν − 1 false alarms have been raised.
Our next theorem states that the Shiryaev-Roberts procedure defined by

QJν is asymptotically (as ν → ∞) optimal with respect to the expected delay
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Eν(QJν −ν) in the class of detection procedures for which the mean time between
false alarms is not less than B. Note that this result is not asymptotic with
respect to the ARL2FA, it holds for every B > 1.

Theorem 2. Let ν be the time of the change. Let N
(1)
AB

, N
(2)
AB

, . . . be sequential
independent repetitions of NAB

as defined in (3.2) and (3.3), and let Q1, Q2, . . .
be as in (3.1). Let Jν = min{j : Qj ≥ ν}.

(i) limν→∞ Eν(QJν − ν) exists.
(ii) Suppose a detection procedure N with ARL2FA(N) ≥ B is applied repeat-

edly. Let N1, N2, . . . be sequential repetitions of N , let Wj =
∑j

i=1 Ni, and
let Kν = min{j : Wj ≥ ν}. Then

lim
ν→∞

Eν(QJν − ν) ≤ lim
ν→∞

Eν(WKν − ν), (3.4)

i.e., the Shiryaev-Roberts procedure is optimal for every B > 1 in the class
∆B = {N : E∞N ≥ B}.

Proof. Proof of (i). By renewal theory, the distribution of ν −QJν−1 has a limit

lim
ν→∞

Pν (ν − QJν−1 = k) =
P∞(NAB

≥ k)∑∞
j=1 P∞(NAB

≥ j)
for k = 1, 2, . . . (3.5)

(see, e.g., Feller (1966, p.356)).
When conditioning on ν − QJν−1 = k, the observations XQJν−1+1, XQJν−1+2,

. . . Xν−1, Xν , . . . behave exactly like X1, X2, . . . , Xν−1, Xν , . . . when ν = k.
Therefore, by conditioning on ν − QJν−1, using (3.5) and letting NAB

be inde-
pendent of N

(1)
AB

, N
(2)
AB

, . . ., we obtain

Eν(QJν − ν) = Eν [Eν (QJν − ν|ν − QJν−1)]

=
ν∑

k=1

Ek (NAB
−k|ν−QJν−1 = k,NAB

≥ k) P∞ (ν−QJν−1 = k)

=
ν∑

k=1

Ek (NAB
− k|NAB

≥ k) P∞ (ν − QJν−1 = k)

−−−→
ν→∞

∑∞
k=1 Ek (NAB

− k|NAB
≥ k) P∞ (NAB

≥ k)∑∞
j=1 P∞ (NAB

≥ j)

=
∑∞

k=1 Ek(NAB
− k)+

E∞NAB

=
∑∞

k=1 Ek(NAB
− k)+

B
,

which completes the proof of (i).
Proof of (ii). The same argument as in the proof of (i) yields

lim
ν→∞

Eν(WKν − ν) =
∑∞

k=1 Ek(N − k)+

E∞N
= J (N).
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By Corollary 1, J (NAB
) ≤ J (N) for any N ∈ ∆B, which concludes the proof.

Remark 2. It is worth noting that Theorem 2 is important in a variety of
surveillance applications such as target detection and tracking, rapid detection
of intrusions in computer networks, and environmental monitoring, to name a
few. In all of these applications, it is of utmost importance to detect very rapidly
changes that may occur in a distant future, in which case the true detection of a
real change may be preceded by a long interval with frequent false alarms that
are being filtered by a separate mechanism or algorithm. For example, falsely
initiated target tracks are usually filtered by a track confirmation/deletion algo-
rithm; false detections of attacks in computer networks in anomaly-based Intru-
sion Detection Systems (IDS) may be filtered by Signature-based IDS algorithms,
etc. See, e.g., Tartakovsky (1991), Tartakovsky and Veeravalli (2004) and Tar-
takovsky, Rozovskii, Blažek and Kim (2006). The practical implication of Theo-
rem 2 is that in these circumstances one has reason to prefer the Shiryaev-Roberts
procedure to other surveillance schemes.
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