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Abstract: Latin hypercube design (LHD) is popularly used in designing computer

experiments. This paper explores how to construct LHDs with pd (d = 2c) runs

and up to (pd − 1)/(p − 1) factors in which all main effects are orthogonal. This is

accomplished by rotating groups of factors in a pd-run regular saturated factorial

design. These rotated factorial designs are easy to construct and preserve many

attractive properties of standard factorial designs. The proposed method covers

the one by Steinberg and Lin (2006) as a special case and is able to generate more

orthogonal LHDs with attractive properties. Theoretical properties as well as the

construction algorithm are discussed, with an example for illustration.
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1. Introduction

Many physical phenomena encountered in science and engineering can be
modeled by a set of complicated equations. These equations often have only
numerical solutions that are carried out by computer programs. These so-called
computer models are used by scientists and engineers to understand complicated
physical phenomena. Latin hypercube design (LHD) is popularly used in de-
signing computer experiments. In this paper, we are particularly interested in
orthogonal LHDs.

LHDs were introduced by McKay, Beckman and Conover (1979) for computer
experiments. An n × m LHD for m factors in n runs is usually specified by an
n×m matrix D = (dij), where dij is the level of factor j on the ith experimental
run, and each column in D includes n uniformly spaced levels. Box and Draper
(1959) showed that when the true model is a polynomial (of unknown degree),
the property of equally-spaced points over the design region is desirable. Thus,
equally-spaced projections are of value. However, the original construction of
LHDs by mating factors randomly is susceptible to potentially high correlations
between factors.

Efforts have been made to optimize LHDs. Thus Owen (1992) and Tang
(1993) proposed orthogonal array-based LHDs whose r-dimensional projections
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are all stratified. Owen (1994) attempted to minimize pairwise correlations be-
tween input factors. Tang (1998) extended this approach by considering correla-
tions among higher-order terms derived from the factors. Ye (1998) presented a
construction method for orthogonal column LHDs in which all the input factors
have zero correlation. Butler (2001) showed how to construct LHDs in which the
terms of a class of trigonometric regression models are orthogonal to one another.
Beattie and Lin (1998, 2004, 2005) showed that certain LHDs can be constructed
by rotating the points in a p-level full factorial design. Bursztyn and Steinberg
(2002) applied the rotation to groups of factors to increase the number of factors
in the resulting design. Recently, Joseph and Hung (2008) proposed a multi-
objective optimization approach to find good LHDs by combining correlation
and distance performance measures, while Steinberg and Lin (2006) proposed a
method to construct 2d-level orthogonal LHDs by means of rotating factors in
groups, this method can generate more orthogonal factor columns than those
proposed by Ye (1998). However, the primary limitation of their method is the
constraint that the sample size is n = 2d, where d is a power of 2, d = 2c. In
this paper we construct orthogonal LHDs with pd runs and up to (pd−1)/(p−1)
factors that can be used in a comparatively general way.

This paper is organized as follows. Section 2 discusses some related work on
rotating designs. A general approach for constructing orthogonal LHDs by ro-
tating groups of factors in a pd-run regular saturated factorial design is proposed
in Section 3, along with a discussion of properties of the resulting designs and an
illustrative example. Section 4 provides some concluding remarks.

2. Related Work on Rotation Designs

Beattie and Lin (1998, 2004, 2005) showed that a class of LHDs can be con-
structed by rotating the points in p-level, d-factor standard full factorial designs,
where d is a power of 2.

Let D be a pd×d full factorial design with levels i−(p+1)/2 for i = 1, . . . , p.
A d×d matrix R acts as a rotation matrix if R

′
R = Id, where Id is a d×d identity

matrix. Then X = DR is an orthogonal LHD matrix.
The rotation matrices can be defined by the following recursive scheme. Let

V1 =
(

p − 1
1 p

)
, (2.1)

Vc =

(
p2c−1

Vc−1 − Vc−1

Vc−1 p2c−1
Vc−1

)
, (2.2)

and then the rotation matrix can be rescaled to

Rc = acVc, (2.3)
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with ac = {
∏c

k=1(1 + p2k
)}−1/2. Note that expressions (2.1)−(2.2) have slightly

different representations from those of Beattie and Lin (1998, 2004, 2005).
The orthogonal LHD proposed above has many attractive properties. It

possesses the orthogonality of factorial designs, i.e., the correlation of each pair of
columns in the design is zero, and admits unique and equally-spaced projections
to univariate dimensions while maintaining a high spatial dispersion according
to minimum inter-site distance.

Bursztyn and Steinberg (2002) proposed the idea of independently rotating
groups of factors in two-level designs. Let D be a 2m−l factorial design and let
R be a t × t rotation matrix. Suppose we can decompose the m factors in D

into b sets of t factors each, with m − bt factors left over. Let D1, . . . , Db be the
design matrices obtained from projecting D onto each of the b sets of t factors.
Let the rotation matrix Rb be a bt × bt block diagonal matrix with b copies of

R on the diagonal. The rotation design is then DR = (D1
... · · ·

... Db)Rb =

(D1R
... · · ·

... DbR). Recently, Steinberg and Lin (2006) combined the above two
ideas with the theory of Galois field to produce an orthogonal LHD matrix with
n runs, where n = 2d and d = 2c. The number of possible factors in their design
can be as large as n.

3. General Construction Method

In this section, we propose a new class of orthogonal LHDs with pd runs
and (pd − 1)/(p − 1) factors, where p ≥ 3 is a prime and d is a power of 2. Let
D be a p-level, (pd − 1)/(p − 1)-factor, pd-run regular saturated factorial design.
The levels for each factor in D are taken to be 0, . . . , p − 1. Let d = 2c and
b = (pd − 1)/(d(p − 1)). We divide the matrix D into b groups of d factors each,
D1, . . . , Db, and rotate each group with rotation matrix Rc defined by expressions
(2.1)−(2.3). An illustrative example is given below to carry out the basic idea.

Example 1.(p = 3, d = 2, b = 2) Start with a 34−2 regular factorial design D

with levels 0, 1, 2: 
1 0 0 0 1 1 1 2 2 2
2 0 1 2 0 1 2 0 1 2
122 0 2 1 1 0 2 2 1 0
1222 0 2 1 2 1 0 1 0 2


′

.

Now, columns 1 and 2 form a full factorial design, and columns 122 and 1222

form another one. Centralize (D1
... D2) = (1 2

... 122 1222) and rotate each Di

by R1, where

R1 = a1V1 =
1√
10

(
3 − 1
1 3

)
,
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to get a 9-point rotated factorial design:

1√
10


−4 − 3 − 2 − 1 0 1 2 3 4
−2 1 4 − 3 0 3 − 4 − 1 2
−4 4 0 1 − 3 2 3 − 1 − 2
−2 2 0 3 1 − 4 − 1 − 3 4


′

.

This design is a 9-point orthogonal LHD and can be scaled into the proper
experimental region.

Beattie and Lin (2005) showed that the subdesign DiRc is an orthogonal
LHD if Di is a full factorial design, for all i = 1, . . . , b. We next discuss how to
divide the matrix D into b groups of full factorial designs, D1, . . . , Db.

Consider GF (p)[x] = {a0+a1x+· · ·+ad−1x
d−1, ai ∈ GF (p)}, where GF (p) =

{0, . . . , (p−1)}. It is well known that there is a primitive polynomial f of degree d

over GF (p) such that the powers of x, modulo f , cycle through all pd−1 nonzero
elements of GF (p)[x]. Each of the elements of GF (p)[x] can be associated with a
column of a regular pbd−(b−1)d factorial design in the following way. As in Example
1 above, we have GF (3)[x] = {a0 + a1x, a0, a1 ∈ GF (3)} with GF (3) = {0, 1, 2},
the primitive polynomial is f(x) = x2 + x + 2 and x0, x1, x2, x3, modulo f(x),
are 1, x, 1 + 2x, 2 + 2x which correspond to columns 1, 2, 122, 1222 of the 34−2

factorial design, respectively. In general, element a0 + a1x + · · · + ad−1x
d−1 is

associated with the generalized interaction column 1a02a1 · · ·dad−1 of all factors
i for which ai−1 6= 0.

Since D has (pd − 1)/(p − 1) = bd columns, the first bd nonzero elements of
GF (p)[x] corresponding to the powers of x, modulo f(x), are sufficient to divide
D. The first d terms in the sequence, x0, x1, . . . , xd−1, correspond to the main-
effect columns and clearly are a full pd factorial design. The columns correspond-
ing to any set of d successive terms in the sequence, (xid, xid+1, . . . , xid+d−1), for
all i = 1, . . . , b − 1, will be a full factorial design if these terms are linearly inde-
pendent. In fact, if equation

∑d−1
j=0 βjx

id+j = 0 holds for a set of βj which are not
all equal to 0, then we have

∑d−1
j=0 βjx

j = 0. This contradicts the fact that the
first d columns in the ordering provide a full pd factorial design. Thus, dividing
the ordered columns into blocks of d leads to each such block Di being a full pd

factorial design.
The above discussion ensures that the matrix D can be divided into b groups

of full factorial designs and suggests how the division can be arranged. This is
summarized in the following theorem.

Theorem 1. The first bd nonzero elements of GF (p)[x] corresponding to the
powers of x, i.e., x0, x1, . . . , xbd−1, provide an ordering of the effect columns in
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matrix D. The sets consisting of d consecutive columns in the order are full
factorial designs D1, . . . , Db in sequence.

Remark 1. Note that any consecutive bd nonzero elements of GF (p)[x] can be
used to order the columns of matrix D, and hence the division is not unique.

Let D∗ = (D1
... · · ·

... Db) and

Rb =

Rc

. . .
Rc

 , (3.1)

with b copies of Rc on the diagonal. Centralizing the levels in each column of
D∗ so that all level values spread as i − (p + 1)/2 for i = 1, . . . , p, denoting the
resulting design by D∗

c and rotating it by Rb, the design matrix D∗
cRb can thus

be obtained.

Lemma 1. (Beattie and Lin (2005)) Let X be an orthogonal design matrix of n

rows and d columns in which the sums of squares for columns are equal, and let
R be a d× d rotation matrix satisfying R

′
R = Id, where Id is an identity matrix.

Then the design XR is orthogonal.

Lemma 2. The matrix Vc in (2.2) is a rotation of the d-factor (d = 2c), p-level
standard full factorial design which yields unique and equally-spaced projections
to each dimension.

Lemma 2 can be proved in similar fashion to the proof of Theorem 3 in
Beattie and Lin (2005), even though the matrix Vc in (2.2) has a different form.
It can be easily seen that the matrix D∗

c obtained above is an orthogonal design
matrix as the X in Lemma 1. Then based on Lemmas 1 and 2, the following
theorem can be established.

Theorem 2. The design D∗
cRb is an orthogonal LHD with unique and equally-

spaced projections to univariate dimensions, and has uncorrelated regression es-
timates of main effects.

We next present a construction algorithm for orthogonal LHDs.

Step 1. Give a design matrix D with pd runs and (pd − 1)/(p − 1) p-level factors,
where p ≥ 3 is a prime, d is a power of 2, and the p levels are 0, . . . , p−1.
Let b = (pd − 1)/(d(p − 1)).

Step 2. Find a primitive polynomial f(x) corresponding to the Galois field
GF (p)[x]; obtain an ordering of the bd effect columns in D by associat-
ing them with the first bd nonzero elements of GF (p)[x] corresponding
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Table 1. Orthogonal LHDs obtainable from the proposed method (n < 1, 000
and p ≥ 3).

p d n m

3 2 9 4
3 4 81 40
5 2 25 6
5 4 625 156
7 2 49 8

11 2 121 12
13 2 169 14
17 2 289 18
19 2 361 20
23 2 529 24
29 2 841 30
31 2 961 32

to the powers of x modulo f(x); divide the ordered bd columns in D

into b blocks, D1, . . . , Db, to form the matrix D∗ = (D1
... · · ·

... Db).

Step 3. Obtain D∗
c by centralizing the levels of D∗ and Rb using (2.1)−(3.1) to

get D∗
cRb as an orthogonal LHD.

Step 4. Scale the orthogonal LHD D∗
cRb to fit the desired experimental region.

Remark 2. Obviously, the method of Steinberg and Lin (2006) is the special
case of our construction method at p = 2. In this case, however, the number of
subgroups, b, should be b(pd − 1)/(d(p − 1))c, where bxc is the integer part of x.

Table 1 lists all possible orthogonal LHDs that can be constructed by our
method for n < 1, 000 and p ≥ 3. These orthogonal LHDs are apparently new
except for the case of n = 9, which can be obtained by Ye’s (1998) method.

4. Concluding Remarks

In this paper, we propose a general construction method for orthogonal
LHDs. The construction method here includes the one proposed by Steinberg
and Lin (2006) as a special case, and leads to a much larger class of orthogonal
LHDs than was previously known. The resulting LHDs have many attractive
properties, for example, zero correlation between pairwise factors, unique and
equally-spaced projections to univariate dimensions, and uncorrelated regression
estimates of main effects. The primary limitation to our method is the sample
size constraint; it requires the sample size to be n = pd, where p is a prime and
d is a power of 2.
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