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Supplementary Material

This is a supplementary technical note that contains the proofs of Theorem 1 and

Theorem 2.

Proof of Theorem 1. Let β = (β0, β1)
T , Hn = diag(1, h1) and Z̃t = Zt−β0−β1(Xt−

x0). Put θ̂ = a−1
n Hn(β̂ − β), or equivalently θ̂ = arg minθ Ln(θ), with

Ln(θ) =
n∑
t=1

[Z̃t − anθT X̃ht][π −
δt

¯̂
GXt(Zt)

I(Z̃t < anθ
T X̃ht)]K1(Xht).

The quasi-gradient of −Ln(θ) is given by

V̂n(θ) = an

n∑
t=1

[π − δt
¯̂
GXt(Zt)

I(Z̃t < anθ
T X̃ht)]X̃htK1(Xht).

We also define Vn(θ) to be the same as V̂n(θ) but with Gx instead of Ĝx. To prove

the asymptotic (Bahadur) representation given in Theorem 1, we need the following

lemma whose proof is similar to the proof of Lemma A.4 given in Koenker and Zhao

(1996).

Lemma 1 Let Wn(θ) be a function such that for any 0 < M <∞,

(1) −θTWn(λθ) ≥ −θTWn(θ), ∀λ ≥ 1

(2) sup||θ||≤M ||Wn(θ) +Dθ − An|| = Op(vn),

where ||An|| = Op(1), D is a positive definite matrix, and 0 < vn = O(1). If θn is such

that ||Wn(θn)|| = op(vn), then ||θn|| = Op(1) and θn = D−1An +Op(vn) + op(1).

We will start by showing the following :

(L1) ||[Vn(θ) − Vn(0)] − E[Vn(θ) − Vn(0)]|| = op(1), uniformly in θ over AM := {θ :

||θ|| ≤M}.

(L2) ||E[Vn(θ)−Vn(0)]+Dθ|| = o(1), uniformly in θ over AM , where D = f(x0, β0)Λu.

(L3) ||Vn(0)|| = Op(1).
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(L4) −θT V̂n(λθ) ≥ −θT V̂n(θ), ∀λ ≥ 1.

(L5) ||V̂n(θ̂)|| = Op(an).

(L6) sup||θ||≤M ||V̂n(θ)− Vn(θ)|| = Op(a
−1
n h2

0).

From now on, C will denote a generic positive constant independent of n and θ and

whose value may change from line to line. Put a1
x = β0 + β1(x− x0), a

2
x(θ) = an(θ0 +

θ1(x− x0)/h1).

Proof of (L1)

For any θ and θ̃ such that ||θ|| ≤M and ||θ̃ − θ|| ≤ ι, for some M and ι > 0, define

∆i
n(θ, θ̃) = an

∑
t

δt
ḠXt(Zt)

Z∗t (θ, θ̃)X i
htK1(Xht), i = 0, 1,

with Z∗t (θ, θ̃) := I(Zt < a1
Xt

+ a2
Xt

(θ̃)) − I(Zt < a1
Xt

+ a2
Xt

(θ)). When no confusion is

possible, we will omit θ and θ̃ in all our notations. Clearly Vn(θ)− Vn(θ̃) = (∆0
n,∆

1
n)T ,

and, by stationarity,

Var[∆0
n] = a2

n{nVar[
δt

ḠXt(Zt)
Z∗tK1(Xht)] + 2n

n∑
j=1

(1− j/n)Cj(θ, θ̃)}

≤ a2
n{nVar[

δt
ḠXt(Zt)

Z∗tK1(Xht)] + 2n
n∑
j=1

|Cj|} (0.1)

where Cj = Cov
(
Z∗1 [δ1/ḠX1(Z1)]K1(Xh1), Z

∗
j+1[δj+1/ḠXj+1

(Zj+1)]K1(Xh(j+1))
)
.

Using the fact that |I(y < b)− I(y < a)| ≤ I(b− |a− b| ≤ y ≤ b+ |a− b|), we can see

that

|Z∗t (θ, θ̃)| ≤ I(a1
Xt

+ a2
Xt

(θ̃)− Cιan ≤ Zt ≤ a1
Xt

+ a2
Xt

(θ̃) + Cιan) := Z̃∗t (θ̃), (0.2)

for some C > 0 and for any t such that |Xt − x0| ≤ h1.

By assumptions (A1) and (A2.b), since a1
x + a2

x(θ̃) −−−→
x→x0

β0, we can see that, for

n sufficiently large and for any t ∈ {t : |Xt − x0| ≤ h1, Zt ≤ a1
Xt

+ a2
Xt

+ Cιan},
GXt(Zt) ≤ Gx0(β0) + ε < 1, for some ε > 0. So, as n→∞,

Var[
δt

ḠXt(Zt)
Z∗tK1(Xht)]

≤ CE[
δt

ḠXt(Zt)
Z̃∗tK

2
1(Xht)]

= CE{[FXt(a
1
Xt

+ a2
Xt

+ Cιan)− FXt(a
1
Xt

+ a2
Xt
− Cιan)]K2

1(Xht)}
≤ Cιanh1, (0.3)

where in the last inequality we have used the facts that E(K2
1(Xht)) = O(h1), and, by

Taylor development, Fx(a
1
x + a2

x(θ̃) + Cιan)− Fx(a1
x + a2

x(θ̃)− Cιan) ≤ Cιan.
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Using Cauchy-Schwartz inequality, (0.3) implies that

|Cj| ≤ Var[Z∗j [δj/ḠXj
(Zj)]K1(Xhj)] = o(h1). (0.4a)

Remark also that, by Assumption (A3.c), we have, for any j ≥ j∗

|Cj| ≤ E|Z∗1Z∗j+1[δ1/ḠX1(Z1)][δj+1/ḠXj+1
(Zj+1)]K1(Xh1)K1(Xh(j+1))|

+ [E|Z∗j [δj/ḠXj
(Zj)]K1(Xhj)|]2

≤ CE[K1(Xh1)K1(Xh(j+1))] + C[E|K1(Xh1)|]2

≤ Cu2
0M∗h

2
1 + C[E(K1(Xht))]

2

= O(h2
1). (0.4b)

By applying Billingsley’s inequality, see e.g. Corollary 1.1 in Bosq (1998), as n→∞,

|Cj| ≤ Cj−ν . (0.4c)

Let 0 < kn → ∞. From (0.4) it follows that
∑n

j=1 |Cj| ≤
∑j∗

j=1 |Cj| +
∑kn

j=j∗+1 |Cj| +∑
j≥kn+1 |Cj| = o(h1) + O(knh

2
1) + O(k1−ν

n ). This together with (0.1) and (0.3) leads

to Var[∆0
n] = o(1) +O(knh1) +O(h−1

1 k1−ν
n ), which converges to 0 whenever kn = h−s1 ,

with (ν− 1)−1 < s < 1. We deduce that ∆0
n−E[∆0

n] = op(1). The same procedure can

also be applied to show that ∆1
n − E[∆1

n] = op(1), hence, we conclude that

||[Vn(θ)− Vn(θ̃)]− E[Vn(θ)− Vn(θ̃)]|| = op(1). (0.5a)

On the other hand, using (0.2), as n→∞,

||E[Vn(θ)− Vn(θ̃)]|| ≤ CanE[
n∑
t=1

δt
ḠXt(Zt)

Z̃∗t (θ̃)K1(Xht)] (0.5b)

||Vn(θ)− Vn(θ̃)|| ≤ Can

n∑
t=1

δt
ḠXt(Zt)

Z̃∗t (θ̃)K1(Xht). (0.5c)

Note that the right part of the inequalities (7.5b) and (7.5c) do not depend on θ.

Moreover, following the same treatment as we have done above, see (0.3),

E[an
∑
t

δt
ḠXt(Zt)

Z̃∗tK1(Xht)] ≤ Cι

Therefore, by letting ι→ 0, we get

||E[Vn(θ)− Vn(θ̃)]|| = op(1) ||Vn(θ)− Vn(θ̃)|| = op(1). (0.5d)

The desired uniform consistency given in (L1) follows from (0.5) by using a chaining

argument as in Hallin et al. (2005).
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Proof of (L2)

First note that, by definition of Vn(θ),

E[Vn(θ)− Vn(0)] = nanE[b̃(θ,Xt)X̃htK1(Xht)],

where b̃(θ, x) = Fx(a
1
x)− Fx(a1

x + a2
x(θ)).

By Taylor development, we have that, for some 0 < η < 1, b̃(θ, x) = −a2
x(θ)fx(a

1
x +

ηa2
x(θ)). This implies that

E[Vn(θ)− Vn(0)] = −h−1
1 E[X̃htX̃

T
htfXt(a

1
Xt

+ ηa2
Xt

(θ))K1(Xht)]θ.

To complete the proof observe that, by Assumption (A2.a) and (A2.b),

sup
||θ||≤M,|x−x0|≤h1

|fx(a1
x + ηa2

x(θ))− fx0(β0)| → 0, and

1

h1

∫ (
x− x0

h1

)i
K1

(
x− x0

h1

)
f0(x)dx→ f0(x0)ui, i = 0, 1, 2.

Proof of (L3)

Remark that Vn(0) = (V 0
n (0), V 1

n (0))T , with

V i
n(0) = an

∑
t

[π − I(Zt < a1
Xt

)δt/ḠXt(Zt)]X
i
htK1(Xht), i = 0, 1.

We have that

E[V 0
n (0)] = nan

∫
(π − Fx(a1

x))K1(
x− x0

h1

)f0(x)dx.

By first and second order Taylor development of t→ Fx(t) and x→ Qπ(x), respectively,

we can see that, for some 0 < η1, η2 < 1,

π − Fx(a1
x) = Fx(Qπ(x))− Fx(a1

x)

= [Qπ(x)− a1
x]fx(a

1
x + η1(Qπ(x)− a1

x))

= 2−1(x− x0)
2Q̈π(x+ η2(x− x0))fx(a

1
x + η1(Qπ(x)− a1

x)).

By assumption (A2.a) and (A2.b) and the fact that nh5
1 = O(1) (see assumption (i) in

the statement of the theorem), we deduce that E[V 0
n (0)] = nanh

3
1(u2/2)Q̈π(x0)f(x0, β0)+

o(1) = O(nanh
3
1) + o(1) = O(1). Now, we need to show that V(V 0

n (0)) = O(1).

This can be done by first noticing that Var{[π − I(Zt < a1
Xt

)δt/ḠXt(Zt)]K1(Xht)} ≤
CE[K2

1(Xht)] = O(h1) and then by following a similar treatment as we have done above

for Var(∆0
n) in the proof of (L1). So, this shows that V 0

n (0) = Op(1). Similarly one

can also verify that V 1
n (0) = Op(1). From this we conclude that Vn(0) = Op(1).

Proof of (L4)

Using the fact that δt/
¯̂
GXt(Zt) and K1(Xht) are nonnegative quantities, it is easy to
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check that , for a given θ, λ→ −θV̂n(λθ) is a nondecreasing function which implies the

desired result.

Proof of (L5)

(L5) is a direct application of the following result :

Lemma 2 For any random vectors Xt ∈ Rp and (At, Bt, Ct)
T ∈ R3, t = 1 . . . , n, let

θn = arg minθ∈Rp

∑
t[At − θTXt][π − BtI(At < θTXt)]Ct. If Bt and Ct ≥ 0, Xt is

continuous and ||θn|| <∞ then, with probability one

||
∑
t

Xt[π −BtI(At < θTnXt)]Ct|| ≤ pmax
t
||BtCtXt||

The proof of this lemma follows along the same lines as in the proof of Lemma A.2 in

Ruppert and Carroll (1980).

Proof of (L6)

Since K1 is nonnegative,

an||V̂n(θ)− Vn(θ)|| ≤ [
1

nh1

n∑
i=1

K1

(
Xi − x0

h1

)
] sup
t∈An(θ)

|ĜXt(Zt)−GXt(Zt)|
¯̂
GXt(Zt)ḠXt(Zt)

,

where An(θ) = {t : |Xt − x0| ≤ h1 and Zt < β0 + β1(Xt − x0) + anθ
T X̃ht}.

For n sufficiently large and for any θ such that ||θ|| ≤ M , using the fact that K1

has a compact support, assumption (A1) and (A2.b), one can find a neighborhood

J̃ ⊂ J of x0 and an ε̃ > 0 such that, if t ∈ An(θ) then Xt ∈ J̃ , Zt ≤ β0 + ε̃ <

Tx0 and GXt(Zt) ≤ Gx0(β0) + ε̃ < 1. On the other hand, by Theorem 3.1(II) in

El Ghouch and Van Keilegom (2008), we have that

sup
x∈J̃

sup
s∈[0,β0+ε̃]

|Ĝx(s)−Gx(s)| = Op(h
2
0),

whenever Assumptions (A3) and (A4) and Assumptions (ii) and (iv) given in the

statement of the theorem are fulfilled. To conclude the proof, one can easily check

that, by Assumptions (A2.a) and (A3.c),

1

nh1

n∑
i=1

K1

(
Xi − x0

h1

)
= Op(1).

Now that we have shown (L1)-(L6), we continue with the proof of Theorem 1. (L1),

(L2) and (L6) imply that

||V̂n(θ) +Dθ − Vn(0)|| ≤ ||V̂n(θ)− Vn(θ)||+ ||(Vn(θ)− Vn(0))− E(Vn(θ)− Vn(0))||
+ ||E(Vn(θ)− Vn(0)) +Dθ||

= op(1) +Op(a
−1
n h2

0), (0.6)
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uniformly over {θ : ||θ|| ≤M}. This together with (L3), (L4), (L5), (iii) (see statement

of the theorem) and Lemma 1, implies that ||θ̂|| = Op(1), which, by (0.6), leads to

θ̂ = D−1Vn(0) +Op(a
−1
n h2

0) + op(1)

= Λ−1
u /f(x0, β0)[an

∑
t

etX̃htK1(Xht) +Bn] +Op(a
−1
n h2

0) + op(1),

where et is defined in the theorem and Bn = (B0
n, B

1
n)T , with

Bi
n = an

n∑
i=1

[I(Zt < Qπ(Xt))− I(Zt < a1
Xt

)]
δt

ḠXt(Zt)
X i
htK1(Xht), for i = 0, 1.

To get exactly the asymptotic expression given in Theorem 1, and so to conclude the

proof, we still have to show that Bn = (a−1
n h2

1/2)(u2, u3)
T Q̈π(x0)f(x0, β0)+op(a

−1
n h2

1)+

op(1). This can be done by checking that, for i = 0, 1,

E(Bi
n) = nanE{[FXt(Qπ(Xt))− FXt(a

1
Xt

)]X i
htK1(Xht)}

= a−1
n h2

1/2[Q̈π(x0)f(x0, β0)ui+2 + o(1)], (0.7a)

and Var(Bi
n) = o(1). (0.7b)

(0.7a) and (0.7b) can be proved by following the same treatment as we have done above

for E[V i
n(0)], see the proof of (L3), and for Var[∆i

n], see the proof of (L1), respectively.

Proof of Theorem 2. In order to establish the asymptotic normality, it suffices, by

Theorem 1, to show that

An := an

n∑
t=1

etX̃htK1(Xht)
L−→ N (0, f0(x0)ζ(x0, β0)Ωv) .

By the Cramer-Wold device, this is equivalent to showing that for any linear combina-

tion cTAn
L−→ N

(
0, f0(x0)ζ(x0, β0)c

TΩvc
)
. First note that E(et|Xt) = π−FXt(Qπ(Xt)) =

0, and

E(e2t |Xt) = E[
δt

Ḡ2
Xt

(Zt)
I(Zt < Qπ(Xt))|Xt]− π2 = ζπ(Xt, Qπ(Xt)).

On the other hand, by assumption (A2.a) and (A5), we have that

1

h1

∫
ζπ(x,Qπ(x))

(
x− x0

h1

)i
K1

(
x− x0

h1

)
f0(x)dx→ ζπ(x0, β0)f0(x0)vi, i = 0, 1, 2.

This implies that Var[etcT X̃htK1(Xht)] = h1[f0(x0)ζπ(x0, β0)c
TΩvc + o(1)]. Now, by

stationarity, Var[cTAn] = 1/(nh1)
{
nVar[etcT X̃htK1(Xht)] + 2n

∑n
j=1(1− j/n)C+

j

}
,
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where C+
j = Cov(e1c

T X̃h1K1(Xh1), ej+1c
T X̃h(j+1)K1(Xh(j+1))). Using Assumption (A3.c)

(with j∗ = 1), we can easily see that C+
j ≤ CE[K1(Xh1)K1(Xh(j+1))] = O(h2

1), for any

j ≥ 1. So, by an appropriate choice of kn → 0 and using Billingsley’s inequality,∑n
j=1 |C

+
j | ≤

∑kn

j=1 |Cj| +
∑

j≥kn+1 |C
+
j | = O(knh

2
1) + O(k1−ν

n ) = o(h1). Thus, we have

shown that E[cTAn] = 0, and Var[cTAn]→ f0(x0)ζ(x0, β0)c
TΩvc.

It remains to prove that cTAn is asymptotically normal. This can be done by using

the well known small-blocks and large-blocks technique and then by verifying the stan-

dard Lindeberg-Feller conditions exactly as was done, for example, in Masry and Fan

(1997). Details are omitted.
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