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Abstract: We introduce a scale invariance property for Poisson point processes

and use this property to define a series representation for a correlated bivariate

gamma process. This approach is quite general and can be used to define other

types of multidimensional Lévy processes with given marginals. Some important

special cases are bivariate G-processes, bivariate variance gamma processes and

multivariate Dirichlet processes. Using the scale invariance principle we show how

to construct simple approximations to these multivariate processes.
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1. Introduction.

The univariate gamma process, and its various extensions, plays an impor-
tant role in a variety of applications. For example, the Dirichlet process, a
fundamental prior used in a wide array of Bayesian nonparametric problems, is
defined in terms of a gamma process (Ferguson and Klass (1972) and Ferguson
(1973)). This construction is often expressed as an infinite series representation,
and is defined as follows in notation that will be used throughout the paper. Let
{Xi} be a sequence of i.i.d. random variables with distribution P0 over a gen-
eral probability space (X , A ). Let Γn =

∑n
i=1 Ei, where {Ei} is a sequence of

i.i.d. exp(1) random variables, constructed independently of {Xi}. The Dirichlet
process with parameter αP0 is defined as

P(·) =
Gα,1(·)

Gα,1(X )
,

where Gα,β is a gamma process, expressible as

Gα,β(·) =
∞∑
i=1

N−1
α,β(Γi)εXi(·), (1.1)
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where Nα,β(x) = α
∫ ∞
x u−1 exp(−u/β) du, x > 0, is the Lévy measure for a

gamma random variable with scale parameter β > 0 and shape parameter α > 0.
Here εX(·) is a discrete measure concentrated on X.

The weighted gamma process (Lo (1982) and Lo and Weng (1989)), an ex-
tension of the gamma process (1.1), is another popular prior used in Bayesian
noparametric inference. In this extension, the scale parameter β is replaced with
an arbitrary positive function β(·). This is useful because it leads to a type of
conjugacy for multiplicative intensity models (Lo and Weng (1989)). Applica-
tions of the weighted gamma process originally included the life-testing model,
the multiple decrement model, birth and death processes and branching processes
(Lo and Weng (1989)). See also Dykstra and Laud (1981). Extensions to a more
general class of multiplicative intensity models as well as spatial processes were
considered in Ishwaran and James (2004). See also James (2003).

Gamma processes also appear in finance. The widely studied variance
gamma process (Madan, Carr and Chang (1998)) is defined as

log p(t) = mGα,1(t) + σW (Gα,1(t)),

where p(t) is the price of a stock at time t, and W (·) is standard Brownian
motion independent of Gα,1(·). The variance gamma process builds on the idea
of modeling stock prices using a subordinated stochastic process. Importantly,
however, the use of the gamma process as the directing process of the subordi-
nator is different from traditional methods that have relied on infinite variance
processes. See Madan, Carr and Chang (1998), Mandelbrot (1963), Fama (1965)
and Mandelbrot and Taylor (1967).

A three-parameter distribution G (α, δ, θ) for positive random variables was
introduced in Hougaard (1986) and Aalen (1992), characterized by the Laplace
transform

Lα,δ,θ(s) = exp
(
− δ

α

(
(θ + s)α − θα

))
, s ≥ 0, (1.2)

where α, δ and θ satisfy

(α, δ, θ) ∈ (0, 1] × (0,∞) × [0,∞) ∪ (−∞, 0] × (0,∞) × (0,∞). (1.3)

This family was later used by Brix (1999) to define another important extension
of the gamma process, the so-called G-measure. As in Brix (1999), call δ the
shape parameter, α the index parameter, and θ the intensity parameter. Let κ(·)
be a bounded positive measure on (X , A ). A random measure ν(·) is said to be
a G (α, κ, θ) measure, or simply a G-measure, if (i) ν(A) ∼ G (α, κ(A), θ) for any
measurable set A, and (ii) ν(·) has independent increments. The gamma process
is a special case of a G-measure and is obtained by taking the limit α → 0. See
Brix (1999) for more background on G-measures and for discussion on their many
useful applications.
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1.1. Multivariate extensions

Given the wide applicability of the gamma process, it is of interest to ex-
tend the process to a multivariate setting. One way to approach this problem
is through the use of copula functions (Sklar (1959)). However, while this is
theoretically viable, copulas pose practical problems as there is no straightfor-
ward method for choosing the right class of them. Other disadvantages of this
technique are described in Cont and Tankov (2004) and Kallsen and Tankov
(2006). In Cont and Tankov (2004) and Kallsen and Tankov (2006), an alternate
method using what was termed a Lévy copula was introduced. This elegant new
technique has many advantages. Lévy copulas are extremely flexible and give
rise to all multivariate Lévy processes with given marginals. Using Lévy copulas
ensures that the resulting multivariate process is Lévy, and therefore is infinitely
divisible.

In this paper we introduce a scale invariance principle for Poisson processes.
As we show, this principle has wide reaching applications to multivariate pro-
cesses. In particular, in Section 3 we show how the principle can be used to
define a bivariate (and multivariate) gamma process simply, thus adding a new
method for constructing such processes to the literature. A useful property of
the bivariate process is that it is expressed as an infinite series representation
with the specific choice of random variables used in the construction chosen to
introduce correlation across the marginals.

This kind of construction, based on our invariance principle, applies not
only to the gamma process but to many other kinds of processes as well. Section
3, for example, introduces bivariate G-measures and bivariate variance gamma
processes. Other important examples are bivariate and multivariate stable laws.
A bivariate stable process with indices 0 < α1, α2 ≤ 2 is defined as follows. Let
(X1, Y1), . . . , (Xn, Yn) be a sequence of i.i.d. random variables such that there is
a sequence of positive constants (an)n≥1 and (bn)n≥1 with(

a−1
n

[nt]∑
i=1

Xi − cn, b−1
n

[nt]∑
i=1

Yi − dn

)
d→ (S1(t), S2(t))

in D[0, 1] × D[0, 1] with respect to Skorohod topology, for some sequence of real
constants (cn)n≥1 and (dn)n≥1 (see Resnick and Greenwood (1979) for details).
The limiting process given above is refered to as a bivariate stable process. Such
processes are part of the class of multivariate processes generated by our tech-
nique.

The invariance principle has other interesting applications as well. For exam-
ple, Section 4 uses the invariance principle to derive finite-dimensional approxi-
mating processes. We start by focusing on the univariate case and demonstrate
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some useful approximations to Dirichlet processes and G-measures. We then
derive a simple finite-dimensional approximation to the bivariate gamma pro-
cess. When normalized this approximates a Dirichlet bi-measure. Bivariate and
multivariate Dirichlet process modeling is an active area of research in Bayesian
nonparametric statistics, and such constructions should be of great interest (see
Bulla, Muliere, and Walker (2007), Ghosh, Hjort, Messan and Ramamoorthi
(2006) and Walker and Muliere (2003) for related examples). In Section 5 we
consider such a type of correlated process as a prior in a Bayesian image enhance-
ment example.

Remark 1. Proofs for all results can be found in the online version of the paper
available at http://www.stat.sinica.edu.tw/statistica.

2. A Scale Invariance Principle

The first result captures the essence of the scale invariance principle and is
used repeatedly throughout the paper.

Theorem 1. Let {Ui} and {Vi} be mutually independent sequences of i.i.d.
positive random variables on (0,∞], with 0 < h = [E (U−1

1 )]−1 < ∞ and 0 < g =
[E (V −1

1 )]−1 < ∞. If N(·) is a nonnegative strictly decreasing function defined
on (0,∞) such that ∫ ∞

0
N−1(x)dx < ∞, (2.1)

then one has the following over the space of point processes.

(i)
∑∞

i=1 ε(N−1(ΓiUi),N−1(ΓiVi))(·) is a Poisson random measure with mean mea-
sure Π, where

Π((a,∞) × (b,∞)) = E
(

N(a)
U1

∧ N(b)
V1

)
, a, b > 0.

(ii)
∑∞

i=1 εN−1(ΓiVi)(·)
D=

∑∞
i=1 εN−1(Γih)(·).

(iii) If {Xi} is mutually independent of {Vi},
∞∑
i=1

ε(N−1(ΓiVi),Xi)(·)
D=

∞∑
i=1

ε(N−1(Γih),Xi)(·),

∞∑
i=1

N−1(ΓiVi)εXi(·)
D=

∞∑
i=1

N−1(Γih)εXi(·).

2.1. Remarks

A few remarks about Theorem 1 are in order.

http://www.stat.sinica.edu.tw/statistica
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1. The convergence criteria (2.1) can be easily verified for the class of G-measures,
as follows. Replace N by the Lévy measure for a G (α, δ, θ)-distribution,

Mα,δ,θ(x) =
∫ ∞

x

δ

Γ(1 − α)
u−α−1 exp(−θu)du.

To verify (2.1) observe that∫ ∞

0
M−1

α,δ,θ(x)dx ≤
∫ ∞

0
uMα,δ,θ(du)

=
δ

Γ(1 − α)

∫ ∞

0
u−α exp(−θu)du.

The integral on the right-hand side is finite for any 0 < α ≤ 1 and θ ≥ 0. If
α ≤ 0 and θ > 0, then the integral is again finite, equaling Γ(1 − α)θ−1−α.
These conditions are satisfied by the constraints on α and θ (recall (1.3)).

2. The convergence of
∑∞

i=1 N−1(ΓiVi) is guaranteed under (2.1) if h−1 < ∞.
This is seen by noting that Γi/i

a.s.→ 1 implies
∑∞

i=1 N−1 (ΓiVi) < ∞ if∑∞
i=1 N−1(iVi) < ∞. By the Kolmogorov Three Series Theorem, the latter

sum converges because

∞∑
i=1

P
{

N−1(iVi) > 1
}

=
∞∑
i=1

P
{

N(1)V −1
1 > i

}
≤ E

(
N(1)V −1

1

)
< ∞.

Note that the second equality follows because N−1 is decreasing. For the
second condition of the Three Series Theorem, observe that

∞∑
i=1

E
(

N−1(iVi)
)

= E
( ∞∑

i=1

N−1(iV1)
)

≤ E
(∫ ∞

0
N−1(xV1)dx

)
= E(V −1

1 )
∫ ∞

0
N−1(x)dx < ∞.

For the last condition,

∞∑
i=1

Var
(
N−1(iVi)

)
≤

∞∑
i=1

E
(
N−1(iVi)

)2
< ∞.

The sum on the right-hand side is bounded because (N−1(iVi))2 is eventually
smaller than N−1(iVi).
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3. An alternate series representation for the gamma process is obtained using
part (iii) of Theorem 1. It follows that

G(·) =
∞∑
i=1

N−1
α,β(ΓiVi)εXi(·)

D=
∞∑
i=1

N−1
α/h,β(Γi)εXi(·).

We call G is a gamma process with scale parameter β and shape measure
κ(·) = αP0(·)/h (recall P0 is the distribution for X1).

4. Let N(x) = x−α for 0 < α < 1. This is the Lévy measure for a stable law with
index α, and is another special case of a G-measure (here θ = 0). Suppose

the sequence {Vi} is chosen so that h =
[
E (V α

1 )
]−1

< ∞. Then by part (iii)
of Theorem 1,

∞∑
i=1

ViΓ
−1/α
i =

∞∑
i=1

N−1(V −α
i Γi)

D=
∞∑
i=1

N−1(Γih) =
[
E (V α

1 )
]1/α

∞∑
i=1

Γ−1/α
i .

This is the well known series representation for a positive stable law (LePage
(1981) and Rosinski (2001)).

3. Bivariate Processes

We are now in a position to present a new series representation for a bivariate
gamma process.

Corollary 1. Let {(Vi,1, Vi,2)} be an i.i.d. sequence of random vectors on (0,∞]×
(0,∞] with joint distribution H(·, ·), constructed so as to be mutually independent
of {Γi} and {Xi}. Suppose that 0 < h1 = [E (V −1

1,1 )]−1 < ∞ and 0 < h2 =
[E (V −1

1,2 )]−1 < ∞. Then the bivariate process

G(·) = (G1(·), G2(·)) =
∞∑
i=1

(
N−1

α1,β1
(ΓiVi,1), N−1

α2,β2
(ΓiVi,2)

)
εXi(·)

is infinitely divisible; its marginals G1 and G2 are gamma processes with shape
measures α1P0/h1 and α2P0/h2, and scale parameters β1 and β2, respectively.

We call G a bivariate gamma process with shape bi-measure (α1h
−1
1 , α2h

−1
2 )P0,

scale parameters (β1, β2), and dependence structure H.

3.1. Independent increments

It is not difficult to see that the presence of variables {(Vi,1, Vi,2)} in G must
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induce some type of correlation structure between the marginal distributions.
Here we explicitly quantify what this dependence is in terms of the joint distri-
bution H on (Vi,1, Vi,2). Another question we also consider the conditions on H

that are required for G1 and G2 to be independent.
We consider the second question first. It turns out that independence im-

poses a severe restriction on the support for H, namely that H must satisfy

H
(
{(x,∞) : x > 0} ∪ {(∞, y) : y > 0}

)
= 1. (3.1)

This condition for independent marginals is similar to that seen for bivariate
stable laws. See Section 2 of Samorodnitsky and Taqqu (1994). In fact H here
plays the same role as that of a spectral measure for stable laws. The condition
(3.1) means that the processes can never jump together and is equivalent to
Proposition 5.3 and Example 5.3 of Cont and Tankov (2004).

3.2. Correlation properties

We quantify the correlation between G1(X ) and G2(X ) in terms of H. Let
M(t1, t2) be the joint moment generating function of (G1(X ), G2(X )). Using
the recursive technique in Theorem 1 of Banjevic, Ishwaran and Zarepour (2002),
one can show that

Cov (G1(X ), G2(X )) =
∂2 log M(0, 0)

∂t1∂t2

=
∫∫ ∞

0
N−1

α1,β1
(sv1)N−1

α2,β2
(sv2)dsH(dv1, dv2).

Therefore Cov (G1(X ), G2(X )) ≥ 0, with equality holding if and only if H satis-
fies (3.1). Hence, if G1 is independent of G2, we must have Cov (G1(X ), G2(X ))
= 0.

3.3. Bivariate G-measures

A bivariate G-measure can be defined in a similar fashion as in Corollary 1.
One simply replaces the gamma Lévy measure, Nα,β(·), with the Lévy measure
of a G (α, δ, θ)-distribution, Mα,δ,θ(x). We call

G(·) =
∞∑
i=1

(
M−1

α,δ,θ(ΓiVi,1),M−1
α,δ,θ(ΓiVi,2)

)
εXi(·)

a bivariate G-measure with shape bi-measure (δh−1
1 , δh−1

2 )P0(·), index parameter
α, and intensity parameter θ. Note that by Theorem 1 the marginals for the
process are G-measures.
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3.4. Bivariate variance gamma processes

Assuming no drift term, the variance gamma process assumes that the change
in the log-price of a stock is

∆W (G(t)) D=∆G1(t) − ∆G2(t),

where G1(t) and G2(t) are independent gamma processes with common shape
and scale parameters (Madan, Carr and Chang (1998)). Notice that the variance
gamma process can be written as

W (G(·)) =
∞∑
i=1

N−1
α,β(Γi)εXi(·) −

∞∑
i=1

N−1
α,β(Γ′

i)εX′
i
(·),

where Γ′
i

D=Γi and X ′
i

D=Xi. All variables are mutually independent. A more
efficient representation as a signed measure is also possible by exploiting the
scale invariance principle.

Theorem 2. Let {∆i} be an i.i.d. sequence independent of {Γi, Xi} such that
P{∆i = 1} = 1/2 = 1 − P{∆i = −1}. Then

W (G(·)) D=
∞∑
i=1

∆iN
−1
2α,β(Γi)εXi(·). (3.2)

Proof. The right-hand side of (3.2) is

ν(·) =
∞∑
i=1

I{∆i = 1}N−1
2α,β(Γi)εXi(·) −

∞∑
i=1

I{∆i = −1}N−1
2α,β(Γi)εXi(·).

Define variables V ∗
i,1 and V ∗

i,2 as

V ∗
i,1 =

{
1 if ∆i = 1
∞ otherwise ,

V ∗
i,2 =

{
1 if ∆i = −1
∞ otherwise .

Then,

ν(·) D=
∞∑
i=1

N−1
2α,β(ΓiV

∗
i,1)εXi(·) −

∞∑
i=1

N−1
2α,β(ΓiV

∗
i,2)εXi(·).

By the scale invariance principle of Theorem 1, each sum on the right-hand side
is a gamma process with shape measure αP0(·) and scale parameter β. Using an
argument as in Section 3.1, deduce that the two processes are also independent.

One can also define a bivariate variance gamma process along the lines of
Collary 1. Using Theorem 2, we can write this compactly as a bivariate signed
measure,

G(·) =
∞∑
i=1

∆i

(
N−1

2α1,β1
(ΓiVi,1), N−1

2α2,β2
(ΓiVi,2)

)
εXi(·).



MULTIVARIATE GENERALIZED GAMMA PROCESSES 1673

We call G a bivariate variance gamma process.

3.5. Dirichlet bi-measures

Analogous to the Dirichlet process, a Dirichlet bi-measure is defined as a
normalized bivariate gamma process. We call

(P1(·), P2(·)) =
(

G1(·)
G1(X )

,
G2(·)

G2(X )

)
a Dirichlet bi-measure. Note that the marginals P1 and P2 are Dirichlet pro-
cesses.

4. Limiting Processes

It is of practical interest to derive finite series approximations to the pro-
cesses we have discussed. We begin by considering univariate processes, and later
discuss extensions to the bivariate setting. The next theorem states a weak con-
vergence result for partial sum processes involving G (α, θ, δ) random variables.
A useful byproduct of the theorem is a technique for simulating sample paths
from certain types of G-measures as well as Dirichlet processes.

Theorem 3. Let {Zi,n} be a sequence of i.i.d. variables such that

nP{Z1,n ∈ dx} v→ Mα,δ,θ(dx) =
δ

Γ(1 − α)
x−α−1 exp(−θx)dx, (4.1)

where v→ denotes vague convergence.

(i) If {Ui} is an i.i.d. sequence of uniform[0, 1] variables, independent of {Γi},

n∑
i=1

ε(i/n,Zi,n)(·)
d→

∞∑
i=1

ε(Ui,M
−1
α,δ,θ(Γi))

(·),

[nt]∑
i=1

Zi,n
d→

∞∑
i=1

M−1
α,δ,θ(Γi)I{Ui ≤ t}, 0 ≤ t ≤ 1.

(ii) If Yi,n = Zi,n/
∑n

i=1 Zi,n for i = 1, . . . , n,
∑n

i=1 εYi,n(·) d→
∑∞

i=1 εYi(·), where
Yi = M−1

α,δ,θ(Γi)/
∑∞

i=1 M−1
α,δ,θ(Γi). Furthermore, if {Xi} is independent of

{Yi,n},
∑n

i=1 Yi,nεXi(·)
d→

∑∞
i=1 YiεXi(·).

Remark 2. We use d→ to denote weak convergence with respect to the vague
topology for point processes and weak convergence with respect to the Skorohod
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topology for partial sum processes. From the proof of part (ii), it can be seen
that the convergence also holds with respect to the uniform topology.

4.1. Dirichlet processes

Condition (4.1) is the key to exploiting Theorem 3. As our first example, we
consider the case when Mα,δ,θ is the Lévy measure for a gamma random variable.
The limits of interest in this case involve a gamma process and a Dirichlet process.

For convenience we work with the parameterization used by the Lévy mea-
sure Nα,β . Condition (4.1) requires us to find variables {Zi,n} such that

nP{Z1,n ∈ dx} v→ αx−1 exp
(
− x

β

)
dx.

This holds for variables satisfying

P{Z1,n ∈ dx} =
β−α/n

Γ(α/n)
xα/n−1 exp

(
− x

β

)
dx,

because n/Γ(α/n) → α. In other words, (4.1) is satisfied if {Zi,n} are i.i.d.
gamma random variables with shape and scale parameters α/n and β. Notice
that by part (i) of Theorem 3,

n∑
i=1

Zi,nεXi(·)
d→ Gα,β(·). (4.2)

Simulating values from the finite-dimensional process on the left-hand side is
straightforward. Thus, (4.2) is a handy method for approximating the gamma
process (Ishwaran and James (2004)).

Part(ii) of Theorem 3 also has interesting implications. With {Zi,n} chosen
as above, we have

n∑
i=1

Zi,n∑n
i=1 Zi,n

εXi(·)
d→

∞∑
i=1

N−1
α,β(Γi)∑∞

i=1 N−1
α,β(Γi)

εXi(·).

The right-hand side is a normalized gamma process or, equivalently, a Dirichlet
process. The left-hand side, therefore, provides a simple way to approximate
such processes. See Ishwaran and Zarepour (2002) for more discussion on finite-
dimensional approximations to the Dirichlet process.

4.2. G-measure limits

There are many ways to satisfy (4.1) in constructing a weak limit approxi-
mation to G-measures. All methods, however, naturally exploit the fact that the
limit in (4.1) closely resembles a gamma density.
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Here is just one way of taking advantage of this principle. We consider the
case where (α, δ, θ) ∈ (−∞, 0) × (0,∞) × (0,∞). Let

f1,n(x) = x−2I
{ 1

2n
≤ x ≤ 1

n

}
,

f2,n(x) =
θaxa−1

Γ(a)
exp(−θx)I

{
x >

1
n

}
,

where a = −α > 0. Note that f2,n is proportional to a truncated gamma density.
Let

fn(x) =
f1,n(x) + f2,n(x)
n + 1 − F (1/n)

,

F (x) =
∫ x

0

θaua−1

Γ(a)
exp(−θu)du.

It is easy to check that fn is a density. We take {Zi,n} to be i.i.d. random
variables drawn from fn. Simulating these values is quite easy, one way is by
expressing fn as a mixture density. If P1,n is the measure corresponding to the
density f1,n/n and P2,n is the measure corresponding to the truncated gamma
density f2,n/(1 − F (1/n)), then {Zi,n} are random variables with the mixture
distribution

P{Z1,n ∈ dx} = fn(x)dx = wnP1,n(dx) + (1 − wn)P2,n(dx),

where

wn =
(

1 +
1 − F (1/n)

n

)−1

.

Condition (4.1) is satisfied for this choice of random variables because

nfn(x)dx =
f1,n(x) + f2,n(x)

1 + O(1/n)
dx → Mα,δ,θ(dx),

where δ = θaΓ(1 − α)/Γ(a) = −αθ−α.

4.3. Signed processes

Theorem 3 has an extension to signed processes. Replacing condition (4.1)
with

nP{Z1,n ∈ dx} v→ δ

Γ(1 − α)

(
1
2
x−α−1 exp(−θx)I{x > 0}

+
1
2
|x|−α−1 exp(−θ|x|)I{x < 0}

)
dx,
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we get
[nt]∑
i=1

Zi,n
d→

∞∑
i=1

∆iM
−1
α,δ,θ(Γi)I{Ui ≤ t},

where {∆i} is an i.i.d. sequence of Bernoulli(1/2) random variables.

4.4. Bivariate gamma process limits

We extend the weak limit approximation given by (4.2) to bivariate gamma
processes. The idea is to use a random shape parameter selected in such a manner
to ensure that the limiting marginal distributions are gamma processes while at
the same time introducing correlation between the marginal processes.

We first explain how the idea works in the univariate setting. Let {Zi,n}
be i.i.d. random variables such that Zi,n, conditioned on Vi, has a gamma dis-
tribution with shape parameter αV −1

i /n and scale parameter β, where {V −1
i }

are positive bounded i.i.d. random variables with h = [E (V −1
1 )]−1 < ∞ (the

assumption of boundedness can be weakened). It follows that

nP{Z1,n ∈ dx} = nE
(

β−αV −1
1 /n

Γ(αV −1
1 /n)

xαV −1
1 /n−1 exp

(
− x

β

))
dx

→ E (V −1
1 )αx−1 exp

(
− x

β

)
dx

= Nα/h,β(dx). (4.3)

Hence, (4.1) is satisfied, and by by part (i) of Theorem 3 and the scale invariance
principle of Theorem 1,

n∑
i=1

Zi,nεXi(·)
d→

∞∑
i=1

N−1
α,β(ΓiVi)εXi(·).

A limiting bivariate gamma process as in Theorem 1 can be constructed
using the same idea. Let {(V −1

i,1 , V −1
i,2 )} be positive bounded i.i.d. random vec-

tors with hj = [E (V −1
1,j )]−1 < ∞ for j = 1, 2. Let Fα,β denote the c.d.f. for a

gamma random variable with shape and scale parameter α and β. Let {Ui} be an
i.i.d. sequence of uniform[0, 1] random variables. We use the inverse probability
transform to define gamma random variables as

Z
(j)
i,n = F−1

α∗
j ,βj

(Ui), i = 1, . . . , n, j = 1, 2,

where α∗
j = V −1

i,j αj/n (we suppress the dependence on i and n for notational
clarity). Define the bivariate process

Gn(·) =
n∑

i=1

(
Z

(1)
i,n , Z

(2)
i,n

)
εXi(·).
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Then, Gn(·) converges to a bivariate gamma process:

Gn(·) d→
∞∑
i=1

(
N−1

α1,β1
(ΓiVi,1), N−1

α2,β2
(ΓiVi,2)

)
εXi(·).

Convergence is proved using a similar approach as in Theorem 3. The key as-
sumption to be verified is (c.f., part (i) of Theorem 1):

nP
{

Z
(1)
1,n > a,Z

(2)
1,n > b

}
v→ E

(
Nα1,β1(a)

V1,1

∧ Nα2,β2(b)
V1,2

)
, for each a > 0, b > 0.

(4.4)
Notice that

P
{

Z
(1)
1,n > a,Z

(2)
1,n > b

}
= P

{
U1 > Fα∗

1,β1(a), U1 > Fα∗
2,β2(b)

}
= E

(
1 − Fα∗

1,β1(a)
∨

Fα∗
2,β2(b)

)
= E

((
1 − Fα∗

1,β1(a)
) ∧(

1 − Fα∗
2,β2(b)

))
.

Using a similar argument as (4.3) deduce that

nE
(
1 − Fα∗

j ,βj
(x)

∣∣∣V1,j

)
= nP

{
Z

(j)
1,n > x

∣∣∣V1,j

}
→ V −1

1,j Nαj ,βj
(x).

It follows, therefore, that (4.4) holds.
A similar weak limit approximation can be stated for multivariate gamma

processes. Furthermore, by normalizing the underlying process we obtain a use-
ful approximation to the multivariate Dirichlet process. For the bivariate case
(Dirichlet bi-measure), this corresponds to

Gn(·)
Gn(X )

d→
∞∑
i=1

(
N−1

α1,β1
(ΓiVi,1)∑∞

i=1 N−1
α1,β1

(ΓiVi,1)
,

N−1
α2,β2

(ΓiVi,2)∑∞
i=1 N−1

α2,β2
(ΓiVi,2)

)
εXi(·).

5. Image Enhancement

In this section we present a Bayesian image enhancement application. At
the heart of this illustration is the use of a multivariate gamma process Gn as a
Bayesian prior. For our example we use the image depicted in Figure 1(a). We
specifically focus on the zoomed in area, Figure 1(b), which has been blurred by
adding Gaussian noise to the image; see Figure 1(c). The goal here is to enhance
the blurred image using a Bayesian approach.

The data consists of paired values (s, I(s)). The value s is the two-
dimensional spatial coordinate of a pixel on the image, while I(s) is the intensity
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Figure 1. Image enhancement using correlated multivariate gamma prior:
(a) original image; (b) zoom in of spot in (a) (indicated by arrow); (c) Image
(b) after blurring; (d) Bayesian image enhancement of (c).

measure for the pixel. Here I(s) is measured on a grey scale of 256 values, taking
values in the range of [0, 1]. The larger the value, the whiter the pixel.

In order to enhance the image, we e stimate the intensity value from the
blurred image by smoothing the intensity value for a given pixel using its eight
adjacent neighbors. For a given pixel with location s and intensity I(s), we use
s1, . . . , s9 to denote the spatial location of the neighborhood of s, and I1(s), . . . , I9(s)
to denote the corresponding intensities. For convenience we set s1 = s and
I1(s) = I(s). The estimated intensity at s is the smoothed value

Î(s) =
d∏

j=1

∫
φτ

(
sj − vs,j , Ij(s)

)
µj(dvs,j),

where d = 9, φτ (s, I) = I1/d exp(−‖s‖2/τ2), and µj is an unknown positive
measure defined over the space for s.
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The estimator Î(s) should take into account the correlation introduced by
smoothing over adjacent pixels. For this reason we use a multivariate gamma
process as in Section 4.4. Specifically, for the prior for µ = (µ1, . . . , µ9), we use a
9-dimensional multivariate gamma process Gn, where Z

(j)
i,n = Zi for j = 1, . . . , 9,

and Zi are i.i.d. gamma variables with shape parameter α/n and scale parameter
β = 1 (according to our notation of Section 4.4 this means Vi,j = 1). By the work
in Sections 3.1 and 3.2 it is clear that Gn has correlated marginals. Indeed, this
is a degenerate prior implying a very strong local dependence between pixels.

We estimate µj using a Gibbs sampling approach. For computational reasons
it is necessary to augment the parameter space to include “missing values” vs,j .
One can think of vs,j as values sampled from µj . Let v be the vector composed
of all vs,j values. The likelihood that we work with is

L(v) =
∏
s

d∏
j=1

ψs,j(vs,j),

where ψs,j(vs,j) = φτ (sj − vs,j , Ij(s)). The prior Qn for (v, µ) is

Qn(dv, dµ) =
∏
s

(
µ1(dvs,1), . . . , µd(dvs,d)

)
Gn(dµ).

This assumes that (vs,1, . . . , vs,d), given µ, has distribution µ, where µ has a
correlated multivariate gamma process distribution.

5.1. Posterior characterization

Computations for this problem can be based on the blocked Gibbs sampling
method (Ishwaran and Zarepour (2000); Ishwaran and James (2001)). To uti-
lize this method we exploit the fact that a multivariate Dirichlet process is a
normalized multivariate gamma process. This connection is summarized in the
following theorem which characterizes the posterior distribution.

Theorem 4. Let Q∗
n be the posterior for (v, µ) under the likelihood L(v). If P0

is non-atomic, then for any integrable function g(v, µ),∫∫
g(v, µ)Q∗

n(dv, dµ) =
∫∫∫

g(v∗, µ)
mn(dK, dp, dX)∫∫∫

mn(dK, dp, dX)
,

where

mn(dK, dp, dX) =

( ∏
s

d∏
j=1

ψs,j(v∗s,j)
{ n∑

i=1

piεi(dKs,j)
})

πn(dp)Pn
0 (dX).

Here v∗s,j = XKs,j and πn(dp1, . . . , dpn) is the density for a n-dimensional
Dirichlet distribution with parameters (α/n, . . . , α/n).
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5.2. Blocked Gibbs sampling

Theorem 4 is a template for applying the blocked Gibbs sampler (Ishwaran
and Zarepour (2000) and Ishwaran and James (2001)). In this example, the
blocked Gibbs sampler takes the problem of sampling (v, µ) from Q∗

n and turns
it into the simpler problem of drawing values (K, p,X) from the density propor-
tional to mn(dK, dp, dX).

To sample from the posterior, one simply draws conditional values (see for
example Ishwaran and Zarepour (2000) and Ishwaran and James (2001, 2004)):

1. (K|p,X);

2. (p|K,X);

3. (X|p,K).

Cycling through these three steps eventually yields a draw from the augmented
density. By Theorem 4, a draw for v∗ from the posterior can then be obtained by
setting v∗s,j = XKs,j . A posterior draw for µ is obtained by drawing µ∗ according
to µ∗(·) = Z0

∑n
i=1(p

∗
1, . . . , p

∗
n)εX∗

i
(·), where p∗i and X∗

i are Gibbs sampled values
for pi and Xi, and Z0 is an independent gamma random variable with scale
parameter β = 1 and shape parameter α + Sd, where S is the total number of
pixels.

5.3. Results

We applied the blocked Gibbs sampler using a 2,500 burn-in iteration. Pos-
terior values were computed using 2,500 values collected after burn-in. A flat
bivariate normal prior was used for P0. We set α = 25 and n = 500 for Gn. The
value of τ , which represents a bandwidth parameter, was set at one-half of the
average distance between two pixels on the image. The intensity value for a pixel
at s was estimated by averaging

I∗(s) =
d∏

j=1

∫
φτ

(
sj − vs,j , Ij(s)

)
µ∗

j (dvs,j)

=
d∏

j=1

(
Z0

n∑
i=1

p∗i,jφτ

(
sj − X∗

i , Ij(s)
))

over 2,500 posterior sampled values.
Figure 1(d) records the posterior estimate and, as can be seen, the image

is noticeably improved. In particular, edges are more defined and the black
spot in the center of the image (indicated by an arrow) is more pronounced.
It is possible that the image could be even further improved by incorporating
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information using a wider radius of adjacent pixels. Another approach might
be to extend the definition for Z

(j)
i,n to introduce a richer correlation structure.

These and other enhancements are currently under investigation.
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