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Abstract: We consider testing for homogeneity in a two-sample problem in which

one of the samples has a mixture structure. The problem arises naturally in many

applications such as case-control studies with contaminated controls, or the test

of a treatment effect in the presence of nonresponders in biological experiments

or clinical trials. In this paper, we suggest using the modified likelihood ratio

test (MLRT), which is devised to restore a degree of regularity in the mixture

situation. The asymptotic properties of the MLRT statistic are investigated in

mixtures of general one-parameter kernels, and in a situation where the kernels

have an additional structural parameter. The MLRT statistic is shown to have a

simple χ2
1 null limiting distribution in both cases and simulations indicate that the

MLRT performs better than other tests under a variety of model specifications.

The proposed method is also illustrated in an example arising from a trial relating

to morphine addiction in rats.
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1. Introduction

Consider two samples, x11, . . . , x1n1 and x21, . . . , x2n2 , from distributions F

and H, respectively. In many applications, two-sample problems lead naturally
to the formulation of a null hypothesis that the two samples are drawn from the
same distribution, or that H0 : F = H. The choice of a test is usually affected
by the alternatives that are considered likely to hold if H0 is false. Typically one
describes the alternative hypothesis by some measure of discrepancy between
the two distributions, and there are many ways to do this. For instance, the
two distributions may be taken as identical except for a location shift, or they
may be allowed to differ in both location and scale. In this paper, we consider
a mixture alternative as is described more precisely below. The case-control
study with contaminated controls (Lancaster and Imbens (1996)) serves as a
good preliminary example.

In classical case-control studies, two independent random samples are col-
lected: the first is a sample of individuals who have experienced the event of
interest (e.g. diagnosis with a specific disease), referred to as cases; the second
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is a sample of similar individuals, typically matched for potential confounding
factors, who have not experienced the event, referred to as the controls. For each
sample, the values of some risk factor (e.g. exposure to an environmental toxin)
are observed. In the case-control study with contaminated controls, the second
sample contains a mixture of cases and controls. For example, researchers may
collect a sample of cases but, for economic reasons, they compare them with
a sample arising from a source in which the event status is not observed. A
similar example arises in genetic case-control studies with unscreened controls
(Moskvina, Holmans, Schmidt and Craddock (2005)).

Suppose x11, . . . , x1n1 are independent and identically distributed (i.i.d.)
with distribution F (x), and x21, . . . , x2n2 are i.i.d. with distribution H(x) =
(1 − λ)F (x) + λG(x), where λ represents the contamination proportion. A sta-
tistical problem of interest is to test the null hypothesis H0 : H(x) = F (x) or
λ = 0 against the mixture alternative.

The contaminated case-control study is one example of an application that
can be formulated in this way. Another arises when testing for a treatment effect
when not all experimental subjects respond to the new treatment. This is the
so-called nonresponse phenomenon. In this case, F represents the distribution in
the control group, G is the distribution of responders to the treatment, and λ is
the proportion of subjects that respond. It is of interest to test whether λ 6= 0
so that there exists a subgroup which responds to the new treatment. See Good
(1979) Boos and Brownie (1986, 1991), Conover and Salsburg (1988), Razzaghi
and Nanthakumar (1994), and Razzaghi and Kodell (2000).

When the distribution functions F and G have different means, a classical
t-test or a simple permutation test could be used. However, these tests are
not designed to deal with the specific mixture alternative and specific methods
designed for mixture model alternatives would perform better. It is generally
accepted that preferred testing procedures are likelihood-based. Due to the non-
regularity of the mixture models, however, the likelihood ratio test (LRT) statistic
does not have the usual chi-squared limiting distribution. Recently, it has been
discovered in many situations that the limiting distribution is that of the squared
supremum of a truncated Gaussian process, a result that is not particularly
convenient for inference (Liu and Shao (2003)). For a large variety of mixture
models, the modified likelihood ratio test (MLRT) has a limiting distribution that
is chi-squared or a mixture of chi-squared distributions (Chen (1998), Chen, Chen
and Kalbfleisch (2001, 2004), and Zhu and Zhang (2004)) and hence provides a
nice alternative to the ordinary LRT.

In this paper, we investigate the use of the MLRT to test homogeneity in
the two-sample problem discussed above. Its asymptotic properties are studied
both in mixtures of general one-parameter kernels and in a situation with an
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extra structural parameter. In either case, the limiting null distribution of the
MLRT statistic is shown to be χ2

1. In sharp contrast to the problem discussed
in this paper, the distribution of the MLRT statistic lacks a simple analytical
form in the one-sample normal mixture model with unknown variance, see Chen
and Kalbfleisch (2005). Another interesting result that arises from the MLRT in
the two-sample problem is that the component parameter estimators converge to
their true values at the rate n−1/2 rather than n−1/4 (see Chen (1995)).

The remainder of this paper is organized as follows. The main results are
given in Section 2. Sections 3 and 4 present simulation studies and an example.
Some concluding comments are provided in Section 5.

2. Main Results

This section has three parts. Section 2.1 states the asymptotic properties of
the MLRT with general one-parameter kernels, Section 2.2 gives the asymptotic
properties in the presence of an unknown structural parameter, and Section 2.3
derives the local asymptotic power.

2.1. Mixtures of a general one-parameter kernel

Consider the two-sample parametric model

x11, . . . , x1n1

i.i.d.∼ f(x; θ1), x21, . . . , x2n2

i.i.d.∼ (1 − λ)f(x; θ1) + λf(x; θ2),

where f(x; θ) is a probability density function (pdf) with respect to a σ-finite
measure, belonging to a parametric family {f(x; θ) : θ ∈ Θ} with the parameter
space Θ being a compact subset of the real line. The log-likelihood function is
given by ln(λ, θ1, θ2) =

∑
log f(x1i; θ1) +

∑
log{(1 − λ)f(x2i; θ1) + λf(x2i; θ2)}.

We are concerned with testing the hypothesis

H0 : θ1 = θ2, or λ = 0. (2.1)

This is a non-regular testing problem since the null hypothesis is on the bound-
ary of the parameter space (λ = 0), and because the parameters (λ and θ2)
are not identifiable under the null hypothesis. As in many similar situations,
the LRT statistic for this problem does not have the usual chi-squared limiting
distribution.

To circumvent these problems, we consider the modified log-likelihood func-
tion pln(λ, θ1, θ2) = ln(λ, θ1, θ2) + C log(λ), for some positive constant C that
controls the level of modification. The penalty term C log(λ) penalizes estimates
in which the mixing proportion λ is close to zero. A smooth penalty like this
avoids the problematic parts of the parameter space and hence partially restores
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the regularity of the problem. This general idea is appealing and has quite gen-
eral applicability to testing problems in mixture models. One advantage of this
approach is that the resulting test statistic often has a simple null limiting dis-
tribution. Let (λ̂, θ̂1, θ̂2) maximize pln over 0 < λ ≤ 1, θj ∈ Θ, j = 1, 2, and
let θ̂ maximize the null modified log-likelihood function pln(1, θ, θ) over θ ∈ Θ.
We call (λ̂, θ̂1, θ̂2) the modified maximum likelihood estimates (MMLE’s). The
MLRT statistic is Mn = 2{pln(λ̂, θ̂1, θ̂2)−pln(1, θ̂, θ̂)} and the null hypothesis H0

will be rejected when Mn is large enough.
To study the asymptotic properties of the MLRT under H0, we assume that

the kernel function f(x; θ) satisfies some regularity conditions. First, however,
we introduce some notation. Let θ0 be the true value of θ under the null model,
and for i = 1, . . . , nj and j = 1, 2, let

Yji(θ) = Yji(θ, θ0) =
1

θ − θ0

{
f(xji; θ)
f(xji; θ0)

− 1
}

, θ 6= θ0,

Y ′
ji(θ) =

∂Yji(θ, θ0)
∂θ

,

where f ′(x; θ) = ∂f/∂θ. We write the continuous extension of Yji(θ) at θ0 as Yji.
We assume the following regularity conditions on f(x; θ).

A1. (Wald’s integrability conditions for consistency of the MLE.) For each θ ∈ Θ,
where Θ is a compact subset of the real line, (i) E(| log f(x; θ)|) < ∞, and
(ii) there exists ρ > 0 such that E[log f(x; θ, ρ)] < ∞, where f(x; θ, ρ) =
1 + sup|θ′−θ|≤ρ f(x; θ′).

A2. (Smoothness.) The support of f(x; θ) is the same for all θ ∈ Θ and f(x; θ)
is twice continuously differentiable with respect to θ.

A3. (Identifiability.) E{Y 2
ji(θ)} > 0 for all θ ∈ Θ.

A4. (Condition for uniform strong law of large numbers.) There exists an inte-
grable g such that |Yji(θ)|2 ≤ g(Xji) and |Y ′

ji(θ)|3 ≤ g(Xji), for all θ ∈ Θ.

A5. (Tightness.) The processes nj
−1/2

∑
Yji(θ) and nj

−1/2
∑

Y ′
ji(θ) are tight

for j = 1, 2.

Conditions A1 and A2 effectively cover the assumptions of Wald (1949) for
consistency of the MLE in the one-sample problem. Conditions A3-A5 guaran-
tee a quadratic expansion of the log-likelihood function so that the remainder
terms are statistically small-o. These conditions are satisfied by many mixture
models, such as binomial, Poisson, and Normal with known variance. They have
been used in Chen (1995), Chen and Chen (2003), Dacunha-Castelle and Gassiat
(1999), and Liu and Shao (2003). Interestingly, for the two-sample problem, the
identifiability condition needed is much simpler.
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Asymptotic null distribution of the MLRT statistic, Mn

Theorem 1. In the hypothesis testing problem (2.1), assume that f(x; θ) satisfies
conditions A1−A5, the null model with parameter θ1 = θ2 = θ0 is true, θ0 is an
interior point of the compact set Θ, and nj/n → ρj > 0, j = 1, 2, as n → ∞.
Then Mn has a χ2

1 limiting distribution under H0.

The key step in the proof is a quadratic approximation to the MLRT statistic
when θ1 and θ2 are in a neighborhood of θ0. The following lemma shows that
the modified MLEs, θ̂1 and θ̂2, are consistent. For the proof of the lemma,
we refer the readers to http://www.stat.sinica.edu.tw/statistica for the
on-line version of the paper containing the supplement.

Lemma 1. Under the conditions of Theorem 1, log(λ̂) = Op(1) and the modified
MLEs, θ̂1 and θ̂2, both converge to θ0 in probability.

Proof of Theorem 1. Let R1n = 2{pln(λ, θ1, θ2) − pln(1, θ0, θ0)}, R2n =
2{pln(1, θ0, θ0) − pln(1, θ̂, θ̂)}, and note that Mn = supλ,θ1,θ2

(R1n + R2n). It
can be seen that

R1n = 2
n1∑
i=1

log
{

f(x1i; θ1)
f(x1i; θ0)

}
+ 2

n2∑
i=1

log(1 + δi) + 2C log(λ),

where

δi = (1 − λ)
{

f(x2i; θ1)
f(x2i; θ0)

− 1
}

+ λ

{
f(x2i; θ2)
f(x2i; θ0)

− 1
}

= m1Y2i + ei,

m1 = (1 − λ)(θ1 − θ0) + λ(θ2 − θ0), and

ei = (1 − λ)(θ1 − θ0){Y2i(θ1) − Y2i} + λ(θ2 − θ0){Y2i(θ2) − Y2i}.

Since log(1 + x) ≤ x − (1/2)x2 + (1/3)x3, it follows that

2
n2∑
i=1

log(1 + δi)

≤ 2
n2∑
i=1

(m1Y2i + ei) −
n2∑
i=1

(m1Y2i + ei)2 +
2
3

n2∑
i=1

(m1Y2i + ei)3. (2.2)

From Lemma 1 we can restrict attention to θ1 and θ2 values in a small
neighborhood of θ0, and assume that there is a de facto positive lower bound for
λ. It is easy to see that m2

1 + (θ1 − θ0)2 is a strictly positive definite quadratic
form in θ1 − θ0 and θ2 − θ0. Further, we may regard m1 as if it is a small-
o term. Under the null hypothesis, the Law of Large Numbers implies that

http://www.stat.sinica.edu.tw/statistica
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n−1
2

∑n2
i=1 Y 2

2i → E(Y 2
21) almost surely and n−1

2

∑n2
i=1 Y 3

2i → E(Y 3
21) almost surely.

Hence,
m3

1

∑n2
i=1 Y 3

2i

m2
1

∑n2
i=1 Y 2

2i

= m1

∑n2
i=1 Y 3

2i/n2∑n2
i=1 Y 2

2i/n2
= op(1).

Straightforward derivation under Condition A4 yields
n2∑
i=1

|ei|3 = {(1−λ)3(θ1−θ0)6+λ3(θ2−θ0)6}Op(n2) = {m2
1+(θ1−θ0)2}o(1)Op(n2).

The term o(1) arises from the fact that both θ1 − θ0 and θ2 − θ0 can be made
arbitrarily small, as mentioned earlier. These arguments establish that the cubic
term of ei in the inequality (2.2) is bounded by a quantity of order {m2

1 + (θ1 −
θ0)2}o(1)Op(n2).

Noting that
∑

{Y2i(θ)−Y2i} = (θ−θ0)
∑

Y ′
2i(θ

′) for some θ′ and the tightness
of Y ′

2i(θ), we have
∑n2

i=1 ei = m2Op(n
1/2
2 ) = {m2

1 +(θ1−θ0)2}Op(n
1/2
2 ). Similarly,

because we only need consider small θ1 − θ0 and θ2 − θ0,
n2∑
i=1

e2
i = {(1 − λ)2(θ1 − θ0)4 + λ2(θ2 − θ0)4}Op(n2)

= {m2
1 + (θ1 − θ0)2}o(1)Op(n2).

With these results we obtain

2
n2∑
i=1

log(1 + δi) ≤ 2m1

n2∑
i=1

Y2i − m2
1

n2∑
i=1

Y 2
2i + {m2

1 + (θ1 − θ0)2}o(1)Op(n2).

Since f(x; θ) is regular, we have

2
n1∑
i=1

log
{

f(x1i, θ1)
f(x1i, θ0)

}
≤ 2(θ1 − θ0)

n1∑
i=1

Y1i − (θ1 − θ0)2
{

n1∑
i=1

Y 2
1i

}
{1 + o(1)}

in probability. Adding the two bounds together, taking note that both n1 and
n2 are of the same order, and that n−1

j

∑
i Y

2
ji, j = 1, 2 converge to positive

constants, we have in probability

R1n(λ, θ1, θ2) ≤ 2(θ1 − θ0)
n1∑
i=1

Y1i + 2m1

n2∑
i=1

Y2i

−

{
(θ1 − θ0)2

n1∑
i=1

Y 2
1i + m2

1

n2∑
i=1

Y 2
2i

}
{1 + o(1)}.

It is easily seen that the above upper bound is maximized at

m̃1 =
∑n2

i=1 Y2i∑n2
i=1 Y 2

2i

and θ̃1 − θ0 =
∑n1

i=1 Y1i∑n1
i=1 Y 2

1i

,
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where m̃1 may be positive or negative. By evaluating R1n at parameter values
for which m1 = m̃1, θ1 = θ̃1 and λ = 1, we find

R1n(1, m̃1, θ̃1) =
{
∑n2

i=1 Y2i}2∑n2
i=1 Y 2

2i

+
{
∑n1

i=1 Y1i}2∑n1
i=1 Y 2

1i

+ op(1),

so that the upper bound is achievable.
Since −R2n is an ordinary LRT statistic under a regular model, it has the

asymptotic approximation

R2n = −
{
∑n1

i=1 Y1i +
∑n2

i=1 Y2i}2∑n1
i=1 Y 2

1i +
∑n2

i=1 Y 2
2i

+ op(1).

Therefore,

Mn =
{
∑n2

i=1 Y2i}2∑n2
i=1 Y 2

2i

+
{
∑n1

i=1 Y1i}2∑n1
i=1 Y 2

1i

−
{
∑n1

i=1 Y1i +
∑n2

i=1 Y2i}2∑n1
i=1 Y 2

1i +
∑n2

i=1 Y 2
2i

+ op(1).

Replacing (
∑n1

i=1 Y 2
1i +

∑n2
i=1 Y 2

2i)/n by E(Y 2
11) yields

Mn =
n2n1

n

1
E(Y 2

11)

{ 1
n2

n2∑
i=1

Y2i −
1
n1

n1∑
i=1

Y1i

}2
+ op(1), (2.3)

and Theorem 1 follows from the Central Limit Theorem.

2.2. Mixture model with a structural parameter

We now consider the MLRT when the kernel density has a structural param-
eter. An example is a normal mixture with a common unknown variance. We
show that the limiting distribution of the MLRT statistic is again χ2

1.
Suppose that we have independent samples

x11, . . . , x1n1

i.i.d.∼ f(x; θ1, ξ), x21, . . . , x2n2

i.i.d.∼ (1 − λ)f(x; θ1, ξ) + λf(x; θ2, ξ),

where 0 ≤ λ ≤ 1, θj ∈ Θ for j = 1, 2, and ξ ∈ Ξ. As before, we consider a test of

H0 : θ1 = θ2, or λ = 0. (2.4)

The modified log-likelihood function is

pln(λ, θ1, θ2, ξ) =
n1∑
i=1

log f(x1i; θ1, ξ)

+
n2∑
i=1

log{(1 − λ)f(x2i; θ1, ξ) + λf(x2i; θ2, ξ)} + C log(λ),
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and the modified MLEs, θ̂1, θ̂2, λ̂ and ξ̂, maximize pln(λ, θ1, θ2, ξ) over the
region {0 < λ ≤ 1, θj ∈ Θ for j = 1, 2, ξ ∈ Ξ}. Let θ̂ and ξ̂0 be the
values that maximize pln(1, θ, θ, ξ). The MLRT statistic is defined as Mn =
2{pln(λ̂, θ̂1, θ̂2, ξ̂) − pln(1, θ̂, θ̂, ξ̂0)}.

To give regularity conditions, we set

Yji(θ, ξ) =
f(xji; θ, ξ) − f(xji; θ0, ξ)

(θ − θ0)f(xji; θ0, ξ0)
, Uji(ξ) =

f(xji; θ0, ξ) − f(xji; θ0, ξ0)
(ξ − ξ0)f(xji; θ0, ξ0)

,

for i = 1, . . . , nj ; j = 1, 2. For convenience, we may write Yji for Yji(θ0, ξ0) and
Uji for Uji(ξ0) as the continuous extensions of these expressions. The regularity
conditions on f(x; θ, ξ) are similar to A1−A5.

B1. (Wald’s integrability conditions.) Let G denote the mixing distribution. The
parameter space of (G, ξ) can be compactified into {(G, Ξ), d} such that, for
each (G, ξ) ∈ (G,Ξ), (i) E(| log f(x; G, ξ)|) < ∞, and (ii) there exists ρ > 0
such that E[log f(x; G, ξ, ρ)] < ∞, where

f(x; G, ξ, ρ) = 1 + sup
d((G′,ξ′),(G,ξ))≤ρ

f(x; G′, ξ′).

B2. (Smoothness.) The kernel density f(x; θ, ξ) has common support and is
three times continuously differentiable with respect to θ and ξ.

B3. (Identifiability.) Fisher information of f(x; θ, ξ) is of full rank at any (θ, ξ).

B4. (Condition for the uniform strong law of large numbers.) Let Y ′
θ(θ, ξ) and

Y ′
ξ (θ, ξ) be partial derivatives of Yji(θ, ξ) with ji omitted, and similarly

for U ′
ξ. There exists an integrable g(x) such that |Yji(θ, ξ)|2 ≤ g(Xji),

|Uji(θ, ξ)|2 ≤ g(Xji), |Y ′
θ(θ, ξ)|3 ≤ g(Xji), |Y ′

ξ (θ, ξ)|3 ≤ g(Xji), and |U ′
ξ(ξ)|3

≤ g(Xji) for all (θ, ξ) ∈ Θ × Ξ.

B5. (Tightness.) The processes n
−1/2
j

∑
Yji(θ, ξ), n

−1/2
j

∑
Y ′

θ(θ, ξ), n
−1/2
j

∑
Y ′

ξ (θ, ξ), and n
−1/2
j

∑
Uξ(ξ) are all tight.

Conditions B1−B5 are satisfied by many mixture models used in practice,
such as mixture models of most location-scale families including the normal,
Cauchy and logistic. One can easily examine these conditions on the joint density
function of a group of observations; see Kiefer and Wolfowitz (1956) for details
of this technique.
Theorem 2. In the hypothesis testing problem (2.4), assume that f(x; θ, ξ) sat-
isfies conditions B1−B5, the null model with parameters θ1 = θ2 = θ0 and ξ = ξ0

is true, θ0 is an interior point of the compact set Θ, ξ0 is an interior point of
Ξ, and nj/n → ρj > 0, j = 1, 2, as n → ∞. The MLRT statistic Mn has a χ2

1

limiting distribution under H0.
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The proof of Theorem 2 parallels that of Theorem 1. The extra complexity
lies in the proof of the following lemma, which is given in the on-line supplement.
Hence, the proof of Theorem 2 itself will be brief. Note that the structural
parameter ξ does not have to be a scalar; similar results hold when it is a vector
parameter.

Lemma 2. Under the same assumptions as in Theorem 2, log(λ̂) = Op(1),
θ̂j → θ0 for j = 1, 2, and ξ̂ → ξ0, in probability.

Proof of Theorem 2. Write R1n(λ, θ1, θ2, ξ) = 2{pln(λ, θ1, θ2, ξ)− pln(1, θ0, θ0,
ξ0)} and R2n = 2{pln(1, θ0, θ0, ξ0) − pln(1, θ̂, θ̂, ξ̂0)}. Also write

R1n(λ, θ1, θ2, ξ) = 2
n1∑
i=1

log
{

f(x1i; θ1, ξ)
f(x1i; θ0, ξ0)

}

+2
n2∑
i=1

log
{

(1 − λ)
f(x2i; θ1, ξ)
f(x2i; θ0, ξ0)

+ λ
f(x2i; θ2, ξ)
f(x2i; θ0, ξ0)

}
+ 2C log λ

= 2
n1∑
i=1

log
{

f(x1i; θ1, ξ)
f(x1i; θ0, ξ0)

}
+ 2

n2∑
i=1

log(1 + δi) + 2C log λ,

with

δi = (1 − λ)(θ1 − θ0)Y2i(θ1, ξ) + λ(θ2 − θ0)Y2i(θ2, ξ) + (ξ − ξ0)U2i(ξ)

= m1Y2i + (ξ − ξ0)U2i + ei.

By Lemma 2, we need only consider values of θ1 and θ2 near θ0, of ξ near
ξ0, and of λ not near 0. In this case, we have

n2∑
i=1

ei = {m2
1 + (θ1 − θ0)2 + (ξ − ξ0)2}Op(n

1/2
2 ),

n2∑
i=1

e2
i = {m2

1 + (θ1 − θ0)2 + (ξ − ξ0)2}o(1)Op(n2),

n2∑
i=1

|ei|3 = {m2
1 + (θ1 − θ0)2 + (ξ − ξ0)2}o(1)Op(n2).

Thus,

2
n2∑
i=1

log(1 + δi) ≤ 2
n2∑
i=1

{m1Y2i + (ξ − ξ0)U2i} −
n2∑
i=1

{m1Y2i + (ξ − ξ0)U2i}2

+{m2
1 + (θ1 − θ0)2 + (ξ − ξ0)2}o(1)Op(n2).
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For the first sample, due to the regularity of f(x; θ, ξ), we have

2
n1∑
i=1

log
{

f(x1i; θ1, ξ)
f(x1i; θ0, ξ0)

}

≤ 2
n1∑
i=1

{(θ1 − θ0)Y1i + (ξ − ξ0)U1i} −
n1∑
i=1

{(θ1 − θ0)Y1i + (ξ − ξ0)U1i}2{1 + o(1)}

in probability. Combining the above two inequalities, we obtain

R1n(λ, θ1, θ2, ξ)

≤ 2(θ1 − θ0)
n1∑
i=1

Y1i + 2m1

n2∑
i=1

Y2i + 2(ξ − ξ0)
2∑

j=1

nj∑
i=1

Uji

−

[
n1∑
i=1

{(θ1 − θ0)Y1i + (ξ − ξ0)U1i}2 +
n2∑
i=1

{m1Y2i + (ξ − ξ0)U2i}2

]
{1 + o(1)}

in probability. Let σ2
Y = V ar(Y11), σ2

U = V ar(U11), and σY U = Cov(Y11, U11).
By the Law of Large Numbers, n−1

1

∑
Y 2

1i = σ2
Y + op(1), and similarly for other

quantities. From approximation, we find

R1n(λ, θ1, θ2, ξ) ≤ 2(θ1 − θ0)
n1∑
i=1

Y1i + 2m1

n2∑
i=1

Y2i + 2(ξ − ξ0)
2∑

j=1

nj∑
i=1

Uji

−
[
n1{(θ1 − θ0)2σ2

Y + 2(θ1 − θ0)(ξ − ξ0)σY U + (ξ − ξ0)2σ2
U}

+ n2{m2
1σ

2
Y + 2m1(ξ − ξ0)σY U + (ξ − ξ0)2σ2

U}
]
{1 + o(1)}

in probability. That is, R1n(λ, θ1, θ2, ξ) is bounded by a quadratic function in
(θ1 − θ0,m1, ξ − ξ0). The quadratic function is maximized when (θ1 − θ0, m1, ξ −
ξ0)τ = I−1

n Wn + op(n−1/2), where

In =

 n1σ
2
Y 0 n1σY U

0 n2σ
2
Y n2σY U

n1σY U n2σY U (n1 + n2)σ2
U

 and Wn =


∑n1

i=1 Y1i∑n2
i=1 Y2i∑2

j=1

∑nj

i=1 Uji

 .

At the same time, the resulting upper bound is attained by R1n(λ, θ1, θ2, ξ)
at exactly the same parameter values as above with λ = 1. Thus, we have
supλ,θ1,θ2,ξ R1n = W τ

n I−1
n Wn + op(1). It is seen that this quantity has a χ2

3 limit-
ing distribution.

On the other hand, R2n is defined on a regular parameter space. Classical
theory implies

−R2n =

( ∑2
j=1

∑nj

i=1 Yji∑2
j=1

∑nj

i=1 Uji

)τ [
nσ2

Y nσY U

nσY U nσ2
U

]−1
( ∑2

j=1

∑nj

i=1 Yji∑2
j=1

∑nj

i=1 Uji

)
+ op(1)
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has a χ2
2 limiting distribution. It follows that Mn = supλ,θ1,θ2,ξ(R1n + R2n) is

asymptotically positive definite and has a chi-squared limiting distribution with
3 − 2 = 1 degree of freedom. This completes the proof.

2.3. Asymptotic power

To examine the asymptotic power of the MLRT without structural parame-
ters, we consider the local alternative

Hn
a : λ = λ0, θ1 = θ0, θ2 = θ0 + n

−1/2
2 τ, (2.5)

where 0 < λ0 ≤ 1 and τ 6= 0. Note that θ2 gets closer to θ0 as n increases, and
tends to θ0 at rate of n−1/2. This rate is based on the fact that the convergence
rates of θ̂1 and θ̂2 are n−1/2 as shown in the previous sections. Let χ2

1(c) denote
the noncentral chi-squared distribution with one degree of freedom and non-
centrality parameter c.

Theorem 3. Suppose that f(x; θ) satisfies the regularity conditions A1−A5 and
nj/n → ρj > 0, j = 1, 2, as n → ∞. Under the local alternative (2.5), the
limiting distribution of Mn is χ2

1(λ0τ
√

ρ1E(Y 2
11)).

Proof of Theorem 3. The local alternative is contiguous to the null distribution
(see Le Cam and Yang (1990)). By Le Cam’s contiguity theory, the limiting
distribution of Mn under Hn

a is determined by the null limiting distribution of
(Mn, Λn) where

Λn =
n2∑
i=1

log
(1 − λ0)f(x2i; θ0) + λ0f(x2i; θ0 + n

−1/2
2 τ)

f(x2i; θ0)
.

Equation (2.3) gives a quadratic approximation to Mn, and a quadratic approx-
imation to Λn can be obtained in a similar manner to give

Λn = λ0τn
−1/2
2

n2∑
i=1

Y2i −
1
2
λ2

0τ
2n−1

2

n2∑
i=1

Y 2
2i + op(1).

Let

Vn =
n2

−1
∑n2

i=1 Y2i − n1
−1

∑n1
i=1 Y1i

{(n1
−1 + n2

−1)E(Y 2
11)}1/2

.

It follows that the null limiting joint distribution of (Vn, Λn) is bivariate normal

L((Vn, Λn)τ |H0) → N2

((
µ1

µ2

)
,

(
1 σ2

√
ρ1

σ2
√

ρ1 σ2
2

))
,

where (µ1, µ2) = (0,−(1/2)σ2
2) and σ2

2 = λ2
0τ

2E(Y 2
11). By Le Cam’s third lemma

(Hájek and S̆idák (1967)), we have L(Vn|Hn
a ) → N(σ2

√
ρ1, 1). Since Mn is
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asymptotically equivalent to V 2
n , the limiting distribution of Mn under the local

alternative Hn
a is that of χ2

1(λ0τ
√

ρ1E(Y 2
11)).

The key step in the above proof is the contiguity of the null model and the
alternative model. Under the null model, the MLRT statistic has asymptotic
expansion Mn = V 2

n + op(1). The joint distribution of Vn and Λn under the null
model determines the distribution of Vn under the contiguous alternative Hn

a .
To investigate the asymptotic power of the MLRT in the presence of a structural
parameter, the same approach is useful. The key step is to find the explicit
expansion of Mn under the null model. Under the assumptions of Theorem 2,
we proved that Mn has a χ2

1 limiting distribution without giving an explicit
expansion. In fact, with some straightforward linear algebra, it can be shown
that the expansion Mn = V 2

n + op(1) remains true for the same Vn as in the
above proof. Further, Λn at ξ = ξ0 can be expanded in the same way. Thus, the
conclusion of Theorem 3 holds when a structural parameter is present.

3. Simulation Studies

We have conducted simulation studies in order to evaluate the finite sample
performance of the MLRT in the two-sample problem. We generated two inde-
pendent random samples with n1 = 150 and n2 = 70 or n1 = n2 = 200, from
N(θ1, 1) and (1−λ)N(θ1, 1)+λN(θ2, 1) with θ1 = 0. When λ = 0, the data were
generated under the null hypothesis. When λ = 0.1, 0.2, or 0.3 and θ2 = 0.5, 1,
or 2, the data were generated under alternatives. The MLRT with normal kernel
and common unknown variance was used to test for homogeneity. Let MR(C)
denote the MLRT with the level of modification being C. Let T denote the two-
sample t-test, and v(0.67) denote the Fisher’s type randomization test proposed
by Good (1979). For the MLRT, the EM algorithm was used for finding the
maximum of the modified log-likelihood function. For v(0.67), random selection
of 500 partitions were used to calculate the statistic. The simulated levels and
power of the three tests are given in Table 1. The simulated levels were based
on 10,000 repetitions. For the simulated power, the results were based on 2,000
repetitions. For the MLRT and two-sample t-test, we used the critical values of
the observed test statistics under the null to determine the simulated power in
order to make the power comparison fair. As seen in Table 1, for moderate or
large samples, the simulated null rejection rates of the three tests are all close to
nominal levels. Under local alternatives, the three tests had comparable power
while under distant alternatives, MR(1) had better power than T and Good’s
randomization test v(0.67). For example, under alternative model with λ = 0.1,
θ2 = 2 and sample sizes n0 = n1 = 200, MR(1) outperformed T by 32.4% and
outperformed v(0.67) by 3.4% at 5% nominal level, and the improvements were
even more remarkable at 1% nominal level.
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Table 1. Simulated null rejection rates and power for MR(1), T and v(0.67).
Here F is from N(0, 1) and H is from (1 − λ)N(0, 1) + λN(θ2, 1).

n1 = 150, n2 = 70 n1 = n2 = 200
λ θ2 Nominal levels MR(1) T v(0.67) MR(1) T v(0.67)

0.0 0.10 0.109 0.103 0.101 0.104 0.100 0.104
0.0 0.05 0.056 0.051 0.054 0.053 0.050 0.051
0.0 0.01 0.013 0.011 0.011 0.011 0.010 0.011

0.1 0.5 0.10 0.140 0.137 0.128 0.145 0.146 0.141
0.1 0.5 0.05 0.074 0.074 0.071 0.079 0.082 0.074
0.1 0.5 0.01 0.015 0.016 0.017 0.027 0.026 0.018

0.1 1.0 0.10 0.217 0.205 0.221 0.262 0.246 0.289
0.1 1.0 0.05 0.140 0.128 0.140 0.176 0.167 0.181
0.1 1.0 0.01 0.039 0.037 0.048 0.069 0.061 0.068

0.1 2.0 0.10 0.536 0.383 0.612 0.818 0.561 0.824
0.1 2.0 0.05 0.441 0.283 0.487 0.762 0.438 0.728
0.1 2.0 0.01 0.297 0.126 0.257 0.619 0.225 0.482

0.2 0.5 0.10 0.202 0.201 0.169 0.248 0.247 0.204
0.2 0.5 0.05 0.128 0.129 0.102 0.163 0.164 0.125
0.2 0.5 0.01 0.032 0.035 0.027 0.062 0.064 0.037

0.2 1.0 0.10 0.425 0.400 0.375 0.629 0.600 0.549
0.2 1.0 0.05 0.313 0.284 0.264 0.510 0.470 0.404
0.2 1.0 0.01 0.155 0.130 0.116 0.290 0.246 0.205

0.2 2.0 0.10 0.910 0.789 0.927 0.997 0.967 0.997
0.2 2.0 0.05 0.865 0.699 0.880 0.994 0.939 0.991
0.2 2.0 0.01 0.738 0.486 0.732 0.985 0.817 0.962

0.3 1.0 0.10 0.659 0.642 0.591 0.894 0.881 0.786
0.3 1.0 0.05 0.545 0.522 0.465 0.831 0.816 0.684
0.3 1.0 0.01 0.331 0.296 0.276 0.653 0.604 0.449

We have also conducted simulations to compare the performance of MR(C)
and v(0.67) in the situation with small samples. The results are reported in
Table 2. As expected, MR(2) had better simulated levels and lower power than
MR(1). We also note that when the sample was quite small, there was little
to choose among the various methods as far as local alternatives go. When
the alternatives were more distant, however, both MR(1) and MR(2) did much
better than Good’s randomization test.

4. An Example

In this section, we apply our method to the drug abuse data first pre-
sented in Weeks and Collins (1971) and analyzed subsequently by Good (1979)
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Table 2. Simulated null rejection rates and power for MR and v(0.67). F is
from N(0, 1) and H is from (1 − λ)N(0, 1) + λN(θ2, 1).

n1 = 30, n2 = 30
λ θ2 Nominal levels MR(1) MR(2) v(0.67)

0.0 0.10 0.120 0.109 0.101
0.0 0.05 0.064 0.056 0.050
0.0 0.01 0.019 0.015 0.012

0.2 1.0 0.10 0.203 0.197 0.229
0.2 1.0 0.05 0.122 0.115 0.140
0.2 1.0 0.01 0.030 0.030 0.046

0.2 2.0 0.10 0.539 0.466 0.577
0.2 2.0 0.05 0.434 0.361 0.449
0.2 2.0 0.01 0.212 0.164 0.208

0.2 3.0 0.10 0.878 0.813 0.834
0.2 3.0 0.05 0.828 0.744 0.717
0.2 3.0 0.01 0.680 0.581 0.427

0.2 4.0 0.10 0.980 0.956 0.926
0.2 4.0 0.05 0.968 0.940 0.850
0.2 4.0 0.01 0.934 0.893 0.580

0.3 1.0 0.10 0.319 0.311 0.304
0.3 1.0 0.05 0.213 0.205 0.206
0.3 1.0 0.01 0.068 0.067 0.082

0.3 2.0 0.10 0.759 0.691 0.805
0.3 2.0 0.05 0.662 0.593 0.690
0.3 2.0 0.01 0.419 0.364 0.442

0.3 3.0 0.10 0.974 0.948 0.964
0.3 3.0 0.05 0.955 0.925 0.930
0.3 3.0 0.01 0.885 0.838 0.779

0.3 4.0 0.10 0.999 0.994 0.992
0.3 4.0 0.05 0.997 0.993 0.979
0.3 4.0 0.01 0.993 0.984 0.883

Table 3. Self-injection rates for rats after six days’ treatment with morphine.

control 0 0 3 4 4 6 6 9 9 10
11 11 13 14 18 18 20 23 26 28
30 41 50 61 80 94

treatment 0 0 2 3 5 5 6 10 13 27
33 40 40 46 51 57 78 87 87 96
103 113 123 146 159 261 261 281 450 500
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and Boos and Brownie (1991). In order to study the addiction to morphine in
rats, an experiment was conducted in which rats could get morphine by pressing
a lever. The response variable is the frequency of lever presses (self-injection
rates) after six days’ treatment with morphine. Figure 1 of Good (1979) displays
the self-injection rates for five groups of rats corresponding to four different dose
levels and one saline control. Boos and Brownie (1991) analyzed the transformed
data, log10(R+1) with R being the number of lever presses by rats, and proposed
a mixture model for the dose-response studies.

Here we are interested in comparing the self-injection rates of the treatment
(at dose level 0.1) and control groups. The number of lever presses on the sixth
day for the two groups of rats are listed in Table 3. We used the same transforma-
tion as in Boos and Brownie (1991). A Q-Q plot suggests that a normal model fits
the transformed data in the control group very well. We applied the MLRT with
normal kernel and common unknown variance to these data with penalty size C

chosen to be 2. The MLRT statistic is 10.24, which suggests strong evidence of a
treatment effect. The same result can be obtained using Good’s randomization
test v(0.67). In comparison to the MLRT and Good’s test, the usual two-sample
t-test suggest weaker evidence.

The presence of nonresponders reduces the power of standard parametric
tests. We suggest that the MLRT be employed to detect a treatment effect when
there is good empirical or biological evidence that some of the subjects may not
be responsive.

5. Concluding Remarks

In this paper, the MLRT is applied to a two-sample problem in which one of
the samples has a mixture structure. It is found that the limiting distribution of
the MLRT statistic is χ2

1 under the null hypothesis, and this is very simple and
convenient to use in applications. It is remarkable that this same limit is obtained
whether or not the kernel contains an unknown structural parameter. This is
in contrast to the situation in a single sample problem where the asymptotic
distribution of the MLRT statistic is complicated when there is a structural
parameter. We have also discussed the asymptotic distribution of the MLRT
statistic under a sequence of local alternatives which allows for calculation of
local powers. These results may be of assistance in planning experiments through
providing guidance on appropriate sample size.

Finally, we provide some guideline on the choice of the modification constant
C. Although the limiting distribution of the MLRT does not depend on the
specific choice of C, the type I error based on the chi-square limit does in any
application. We recommend choosing a value of C so that the type I error is
between 4% and 6% when the nominal value is 5%. This can be achieved by
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reading simulation results in the literature, or by a trial simulation at the sample
size of the actual application. For example, in Table 1 with 10,000 replications,
n1 = 150 and n2 = 70, the standard error of the estimated size is about 0.2%.
So with the simulated type I error rate 5.6% for MR(1) , we could say that the
level is between 5.2% and 6% when C = 1. The choice of C = 1 has also been
found to be satisfactory for data with multinomial component distributions; see
Chen (1998) and Fu, Chen and Kalbfleisch (2006).
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