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Abstract: We consider the problem of nonparametrically estimating the conditional

quantile function from censored dependent data. The method proposed here is

based on a local linear fit using the check function approach. The asymptotic

properties of the proposed estimator are established. Since the estimator is defined

as a solution of a minimization problem, we also propose a numerical algorithm. We

investigate the performance of the estimator for small samples through a simulation

study, and we also discuss the optimal choice of the bandwidth parameters.
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1. Introduction

Quantile regression (QR) is a common way to investigate the possible rela-
tionships between a covariate X and a response variable Y . Unlike the mean
regression method that relies only on the central tendency of the data, the quan-
tile regression approach allows the analyst to estimate the functional dependence
between variables for all portions of the conditional distribution of the response
variable. In other words, quantile regression extends the framework of estimating
only the behavior of the central part of a cloud of data points onto all parts of
the conditional distribution. In that sense QR provides a more complete view of
relationships between variables of interest. Since it was introduced by Koenker
and Bassett (1978) as a robust (to outliers) and flexible (to error distribution)
linear regression method based on minimizing asymmetrically weighted absolute
residuals, QR has received considerable interest in the literature of theoretical
and applied statistics.

In survival (duration for economists) analysis, QR becomes attractive as an
alternative to popular regression techniques like the Cox proportional hazards
model or the accelerated failure time model; see Koenker and Bilias (2001) and
Koenker and Geling (2001). This is mainly due to the transformation equivalence
of the quantile operator; see Powell (1986). Thus, one can use any monotone
transformation of the response variable to estimate the QR curve and then back
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transform the estimates to the original scale without loss of information. For a
review of recent investigations and development involving QR see for example
Yu, Lu, and Stander (2003) or the book by Koenker (2005).

A frequent problem in survival data analysis is censoring, which may be
due to different causes: in econometrics censoring can be due to the loss of
some subjects under study; in clinical trials censoring can be caused by the end
of the follow-up period; in ecology or environmental studies, single or multiple
detection limits lead to censored observations. In recent years parametric and
semiparametric quantile regression with fixed (type I censoring, namely the Tobit
model) or random censoring has begun to receive more attention. See for example
Chernozhukov and Hong (2002), Bang and Tsiatis (2002), Honoré, Khan, and
Powell (2002), Portnoy (2003), and the references given therein.

As an alternative to restrictions imposed by (semi)-parametric estimators, a
vast literature has also been devoted to the nonparametric QR method. With
completely observed data, this includes Fan, Hu, and Truong (1994), Yu and
Jones (1998), Cai (2002), Gannoun, Saracco, and Yu (2003) among many others.
However, under random censoring, the available studies are few. To estimate the
conditional quantile function, Dabrowska (1992) and Van Keilegom and Veraver-
beke (1998), among others, follow the classical approach of inverting the con-
ditional survival function estimator. The latter is obtained by smoothing with
respect to the covariate using either Nadaraya-Watson or Gasser-Müller type
weights. Strong asymptotic representations and asymptotic normality have been
shown. Following the same idea, Leconte, Poiraud-Casanova, and Thomas-Agnan
(2002) proposes to estimate the conditional survival curve and so, by inversion,
the quantile function, via a double smoothing technique using Nadaraya-Watson
type weights. That is, the resulting estimator is smooth with respect to both
the response variable and the covariate. Gannoun, Saracco, Yuan, and Bonney
(2005) suggested another approach based on minimizing a weighted integral of the
check function (see (2.1) below) over the joint distribution function estimator of
Stute (2005). Under strong assumptions on the data generating procedure, they
prove the consistency and the asymptotic normality of the proposed estimator.

The literature mentioned above focuses on the i.i.d. case. However in many
real applications the data are collected sequentially in time or space, and the
assumption of independence does not hold. Here we only give some typical ex-
amples from the literature involving correlated data that are subject to censoring.
In the clinical trials domain it frequently happens that the patients from the same
hospital have correlated survival times due to unmeasured variables like the qual-
ity of the hospital equipment; an example of such data can be found in Lipsitz and
Ibrahim (2000). Clustering can also be naturally imposed by the experiment, as
for example the data analyzed by Yin and Cai (2005) that involve children with
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inflammation of the middle ear. Censored correlated data are also a common
problem in the domain of environmental and spatial (geographical) statistics. In
fact, due to the process being used in the data sampling procedure, e.g., the
analytical equipment, only the measurements that exceed some thresholds, for
example the method detection limits or the instrumental detection limits, can be
included in the data analysis; examples of such data can be found in Alavi and
Thavaneswaran (2002), Zhao and Frey (2004) and Eastoe, Halsall, Heffernan,
and Hung (2006).

Another common assumption in the analysis of censored data is the inde-
pendence between the covariate and the censoring variable. This assumption
is required to make the estimation of the censoring distribution easier (without
smoothing); however, it is reasonable only when the censoring is not associated
to the characteristic of the individuals under study.

We propose a new nonparametric estimation procedure for quantile regres-
sion curves based on the local linear (LL) smoother. This smoothing method was
chosen for its many attractive properties: as no boundary effect, design adapta-
tion, and mathematical efficiency. See Fan and Gijbels (1996). In the context
of dependent uncensored data the LL approach has been successfully applied to
the quantile regression problem by many authors; see for example Yu and Jones
(1998), Honda (2000), Cai (2002) and Gannoun et al. (2003).

The estimator proposed in this work is shown to have good properties even if
the censored data are correlated, or if the censoring distribution depends on the
explanatory variable. The proofs provided for consistency and asymptotic nor-
mality are stated under weak conditions. Whenever such conditions are fulfilled,
our estimator enjoys similar properties to those of the ‘classical’ LL estimator for
uncensored independent data. Furthermore, to solve the known computational
complexity related to QR estimators (like the non-differentiability of the objec-
tive function) we adapt the Majorize-Minimize (MM) algorithm as proposed by
Hunter and Lange (2000) to our censored case. The resulting algorithm is simple
to implement and rapidly converges to the solution.

The paper is organized as follows. In the next section we describe the
estimation methodology. In Section 3 we study some asymptotic results for
the proposed approach. Section 4 presents the MM algorithm and shows how
it can be applied to our situation. In Section 5 we analyze the finite sam-
ple performance of the proposed estimator via a simulation study. In Sec-
tion 6 we discuss the problem of the choice of the smoothing parameters, and
we suggest a data-driven procedure based on cross validation. We also study
this procedure via a simulation analysis. The proofs of the asymptotic results
are provided as a supplementary material available at the following web site
http://www.stat.sinica.edu.tw/statistica.

http://www.stat.sinica.edu.tw/statistica
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2. Methodology

To motivate our approach, we first start with the case where there is no
censoring. Let (Xi, Yi), i = 1 . . . , n denote the available (uncensored) data
points. We denote by Fx(t) the unknown common conditional distribution func-
tion (CDF) of Y given X = x. Given a (sub)distribution function Lx(t), L̄x(t)
will denote the corresponding survival function , i.e., L̄x(t) = 1 − Lx(t), and
L̇x(t) its partial derivative with respect to x. We also use Ex(.) as shorthand
for E(.|X = x). For any π ∈ (0, 1), Qπ(x) will denote the conditional quantile
function (CQF) of Y given X = x. That is, Qπ(x) = inf{t : Fx(t) ≥ π} or,
equivalently,

Qπ(x) = arg min
a

Ex

(
ϕπ(Y − a)

)
, (2.1)

where ϕπ(s) = s(π − I(s < 0)) is the ‘check’ function and I(.) is the indi-
cator function. As a special case, by taking π = 0.5 we obtain med(x) =
arg mina Ex(|Y − a|), the conditional median regression function.

For a fixed point x0 in the support of X, according to Fan et al. (1994)
and Yu and Jones (1998), we define the local linear estimators of Qπ(x0) and its
derivative, i.e., Q̇π(x0) := ∂Qπ(x0)/∂x, through:

arg min
(α0,α1)

n∑
i=1

ϕπ

(
Yi − α0 − α1(Xi − x0)

)
Kh1(Xi − x0), (2.2)

where Kh1(.) = h−1
1 K1(./h1) ≥ 0, K1 is a bounded kernel function with bounded

support, say [−1, 1], and 0 < h1 ≡ h1n → 0 is a bandwidth parameter satisfying
nh1 → ∞. The key idea behind this procedure is to locally approximate the
quantile function in the neighborhood of x0 via Taylor’s formula Qπ(x) ≈ α0 +
α1(x−x0). The kernel K1 and the smoothing parameter h1 determine the shape
and the width of the local neighborhood.

Unfortunately, the estimation equation (2.2) cannot be used with censored
data. In fact, in the presence of censoring, we do not observe Yi but only Zi =
min(Yi, Ci) and δi = I(Yi ≤ Ci), where Ci is the censoring variable, supposed to
be independent of Yi given Xi. However, note that for any a and x,

Ex[I(Y < a)] = Ex

[
δI(Z < a)

ḠX(Z)

]
(2.3)

where, for any x, Ḡx(.) denotes the conditional survival function of C. This, in
connection with (2.1), suggests a natural way to extend (2.2) to the censoring
case by substituting Y and I(Y < a) by Z and δI(Z < a)Ḡ−1

X (Z), respectively.
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Of course, in data analysis, Gx is unknown and needs to be estimated. This can
be done via Beran’s estimator (see Beran (1981))

¯̂
Gx(t) := 1 − Ĝx(t) =

n∏
i=1

(
1 − (1 − δi)I(Zi ≤ t)w0i(x)∑n

j=1 I(Zj ≥ Zi)w0j(x)

)
, (2.4)

where w0i(x) = [K0(Xi −x)/h0)]/[
∑n

j=1 K0((Xj −x)/h0)] are Nadaraya-Watson
(NW) weights, K0 is a kernel function, and 0 < h0 ≡ h0n → 0 is a bandwidth
sequence satisfying nh0 → ∞.

So, for censored data, as an LL estimator for β0 := Qπ(x0) and β1 := Q̇π(x0)

we propose β̂ := (β̂0, β̂1)T ≡ (Q̂π(x0),
ˆ̇Qπ(x0))T to be the minimizer of Γ1,n(α, x0)

over α := (α0, α1)T , where Γ1,n(α, x) is given by

n∑
i=1

[
Zi−α0−α1(Xi−x)

][
π− δi

¯̂
GXi(Zi)

I(Zi < α0+α1(Xi−x))
]
Kh1(Xi−x). (2.5)

3. Asymptotic Theory

Unlike the mean regression estimator procedure which leads to an explicit
solution, there is no closed formula for the proposed estimators. So, to make the
asymptotic analysis easier, we start by giving an asymptotic expression for the
estimators. To do so, we need to introduce some notations and assumptions that
are useful in what follows.

Fix x0 in the interior of the support of X. We suppose throughout that the
survival time Y and the censoring time C are nonnegative random variables with
continuous marginal distribution functions, and they are independent given X.
We also assume that the distributions of X and of Y given X are absolutely
continuous. Denote, respectively, by f0(x) and fx(y) the marginal density of X

and the conditional density of Y given X = x. Let f(x, y) = f0(x)fx(y) be the
joint density of (X,Y ) and assume that f(x0, β0) > 0. The process (Xt, Yt, Ct),
t = 0,±1, . . . ,±∞, has the same distribution as (X,Y,C) and is assumed to be
stationary α-mixing. By this we mean that if FL

J (−∞ ≤ J, L ≤ ∞) denotes
the σ-field generated by the family {(Xt, Yt, Ct), J ≤ t ≤ L}, then the mixing
coefficients

α(t) = sup
A∈F0

−∞,B∈F∞
t

∣∣∣P (A ∩ B) − P (A)P (B)
∣∣∣

satisfy limt→∞ α(t) = 0. For the properties of this and other mixing conditions we
refer to Bradley (1986) and Doukhan (1994). In this work, the mixing coefficient
α(t) is assumed to be O(t−ν) for some ν > 3.5. We also suppose that the function
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x → Qπ(x) is twice differentiable at x = x0. Put Q̈π(x0) = ∂2Qπ(x0)/∂x2,
uj =

∫
ujK1(u)du, vj =

∫
vjK2

1(v)dv,

Λu =
(

u0 u1

u1 u2

)
and Ωv =

(
v0 v1

v1 v2

)
,

and suppose that |u2
1 − u0u2| > 0.

The extra assumptions needed to prove the asymptotic results are listed be-
low. For a given x, define H0

x(t) = P (Z ≤ t, δ = 0|X = x) =
∫ t
0 F̄x(s)dGx(s), the

sub-CDF of censored observations, Hx(t) = P (Z ≤ t|X = x) = 1 − F̄x(t)Ḡx(t),
the CDF of the observed survival times, and Tx = sup{t : Hx(t) < 1}, the right
endpoint of the support of Hx. For any t < Tx, let

ζπ(x, t) =
∫ t

0

dFx(s)
Ḡx(s)

− π2 and σ2
π(x) =

ζπ(x,Qπ(x))
f2

x(Qπ(x))f0(x)
.

(A1) π is such that Qπ(x0) < Tx0 .

(A2) (a) f0(x) and Q̈π(x) are continuous at x = x0.

(b) Gx(t) and fx(t) are continuous at (x, t) = (x0, β0).

(A3) There exists a neighborhood J of x0 such that:
(a) f

′
0 exists and is Lipschitz on J .

(b) x → Ḣx(t) and x → Ḣ0
x(t) exist and are Lipschitz on J uniformly in

t ≥ 0.

(c) supj≥j∗ supu,v∈J fj(u, v) ≤ M∗, for some j∗ ≥ 1 and 0 < M∗ < ∞, where
fj(u, v), j = 1, 2, . . ., denotes the density of (X1, Xj+1).

(A4) K0 is a symmetric density that has a bounded support, say [−1, 1], with a
first derivative K ′

0 satisfying |K ′
0(x)| ≤ Λ|x|κ for some κ ≥ 0 and Λ > 0.

(A5) ζπ(x, t) is continuous at (x, t) = (x0, β0).

Theorem 1. Let (A1)−(A4) hold. If (i) nh5
1 = O(1), (ii) log(n)/(nh5

0)
= O(1), (iii) nh1h

4
0 = O(1), and (iv) n−2ν+7(log n)2ν−3h

−4(2ν+1)+12κ
0 = o(1)

with κ < (2ν − 1)/4 (see Assumption (A4)), then,(
β̂0 − β0

h1(β̂1 − β1)

)
− h2

1

2
Λ−1

u

(
u2

u3

)
Q̈π(x0) =

a2
n

f(x0, β0)
Λ−1

u

n∑
t=1

etX̃htK1(Xht) + rn,

where rn = op(an) + op(h2
1) + Op(h2

0), a−1
n =

√
nh1, et = π − I(Zt < Qπ(Xt))[δt/

(ḠXt(Zt))], and X̃ht = (1, Xht)T with Xht = h−1
1 (Xt − x0).

As a consequence of this theorem, we obtain the asymptotic normality of
(β̂0, β̂1).
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Theorem 2. Let (A1)−(A5) hold with j∗ = 1. If h0 and h1 are such that (i)
h1 = C1n

−γ1 for some C1 > 0 and 1/5 < γ1 < 1, and conditions (ii)−(iv) of
Theorem 1 hold, then

√
nh1

((
β̂0 − β0

h1(β̂1 − β1)

)
− h2

1

2
Λ−1

u

(
u2

u3

)
Q̈π(x0) + Op(h2

0) + op(h2
1)

)
L−→ N

(
0, σ2

π(x0)Σ
)
,

where Σ = Λ−1
u ΩvΛ−1

u .

In particular, the following corollary is valid.

Corollary 1. Under the assumptions of Theorem, 2 if u1 = v1 = 0, then β̂0 and
β̂1 are asymptotically independent and√

nh1

(
hi

1(β̂i − βi) −
u2+i

2u2i
h2

1Q̈π(x0) + Op(h2
0) + op(h2

1)
)

L−→ N
(

0,
v2i

u2
2i

σ2
π(x0)

)
,

for i = 0, 1.

The result states that, under weak conditions, the LL estimator Q̂π(x0)
proposed here converges to the true quantile parameter Qπ(x0) at the expected
rate

√
nh1. The asymptotic bias and variance of this estimator are given by

(u0 = 1),

Bias(Q̂π(x0)) =
u2h

2
1Q̈π(x0)

2
+ O(h2

0), and

Var(Q̂π(x0)) =
v0σ

2
π(x0)

nh1
.

These formulas are similar to the ‘classical’ ones obtained in the independent
uncensored case. However, due to the approximation of Gx by Ĝx, we can see
that there is an extra bias term, O(h2

0), which may dominate the mean-squared
error. If the censoring time C is independent of the covariate X then, instead
of (2.4), one may use the Kaplan-Meier estimator and, in that case, the extra
bias term becomes O(log log n/n). For the asymptotic variance, we can easily
verify that σ2

π(x0) is larger than π(1 − π)/(f2
x0

(Qπ(x0))f0(x0)), which is the ex-
pression we obtain when there is no censoring. We can also see that σ2

π(x0)
becomes larger as the proportion of censoring in the data increases. The as-
sumption j∗ = 1 that is made in Theorem 2 is required in order to derive
a simple expression for the asymptotic variance. In fact if j∗ > 1, then we
can easily check from the proof given in the Appendix that nh1Var(Q̂π(x0)) →
v0σ

2
π(x0) + 2ρ∗/f2(x0, β0), where ρ∗ = limn→∞ h−1

1

∑j∗−1
j=1 C+

j < ∞, with C+
j =
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Cov(e1K1(Xh1), ej+1K1(Xh(j+1))). This also shows that the dependence of the
observations influences the variance of the estimator. The coefficient ρ∗ can be
seen as a quantification of such an effect.

As mentioned in the Introduction it is known that the local polynomial
regression smoothers automatically correct for boundary effect. A natural ques-
tion arises whether the estimator Q̂π proposed here still has the same asymp-
totic properties near the endpoints. Suppose that the support of f0 is [0,∞).
Take x0 = ch1 for some 0 < c < 1 and set uj,c =

∫ 1
−c ujK1(u)du, vj,c =∫ 1

−c vjK2
1 (v)dv, uc = (u2

2,c − u1,cu3,c)/(u0,cu2,c − u2
1,c), and vc = (u2

2,cv0,c −
2u1,cu2,cv1,c + u2

1,cv2,c)/(u0,cu2,c − u2
1,c)

2. Under conditions similar to those of
Theorem 2, following exactly the same procedure as in the proof of Theorem 1
and 2, it can be shown that Q̂π(ch1) is asymptotically normal with asymptotic
bias and variance given by

Bias(Q̂π(ch1)) =
uch

2
1Q̈π(0+)

2
+ O(h0), and

Var(Q̂π(ch1)) =
vcσ

2
π(0+)
nh1

.

Comparing this result with the one obtained in the interior of the domain of
X, we see that the bias is larger. In fact, the bias term due to |Ĝx − Gx|
becomes of order h0 instead of the optimal order h2

0 available in the interior of
the domain. This is clearly due to the fact that in our estimation of Gx we
have used the local constant approach which, in contrast to the LL method,
suffers from a boundary effect. A boundary kernel or a linear correction may
be used to ensure a better behavior of Ĝx near the endpoints. However, such a
procedure needs careful investigation since one needs to control the error induced
by estimating Gx(t) uniformly in x and t (see the proof of Theorem 1). This is
clearly more involved, and thus more difficult, than the current approach based
on the local constant smoother. Moreover, the local linear estimator of Gx(t) is
not necessarily monotone in t, whereas the local constant procedure produces a
monotone increasing estimator on [0, 1].

4. Minimization Algorithm

In the previous section we have shown that the QR method combined with
LL smoothing has some attractive theoretical features in the context of censored
dependent data. However, the application of this method may be restrained by its
computational complexity. In fact, for simulations or practical applications with
the QR method, especially with large data sets, an efficient optimization routine
to solve the mathematical minimization problem imposed by the definition of
the QR estimator (see (2.5)) becomes essential. Obviously, classical optimization
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techniques based on the differentiability of the objective function cannot be used
here. With uncensored data, much work has been done to develop an efficient
computational tool for QR, especially in the parametric linear case (Simplex
algorithm, Interior point algorithm, Smoothing algorithm, MM algorithm, etc).
Unfortunately, in our context those ‘standard’ optimization techniques cannot be
used without adaptation. In general, modifying the existing methods is difficult
and the performance of the resulting algorithm may not be satisfactory, see for
example Fitzenberger (1997) for more about this subject.

Due to its simplicity and numerical stability, we investigate the MM
(majorize-minimize) algorithm as explained by Hunter and Lange (2000). First,
note that Γ1,n(α, x0), given in (2.5), can be written as Γ1,n(α, x0) =

∑n
i=1

ϕπ(ri(α), ai), where ϕπ(r, a) = r[π − aI(r < 0)], ai = δi/
¯̂
GXi(Zi) ≥ 0, ri(α) =

Z̃i − αTXi, with Z̃i = K1((Xi − x0)/h1)Zi, XT
i = (K1((Xi − x0)/h1), (Xi −

x0)K1((Xi −x0)/h1)). This linear reparametrization shows that the LL quantile
estimators for (Qπ(x0), Q̇π(x0))T can be obtained from the parametric quantile
regression of Z̃i on Xi. Nevertheless, note that the check function, ϕπ, depends
not only on the residuals ri(α) but also on the random ‘weights’ ai. This makes
the optimization problem more difficult than in the classical uncensored case in
which ai ≡ 1. Let α(k) denote the kth iterate in finding the minimum point. For
notational convenience we omit the parameter α in the expression of ri(α), that is
ri ≡ ri(α) and ri(k) ≡ ri(α(k)). The idea behind the MM algorithm is to majorize
the underlying function ϕπ(., a) by a surrogate function, say ξa, such that at a
given iteration k, ξa(r|r(k)) ≥ ϕπ(r, a), for all r, and ξa(r(k)|r(k)) = ϕπ(r(k), a).
Following the idea of Hunter and Lange (2000), taking into account censoring,
we propose as a majorizer function

ξa(r|r(k)) =
1
4

(
ar2

ε + |r(k)|
+ (4π − 2a)r + ck

)
.

Here the constant ck has to be chosen such that ξa(r(k)|r(k)) = ϕπ(r(k), a), and
0 < ε ≤ 1 is a small smoothing parameter to be selected by the analyst. The next
iterate α(k+1) is the minimizer of

∑n
i=1 ξai(ri|ri(k)) with respect to α. By doing

so, it can be shown that Γ1,n(α(k+1), x0) ≤ Γ1,n(α(k), x0). Arguments similar
to those in Hunter and Lange (2000) lead to the iterative algorithm described
below. Put wi(k) = ai/(ε + |ri(k)|) and vi(k) = ai − 2π − wi(k)ri(k). Define
VT

k = (v1(k), . . . , vn(k)), Wk = diag(w1(k), . . . , wn(k)), X T = [X1, . . . ,Xn] and
Dk = −[X TWkX ]−1[X TVk].

Algorithm
(0) Choose a small tolerance value, say τ = 10−6. Choose an ε such that ε ln ε ≈

−τ/n. Set k = 0 and initialize α(0).
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(1) Let i = 0. Calculate Dk and set α̃(k) = α(k) + Dk.

(2) While Γ1,n(α(k), x0) ≤ Γ1,n(α̃(k), x0), set i = i + 1 and α̃(k) = α(k) + 2−iDk.

(3) Set α(k+1) = α̃(k). If the stopping conditions are not satisfied, replace k by
k + 1 and go to step (1).

The stopping criteria for this algorithm are satisfied when ‖α(k+1)−α(k)‖ < τ and
|Γ1,n(α(k+1), x0)−Γ1,n(α(k), x0)| < τ . Numerical instability caused, for example,
by a bad choice of the smoothing parameters (h0 and h1) may lead to divergence
of the algorithm, so it is necessary to include a maximum number of iterations
that the method is allowed to run. Also, in order to be sure that the resulting
optimum point does not correspond to a local minimum it is preferable to re-start
the algorithm at least one time with a different starting point.

5. Simulation Study

To evaluate the quality of the proposed method we performed several simu-
lations. The same data generating procedures as those considered in El Ghouch
and Van Keilegom (2008) were used. That is, we simulated n = 300 observations
from the following model

Yt = r(Xt) + σ(Xt)εt, and Ct = r̃(Xt) + σ(Xt)ε̃t,

where r(x) = 12.5 + 3x − 4x2 + x3 and r̃(x) = r(x) + β(x)σ(x), with σ(x) =
(x − 1.5)2a0 + a1 and β(x) = (x − 1.5)2b0 + b1. We took εt and ε̃t ∼ N (0, 1)
and Xt to have a uniform distribution on [0, 3], with Xt, εt, and ε̃t mutually
independent. By varying b0 and b1 we controlled the shape and the amount of
censoring, while by varying a0 and a1 we changed the variation in the sampled
data. Under this model the percentage of censoring (PC, hereafter) was given
by PC(x) = 1−Φ(β(x)/

√
2), where Φ is the distribution function of a standard

normal random variable. Four cases were studied.

(1) b1 = 0.95 and b0 = 0, the PC constant and equal to 25%.

(2) b1 = 0.95 and b0 = −0.27, the PC convex with minimum, 25%, at x = 1.5.

(3) b1 = 0 and b0 = 0, the PC constant and equal to 50%.

(4) b1 = 0 and b0 = −0.238, the PC convex with minimum, 50%, at x = 1.5.

Three values for a0 were investigated: a0 = 0, a0 = −0.25 and a0 = 0.25. The
first one corresponds to a homoscedastic regression model in the second (third)
case, σ(x) is concave (convex) with maximum (minimum) at x = 1.5. Our objec-
tive was to study the LL estimator of the median conditional regression function
med(x0) ≡ Q0.5(x0) at x0 = 1.5. Note that, with Y conditionally distributed as a
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normal, med(x) is actually the conditional mean function E[Y |X = x]. To study
the effect of dependency, we generated our data from an autoregressive process,
AR(1) defined by Et = γEt−1 + υt for any arbitrary sequence Et, where the υt

are i.i.d. N (0, 1). To get the desired uniform distribution for Xt we used the
probability integral transform method, see El Ghouch and Van Keilegom (2008)
for more details about this procedure. Three stationary strong mixing processes
were considered in this study:

Model 1: Xt is generated from an AR(1), with γ = 0.5, εt and ε̃t are i.i.d.

Model 2: Xt is generated from an AR(1), with γ = −0.5, εt and ε̃t are i.i.d.

Model 3: Xt, εt and ε̃t are from AR(1), with γ equal to 0.8, 0.5 and 0.5,
respectively.

Remark. As noted by a referee, the normal distribution is not the best choice to
model survival data, since they are usually non-negative. This was done to allow
Y to have infinite support and to avoid unnatural assumptions about the data
generating process. Note also that in many survival applications, one assumes
that the response variable T is related to the covariate X via a transformation
model. This includes the Box-Cox model, i.e., g(T ) = βX + ε, see Cai, Tian, and
Wei (2005), which itself includes the well-known accelerated failure time model,
with g ≡ log. In our case, Y may be seen as a pre-transformed response variable,
i.e., Y = g(T ).

The bandwidth parameters h0 and h1 needed in the estimation procedure
ranged from 0.2 to 3 by steps of 0.1 and 0.05, respectively. The estimated re-
gression function was evaluated using the 1, 653 possible combinations of these
two bandwidths. We worked with the Epanechnikov kernel, K(x) = (3/4)(1 −
x2)I(−1 ≤ x ≤ 1), for both the Beran estimator of Gx and for the LL smoother
of med(x). The MM algorithm described in Section 4 was used. As a starting
value for this iterative procedure, we chose the standard LL estimator of the
mean regression function based on all the observed data (both censored and un-
censored part). The simulations showed that this initial approximation was good
enough for a quick convergence. To evaluate the finite sample performance of
our estimator at each scenario, N = 500 replications were used. Two distance
measures were approximated, the first one the mean absolute deviation error
(MADE) given by N−1

∑N
i=1 |Q̂

(i)
0.5(x0) − r(x0)|, and the second one the mean

squared error (MSE) defined as N−1
∑N

i=1[Q̂
(i)
0.5(x0) − r(x0)]2. Tables 1−3 sum-

marize the results of this simulation study. Each entry in those tables represents
the best result, in terms of MADE, obtained over all the tested pairs (h0, h1).
The minimum obtained value of MSE (denoted below by mse∗) appears in the
seventh column within parentheses.
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Table 1. Optimal results for Model 1 (π = 0.5 and a1 = 0.5).

MADE MSE(mse∗) BIAS VAR

a0 b1 b0 h0 h1 ×10−2 ×10−2 ×10−2 ×10−2

-0.25 0.95 0 1.0 0.65 5.402 0.482(0.481) 2.447 0.423

-0.27 1.1 0.65 5.221 0.455(0.455) 2.011 0.415

0 0 0.2 0.70 7.742 1.009(1.000) 5.105 0.748

-0.238 0.2 0.70 7.571 0.946(0.944) 4.588 0.735

0 0.95 0 1.0 0.65 5.510 0.513(0.510) 2.289 0.461

-0.27 2.5 0.70 5.349 0.475(0.474) 2.016 0.435

0 0 0.2 0.65 7.858 1.040(0.987) 5.158 0.773

-0.238 0.2 0.70 7.798 0.978(0.962) 4.857 0.742

0.25 0.95 0 1.0 0.65 5.660 0.543(0.535) 2.057 0.501

-0.27 2.1 0.70 5.384 0.478(0.473) 1.240 0.463

0 0 0.2 0.75 7.869 1.106(1.104) 4.858 0.870

-0.238 0.2 0.65 7.902 1.111(1.111) 4.807 0.880

Table 2. Optimal results for Model 2 (π = 0.5 and a1 = 0.5).

MADE MSE(mse∗) BIAS VAR

a0 b1 b0 h0 h1 ×10−2 ×10−2 ×10−2 ×10−2

-0.25 0.95 0 1.3 0.65 5.660 0.497(0.496) 2.900 0.413

-0.27 1.4 0.65 5.503 0.468(0.468) 2.490 0.406

0 0 0.2 0.60 7.992 1.023(1.023) 5.567 0.713

-0.238 0.2 0.65 7.871 1.000(1.002) 5.013 0.748

0 0.95 0 1.4 0.65 5.788 0.522(0.520) 2.718 0.449

-0.27 2.9 0.65 5.589 0.489(0.485) 1.841 0.455

0 0 0.2 0.60 8.108 1.052(1.052) 5.389 0.762

-0.238 0.2 0.60 8.018 0.986(0.986) 5.122 0.723

0.25 0.95 0 1.5 0.65 5.932 0.547(0.547) 2.510 0.484

-0.27 2.8 0.75 5.506 0.470(0.470) 2.394 0.413

0 0 0.2 0.60 8.296 1.101(1.101) 5.289 0.821

-0.238 0.2 0.60 8.282 1.113(1.113) 5.273 0.835

Table 3. Optimal results for Model 3 (π = 0.5 and a1 = 0.5).

MADE MSE(mse∗) BIAS VAR

a0 b1 b0 h0 h1 ×10−2 ×10−2 ×10−2 ×10−2

-0.25 0.95 0 0.7 0.65 6.600 0.700(0.699) 3.417 0.583

-0.27 0.8 0.65 6.506 0.684(0.683) 3.016 0.593

0 0 0.2 0.70 9.003 1.310(1.310) 7.040 0.814

-0.238 0.2 0.70 9.000 1.420(1.402) 7.310 0.885

0 0.95 0 0.9 0.65 6.770 0.742(0.742) 2.966 0.654

-0.27 0.9 0.60 6.667 0.714(0.714) 1.992 0.674

0 0 0.2 0.70 9.201 1.430(1.400) 6.890 0.955

-0.238 0.2 0.70 9.163 1.369(1.369) 6.788 0.908

0.25 0.95 0 0.8 0.60 6.925 0.773(0.773) 2.279 0.721

-0.27 0.9 0.60 6.826 0.752(0.752) 1.890 0.717

0 0 0.2 0.70 9.327 1.441(1.441) 6.688 0.993

-0.238 0.2 0.70 9.012 1.457(1.457) 6.813 0.992
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After analyzing and comparing, we have the following remarks. As expected,
the MADE and the MSE increased with censoring. On average, the increase
in MADE(MSE) was around 41% (105%) as the PC increased by 100%. The
justification for this difference between MSE and MADE comes from the fact
that the first one, based on the L2 norm, is more sensitive to extreme values
than the second one based on the L1 norm. Note also that the bias term was
more affected by the increase of the PC than the variance term. Also, it seems
that changing the shape of the PC curve, from constant to convex, was less
critical. This can be explained by the fact that in the linear approximation, the
effectively used data are those close to the investigated point x0 = 1.5 (h1 ≈ 0.65).
Regarding the dependence in the data, first, by comparing Table 1 and 2, we can
see that varying the value of γ from 0.5 to −0.5 has relatively little effect on the
results, although it seems that under the positive dependence, the LL median
estimator behaves better than in the negative dependence case. Second, and
more importantly, Table 3, which reports the ‘strong’ dependence case, indicates
relatively large error measures (MADE and MSE). This is essentially due to the
increase of the variance of the estimator. The latter remains the most important
element of the MSE in all our simulations. Obviously, the resulting variance
is also affected by the variation in the simulated data. However, the effect of
heteroscedasticity is not clear. This may be explained by the relative robustness
of median regression, or more generally quantile regression, to variations in σ2(.).
Now, concerning the behavior of the bandwidth parameters, we can remark that
h1 remained almost unchanged in all our results with a small tendency to be
large with heavy censoring. This attitude can be attributed to the increase in
the variation due to censoring. However, h0 behaved differently. In fact, as the
PC in the data increased, the optimal value of h0 became smaller. For example,
in Model 1 with a0 = −0.25 and b0 = 0, the value of h0 changed by 80% as
PC went from 25% to 50%. This is due to the fact that this bandwidth is only
used in the estimation of the censoring distribution, a task that becomes easier
as the PC becomes larger. Another interesting remark related to censoring is
the fact that with small PC (25%), h0 was always smaller than h1. The opposite
happened when the PC was large (50%). In addition, we can see that the way
h0 behaved also depends on the degree of dependence in the data and on the
shape of the PC curve. To gain further understanding, Figure 1 displays the
boxplots of the MADE with respect to h0 = 0.2, 0.3, . . . , 3 (see Figures (a1),
(b1) and (c1)), and with respect to h1 = 0.2, 0.3, . . . , 3 (see Figures (a2), (b2)
and (c2)). We can clearly see that whatever the values are of h0, the MADE
tended to be smaller when h1 was chosen near the optimal value (between 0.6
and 0.7). We can also see that the variations of MADE were larger as h1 moved
away from its optimal value. This was especially the case for high percentages of
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Table 4. Optimal results for Model 1 (π = 0.25 and a1 = 0.5).

MADE MSE(mse∗) BIAS VAR

a0 b1 b0 h0 h1 ×10−2 ×10−2 ×10−2 ×10−2

-0.25 0.95 0 1.7 0.60 5.943 0.550(0.550) 3.230 0.445

-0.27 1.7 0.60 5.819 0.533(0.533) 2.869 0.451

0 0 0.8 0.60 6.601 0.682(0.682) 3.004 0.592

-0.238 0.8 0.60 6.540 0.682(0.679) 2.917 0.597

0 0.95 0 1.7 0.65 5.662 0.498(0.498) 2.611 0.430

-0.27 2.3 0.65 5.555 0.474(0.473) 2.092 0.431

0 0 1.0 0.70 6.209 0.620(0.618) 2.618 0.549

-0.238 1.0 0.70 6.150 0.604(0.602) 2.891 0.525

0.25 0.95 0 2.7 0.85 5.209 0.432(0.428) 1.783 0.394

-0.27 2.7 0.85 5.064 0.402(0.402) 1.533 0.378

0 0 2.1 1.0 5.851 0.538(0.528) 2.254 0.487

-0.238 1.8 1.0 5.751 0.508(0.508) 1.409 0.488

censoring and/or high degrees of dependence. Practically, this means that one
can have a good idea about the optimal value of h1 without necessarily having
any knowledge of h0. These remarks remain true in all other studied cases (not
shown here). By contrast, it is not always clear which bandwidth h0 one can
choose just by inspecting the left part of Figure 1. In particular, the boxplots
(a1), (b1) and (c1) indicate a large instability of the MADE which is only caused
by changes in the value of h1. In general, this instability increases as h0 becomes
larger. So, we can conclude that the main variation in the quality of the proposed
estimator is associated with the bandwidth h1, h0 captures just a small part of
this variability.

We have also investigated the performance of Q̂π(x0) for π = 0.25 and π =
0.75. The results for π = 0.25 are shown in Table 4. Compared to Table 1
we can see that for moderate percentages of censoring (25%), except the case
where a0 = 0.25, the MSE was larger. This is similar to the uncensored data
situation and, in our case, is mainly due to the bias component of the estimator.
However, the opposite happened when the percentage of censoring increased. In
fact, when the PC was 50%, the estimator behaved better for small values of π.
To understand why, note that the censoring probability given Y = Qπ(X) equals
P (Y > C|Y = Qπ(X)) =

∫
Gx(Qπ(x))f0(x)dx, and this increases as π becomes

larger and so both bias and variance increase. Compared to the case of π = 0.5,
the result that we obtained for π = 0.75 (not shown here) was, globally, not very
satisfactory, especially for high percentages of censoring. In general, due to the
censoring mechanism, π has to be chosen such that Qπ(x0) < Tx0 (see (A1)). The
difficulty here is that, in practice, the true value of Tx0 is unknown and so one
should select a reasonable (not too large) value of π in order to get a consistent
estimator for Qπ(x).
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Figure 1. Boxplots of mean absolute deviation error (MADE) for Model 2
and Model 3, with a0 = 0.25, a1 = 0.5, and b0 = 0.

6. Bandwidth Selection

The practical performance of any nonparametric regression technique de-
pends strongly on the smoothing parameters. Choosing an optimal bandwidth
is often problematic. In this section we discuss this problem from a practical
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point of view in the framework of censored QR with dependent data. Much
research has been carried out in the area of mean regression with uncensored
data. However, when the observations are subject to censoring, the bandwidth
selection question is still unsolved and, even in the independent case, there is no
consistent method available in the literature. There is also a limited investigation
about bandwidth selection in the context of nonparametric (uncensored) quan-
tile regression. See, for example, Yu and Jones (1998), Zheng and Yang (1998)
and Leung (2005) for more about this subject. One of the data-driven methods
mostly used in the literature is the cross-validation (CV) technique. The CV
criterion approximates the prediction error by removing some observations from
the process. To be precise, let’s focus on the median case and suppose for the
moment that the data are uncensored. In such a situation, one may use the
following local leave-block-out CV statistic :

CVx0(h1) = n−1
k

∑
j∈Jk

φ
(
m̂edr(Xj) − Yj

)
, (6.1)

where φ is a given positive function, Jk (for some 0 < k ≤ 1) is the set of the
nk = bnkc nearest neighbor points to x0 and m̂edr is the LL median estimator
defined as in (2.2) but without the observations (Xi, Yi), i = 1, . . . , n, for which
|i − j| ≤ r. In this study we investigate two choices of φ: (1) φ(u) = |u| and
(2) φ(u) = u2. These choices correspond to the L1 and the L2 cross-validation,
respectively. The CV rule given by (6.1) can be seen as a generalization of the
conventional global L2-leave-one-out CV (φ(u) = u2, k = 1 and r = 0). By
leaving out more than one observation (r > 0) we omit the data points that may
be highly correlated with (Xj , Yj). On the other hand, with the local adaptation
we try to capture the local behavior of the underlying process. Of course, in the
case of censoring this procedure cannot be used unless the conditional censoring
distribution is known, which is not the case in most practical situations. As an
adaptation of this method to the censored situation, we propose the following
procedure:

Algorithm

(0) Choose a small value for r and k. Let’s say r = 3 and k = 0.25.

(1) For each j in Jk, do the following: (a) denote by Ij the index set of all the
data (Xt, Zt, δt) for which |t − j| > r. (b) For each i ∈ Ij , compute ĜXi(Zi)
as given in (2.4) but with only the observations (Zt, δt, Xt), t = 1, . . . , n, for
which t ∈ Ij . (c) Calculate m̂edr(Xj) as given by (2.5) but with only the
observations (Zt, δt, Xt), t = 1, . . . , n, for which t ∈ Ij .
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(2) Calculate the censored CV criterion CCVx0(h0, h1) = n−1
k

∑
j∈Jk

φ(m̂edr(Xj)
−Zj). CCVx0 has to be evaluated several times with different values for h0

and h1. A natural selection procedure is to choose (h0, h1) that simultane-
ously minimize CCVx0(h0, h1). Here after we will call this approach ‘Method
I’. The second method that we propose is based on the following idea. From
the results of the simulation study given in the previous section, it is clear
that a consistent choice of the bandwidth h1 must lead to an estimator with
a relative small error term even if the value of h0 used to estimate Gx is not
the optimal one. Also, whenever h1 is ‘good’, the error terms, as a function
of h0 should be relatively stable. As a consequence, we propose the following
modification:

Method II
(0) Compute CCVx0(h0, h1) for all possible combinations of h0 and h1 from some

preselected set H0 and H1, respectively.

(1) Pick ĥ1 for which the values in {CCVx0(h0, h1), h0 ∈ H0}, tend (globally) to
be small and do not change very much (small variation).

(2) Choose ĥ0 that minimizes CCVx0(h0, ĥ1).
It is better to perform the step (1) of this algorithm via a visual inspection.
However, in order to get an automatic approach we propose here to do the
following :
• For each value of h1 ∈ H1, let MC(h1) and SC(h1) be the mean and the

standard deviation of {CV Vx0(h0, h1), h0 ∈ H0}.
• Select the bandwidth h1 that corresponds to the minimum of MC(h1) +

λSC(h1).

The parameter λ ≥ 0 determines the trade-off between the mean and the
variance. Choosing a big value for λ means that we penalize those values of
h1 that are more affected by changes in h0.

Due to the high computational cost needed by the cross-validation method,
we run a small simulation study based on 100 replications. Our objective here
is to compare Method I and Method II. For each simulated dataset, we vary
the value of (h0, h1) in {0.20, 0.45, . . . , 2.95} × {0.2, 0.7, . . . , 2.7}. From those
pairs we select the best one, then we use the latter to compute the LL median
estimator that we denote by m̃ed(x0). Let m̂ed(x0) be the LL median estimator
based on the optimal (fixed) value of (h0, h1) as obtained in the last section.
As measure of the performance we calculate the empirical mean of |m̃ed(x0) −
m̂ed(x0)| evaluated over all the simulated data. Almost in all our simulations
we have obtained better results using the L2− cross-validation, that is why we
will not show the results corresponding to the L1 norm. We will also report only
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Table 5. The estimated error for Method I and Method II.
Model 2 Model 3

Method I II I II

a0 b1 b0 λ=0 λ=1 λ=3.5 λ=0 λ=1 λ=3.5

-0.25 0.95 0 0.059 0.060 0.051 0.035 0.060 0.056 0.054 0.043

-0.27 0.065 0.058 0.050 0.042 0.065 0.057 0.054 0.048

0 0 0.142 0.083 0.078 0.058 0.143 0.089 0.077 0.063

-0.238 0.150 0.079 0.078 0.057 0.145 0.100 0.076 0.066

0 0.95 0 0.059 0.054 0.049 0.037 0.057 0.053 0.052 0.041

-0.27 0.064 0.058 0.052 0.038 0.055 0.051 0.051 0.043

0 0 0.282 0.133 0.061 0.061 0.278 0.138 0.067 0.070

-0.238 0.287 0.143 0.066 0.067 0.275 0.135 0.069 0.071

0.25 0.95 0 0.056 0.051 0.046 0.031 0.053 0.048 0.050 0.048

-0.27 0.063 0.059 0.050 0.042 0.049 0.047 0.045 0.040

0 0 0.241 0.138 0.081 0.071 0.202 0.101 0.084 0.078

-0.238 0.253 0.122 0.083 0.074 0.201 0.105 0.075 0.076

the result for λ = 0, λ = 1 and λ = 3.5, this latter was, in general, the best
one among a large set of values that we have tested in our simulation study.
However, we have remarked that as the percentage of censoring increases, one
needs a larger value of λ to get better results. This is clearly due to the fact that
heavy censoring leads to more variation (instability) in the resulting estimator
which affects the choice of λ. Table 5 displays the results of this study for Model
2 and Model 3. We can see that Method II produces smaller error term than
Method I. This is especially clear for highly censored data. In fact with 50%
of censoring, we see that Method I fails while Method II still works whenever
the used λ is not ‘too bad’. With a good value of λ we can notice that Method
II enjoys a performance close to the optimal one. This is encouraging, since
the data-driven method is feasible while the optimal bandwidths are unknown
in real data analysis. We can also remark that there is no significant difference
in the performance of Method II between Model 2 and Model 3. Overall, in
this simulation study, we have shown the importance of correcting the ‘naive’
cross-validation approach especially when the censored observations are a large
fraction of the available data. Moreover we have demonstrated the accuracy of
using Method II to get reasonable bandwidth parameters.
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