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Lemma 1 Under the conditions of Theorem 1, log()\) = Op(1) and the modified
MLFEs, 0, and ég, both converge to 6y in probability.

Lemma 2 Under the same assumptions as in Theorem 2, log(\) = O,(1), 6; —

Op for 3 =1,2, and f — &, in probability.

It can be seen that Lemma 1 is a special case of Lemma 2. Thus, we prove
Lemma 2 only.
Proof of Lemma 2. The key step of the proof is to show that sup Ry, =
sup Rin(A, 01, 02,&) = Op(1). We consider the following two cases: (1) |62—6p| < €
and (2) |62 — o] > €.

For case (1), applying the classical asymptotic technique (Wolfowitz, 1949),

we can easily get that for any ¢ > 0

< f(214501,6) = f(x2:5 G, §)
o el frma s S gl <o
for some p > 0. Hence, with a negative penalty 2C'log \, sup{R1, : |61 — 09| >
€} < Op(1), bounded above by Op(1). At the same time, it is easy to see that
sup{Rin : |61 — 00| <€, |02 —bp| < €} = Op(1). Hence, sup{Ri, : |f2 — 6| < €} =
Op(1) for some small enough e.

We now consider case (2). For any given e > 0, classical consistency results
(Wald, 1949) for the MLEs over the restricted region |3 — 6p| > € imply that the
un-modified MLE of A goes to 0 in probability. Hence, asymptotically, we need

only consider the sup Ry, over the region of |# — 0| > € and A < e.
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Using the same inequality as before, we have

Ry, —2Clog A = 2> log{f(z1i;01,8)/f (1300, &)} +2 Y log(1+ &)

i=1 i=1

< 2 log{f(w15561,€)/ f (133 00, €0) }

i:1nl no 9 no
+22(5i —251-24- 52(53’,
i=1 i=1 i=1

where 0; = f(x9;;G,§)/ f(x2i;Go, &) — 1. Due to the regularity conditions on
f(x;0,€), there is a quadratic expansion for Y ", log{ f(x1i;61,)/f(x1i;60,&0)}
in 91 - 90 and f - 50.

Our aim is to expand terms related to the second sample as quadratic func-
tions of 1 — 6y, & — & and \. (Because 0 — 6y cannot be regarded as a small-o
term, it is not part of the targeted quadratic function.) Toward this end, we
write 51 = (1 — )\)(91 — (90)}/2@ + )\02Y2i(02,£0) + (5 - go)UZi +e; with

ei = (1=X)(01 —00){Y2i(01,8) — Yoi } + M2{Y2i(62,8) — Y2i(02,0) }

+(§ — &0){U2i(§) — Uai}-

We now establish the asymptotic orders of > e;, >-e? and Y |e;|3. Notice

that

Y2i(6h,8) — Yaoi = {Y2i(01,8) — Y2:(00, &)} + {Y2i (6o, &) — Yai }

With some abuse of notation, we have

D {Y2i(601,€) = Yai} = (01— 00) > Y5(6%,€) + (€ — o) > Y{(60,")

= (61— 00)0p(ny*) + (€ = £)Op(n”),
where the tightness condition (B5) is used in the last step. Hence, we have
S (01 — 00){Yai(61,€) — Yai} = {(61 — 00)° + (€ — £)*}0p(ny?).

In a similar way, we find
> A {Yai(0, €) — Yai(62,£0)} = ME — £)0p(ny/%) = (A2 + (€ — €0)*10p(ny*)

and > (& — &) {U2(§) — Uai} = (£ — fo)zOp(n;m). Taking these results together,
we obtain > e; = {(61 — 6p)% + N2 + (&€ — 50)2}01)(71;/2).
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Next, we examine the order of >~ €?. By the condition of uniform convergence

. 2 2
in Yy~ and Yg’ , we have

D (01— 00)* {Yai(01,6) = Yai}> < (61— 00)*{ (61 — 00) + (€ — &)*}Op(n2)
= (61— 60)*0(1)Op(n2).

Here, o(1) means a quantity that shrinks to 0 as ; — 6y — 0 and £ — & — 0.

Along the same line, we have

D N203{V2i(02,€) — Yai(02,£0)}* = {(61 — 60)* + (£ — &0)*}o(1)Op(n2)

and Y (€ — &)?{U2 (&) — Uz} = (€ — &)%0(1)Op(n2). These order assessments
lead to Y e? = {(61 — 00)® + A2 + (€ — &)?}o(1)Op(n2), and similarly we also
obtain Y |e;|3 = {(61 — 00)? + A2 + (£ — £0)?}0(1)Op(n2). Further, since we focus
on small values of A, we have (1 — X\)(02 — 6y) = (02 — 6p)(1 + o(1)).

Hence
Ri, —2Clog A

201 = 00) Y Yii+2(€ &) D Uni
=1 i=1

2(61 — 6o) ZY21+2)\92ZY2Z 02,80) + 2(§ — &o) ZUzz

=1 =1

_ Z{(al — 00)Y1; + (€ — &)U }?

+ > {01 — 00)Yai + A02Y2i(62, &) + (€ — €0) Ui}
i=1

+{(01 — 00) + X% + (£ — &)*}o(1)Oy(n).

After division by n, the quadratic term in the above expression converges to

0, — 6 ol oyu POY (62)Y 01 — o
£—2& oYU o POy @)U = |
A0 POY (2)Y  POY (62)U P(fiszz) A0,

where Uy(92)y = COV(YQZ'(QQ,&)),YQZ') and UY(HQ)U = COV(}/QZ'(QQ,g()),UQi). The
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symmetric matrix can be further written as

o oyy 0 oZ oYU Oy (8,)Y
(1=p)| ovu of 0 |+p| ovu o} oy
0 0 0 Oy (62)Y OY(62)U 012/(92)

The identifiability condition, U%U < 0%0(2], implies that it is positive definite,

regardless of the value of 5.
Thus, due to tightness of > Y2;(0), we have

sup Rin <
[02—00|>e
1 DY+ Yo ’ 0% oyu POY (62)Y Y+ Yo
- SUni+ > Us; oyu ot POY (62)U SUi+ Y Usi | +0p(1)
> Y2i(02, &) POY ()Y  POY (02)U Pff%qu) > Y2i(02,80)
—0,(1).

It follows that sup Ry, = Op(1). Let A be the maximizer of Rin (N, 61,602,8), it
follows that log(A\) = O,(1). Thus, for any given small positive number € > 0, we
can find some § > 0 such that P(A > §) > 1 — e. For asymptotic considerations,
this result allows us to discuss the problem further under the constraint A > ¢
for some § > 0. With this restriction, the parameter space for G is compact, and
the penalty term log(\) has negligible influence in the modified likelihood. The
consistency of G for G is the consequence of the classical result of Wald (1949).
With A > & > 0 in probability, we must have éj — 0 for j = 1,2. This completes

the proof.

References

Wald, A. (1949). Note on the consistency of the maximum likelihood estimate.
Ann. Math. Statist. 20, 595-601.

Wolfowitz, J. (1949). On Wald’s proof of the consistency of the maximum
likelihood estimate. Ann. Math. Statist. 20, 601-602.



