SUPPLEMENTS FOR "A BERNSTEIN-VON MISES THEOREM FOR DOUBLY CENSORED DATA"

Yongdai Kim

Seoul National University, Korea

Supplementary Material

In this manuscript, we provide detailed proofs of the existence of the unique solution of (2.1) in Kim (2007) on \mathcal{Q}_0 . Also, we prove that \mathcal{Q}_0 is a measurable subset of \mathcal{Q} and $V = U^{-1}$ is measurable.

S1. Detailed proof of Theorem 1

The following theorem proves the existence of the solution of (2.1) when $\mathbf{Q} \in \mathcal{Q}_0$.

Theorem 1 For a given $\mathbf{Q} \in \mathcal{Q}_0$, the system of equations (2.1) has a solution in \mathcal{D}_I^3 .

Proof. For given $\mathbf{Q} \in \mathcal{Q}_0$, suppose that Q_1 has only finitely many jumps at $0 < x_1 < \cdots < x_k < \infty$. We will show that the solution of the first equation of (2.2) exists in \mathcal{D}_I . Let Φ be a mapping from \mathcal{D}_I to \mathcal{D} defined by

$$\Phi(S_1) = Q_{\cdot}(t) - \int_{u \le t} \frac{S_1(t)}{S_1(u)} dQ_2(u) + \int_{t < u} \frac{1 - S_1(t)}{1 - S_1(u)} dQ_3(u)$$

for $S_1 \in \mathcal{D}_I$. Suppose S_1 has jumps only at $\{x_1, \ldots, x_k\} \cup \Psi_2 \cup \Psi_3 (= \{t_1 < t_2 < \ldots < t_l\})$. Mykland and Ren (1996) proved that $\Psi(S_1)$ is also in \mathcal{D}_I and has jumps only at $\{t_1 < t_2 < \ldots < t_l\}$. Hence, if we consider S_1 as a vector in $\Omega = \{\mathbf{y} \in [0,1]^l : 1 \ge y_1 \ge y_2 \ge \cdots \ge y_l \ge 0\}$, then Φ is a mapping from Ω to Ω . Since Φ is continuous and Ω is a compact convex set, by the Brouwer fixed point theorem (Ortega and Rheinboldt (1970)), there exists $S_1 \in \Omega$ such that $S_1 = \Phi(S_1)$, which completes the proof of the existence of the solution of the first equation of (2.2). If we define S_2 and S_3 by the second and third equations of (2.2), $\mathbf{S} = (S_1, S_2, S_3)$ is a solution of (2.1).

YONGDAI KIM

For general $\mathbf{Q} \in \mathcal{Q}_0$, we can make a sequence of $\mathbf{Q}_n \in \mathcal{Q}_0$ such that they have only finitely many jumps and $\sup_{t \in [0,\infty)} |Q_{nk}(t) - Q_k(t)| \to 0$ as $n \to \infty$ for k = 1, 2, 3. For instance, set $Q_{n2} = Q_2$ and $Q_{n3} = Q_3$. As for Q_1 , choose t_k in (z_{k-1}, z_k) for $k = 1, \ldots, n_{23} + 1$ such that $\Delta Q_1(t_k) > 0$, and let $A_n = \{t : \Delta Q_1(t) \ge 1/n\} \cup \{t_1, \ldots, t_{n_{23}+1}\}$. Since A_n has only finite number of elements, we write $A_n = \{0 = v_0 < v_1 < v_2 < \cdots < v_l < v_\infty\}$. Let $Q_{n1}(t) = 1 - \sum_{j=1}^l w_j I(v_j \le t)$ where $w_j = Q_1(v_{j-1}) - Q_1(v_j)$ for $j = 1, \ldots, l-1$ and $w_l = Q_1(v_{l-1})$. Then, it is easy to show that $\sup_{t \in [0,\infty)} |Q_{n1}(t) - Q_1(t)| \to 0$ as $n \to \infty$.

For given \mathbf{Q}_n , let \mathbf{S}_n be a solution of (2.1). Since \mathbf{S}_n are uniformly bounded and nonincreasing functions, Helly's selection theorem implies that there is a subsequence \mathbf{S}_{n_k} such that \mathbf{S}_{nk} converges to $\mathbf{S} \in \mathcal{D}^3$ pointwisely. Since $S_{n_k 2}$ and S_{nk3} have jumps only at Ψ_2 and Ψ_3 respectively, they converge to S_2 and S_3 uniformly. Since $Q_{n_k 1}$ converges uniformly to Q_1 , the first equation of (2.1) implies that $S_{n_k 1}$ converges to S_1 uniformly. Hence, S_1 is a solution of the first equation of (2.2); thus, \mathbf{S} is a solution of (2.1). \Box

The following theorem proves that the solution is unique.

Theorem 2 For given $\mathbf{Q} \in \mathcal{Q}_0$, the system of equation (2.1) has a unique solution.

Proof. For given $\mathbf{Q} \in \mathcal{Q}_0$, suppose there are two solutions $\mathbf{S}_1 = (S_{11}, S_{12}, S_{13})$ and $\mathbf{S}_2 = (S_{21}, S_{22}, S_{23})$ in \mathcal{D}_I^3 for (2.1). It is easy to see from the second and third equations of (2.1), S_{k2} and S_{k3} have jumps only at Ψ_2 and Ψ_3 respectively for k = 1, 2. Also, from the first equation of (2.1), $\Delta S_{k1}(t) < 0$ and $S_{k2}(t) - S_{k3}(t) > 0$ whenever $\Delta Q_1(t) < 0$. Since $\Delta Q_1(t) < 0$ for some $t < z_1$ or $t > z_{n_{23}}$ and S_{k2} and S_{k3} have only finitely many jumps we have $\inf_{t \in [0,\infty)} S_{k2}(t) - S_{k3}(t) > 0$.

By the second equation of (2.2), $S_{k2}(0) = 1$ and hence $S_{k3}(0) < 1$. Similarly, by the third equation of (2.2), $S_{k3}(\infty) = 0$ and so $S_{k2}(\infty) > 0$. Also, the integration by part using (2.1), it follows

$$Q_{\cdot}(t) = S_{k3}(t) + S_{k1}(t)(S_{k2}(t) - S_{k3}(t)).$$

Since $Q_{\cdot}(0) = 1$ and $Q_{\cdot}(\infty) = 0$, we have $S_{k1}(0) = 1$ and $S_{k1}(\infty) = 0$; that is, S_{k1} is a survival function for k = 1, 2.

From (2.1), we have

$$0 = -\int_{t}^{\infty} (S_{12} - S_{13})d(S_{11} - S_{21}) - \int_{t}^{\infty} [(S_{12} - S_{22}) - (S_{13} - S_{23})]dS_{21} \quad (1)$$

$$0 = -\int_{t}^{\infty} S_{11}d(S_{12} - S_{22}) - \int_{t}^{\infty} (S_{11} - S_{21})dS_{22}$$
(2)

$$0 = -\int_{t}^{\infty} (1 - S_{11})d(S_{13} - S_{23}) + \int_{t}^{\infty} (S_{11} - S_{21})dS_{23}$$
(3)

for all $t \ge 0$.

Suppose $S_{11} \neq S_{21}$. Then, without loss of generality, we can find $0 \leq t_1 < t_2 \leq \infty$ such that $S_{11}(t) = S_{21}(t)$ for $t \leq t_1$, $S_{11}(t) < S_{21}(t)$ for all $t \in (t_1, t_2)$ and $S_{11}(t_2) \geq S_{21}(t_2)$. Note also such t_1 and t_2 are outside Ψ_{23} . We will show $(S_{12} - S_{22}) - (S_{13} - S_{23})$ must change the sign on (t_1, t_2) . First, suppose $(S_{12} - S_{22}) - (S_{13} - S_{23})$ is positive on (t_1, t_2) . Then, from (1), $d(S_{11} - S_{21}) \geq 0$ on (t_1, t_2) . If this is true, then

$$S_{11}(t) - S_{21}(t) = \int_{t_1+}^t d(S_{11} - S_{21}) \ge 0,$$

which contradicts the assumptions that $S_{11} < S_{21}$ on (t_1, t_2) . Second, Suppose $(S_{12} - S_{22}) - (S_{13} - S_{23})$ is negative on (t_1, t_2) . Since $t_2 \notin \Psi_{23}$, we can find $\delta > 0$ such that it has the negative sign on $(t_1, t_2 + \delta)$. Then,

$$S_{11}(t) - S_{21}(t) = S_{11}(t_2) - S_{21}(t_2) - \int_t^{t_2+} d(S_{11} - S_{21}) \ge 0,$$

which is again a contradiction. Hence, $(S_{12} - S_{22}) - (S_{13} - S_{23})$ must change the sign on (t_1, t_2) . Since we assume that $S_{11}(t) < S_{21}(t)$ for all $t \in (t_1, t_2)$, from (2) and (3), we have $d(S_{12} - S_{22}) \leq 0$ and $d(S_{13} - S_{23}) \geq 0$ on (t_1, t_2) . Since $S_{11}(t) = S_{21}(t)$ on $t \leq t_1$, the first equation of (1) implies that $(S_{12}(t_1) - S_{22}(t_1)) - (S_{13}(t_1) - S_{23}(t_1)) = 0$. Hence, for $t \in (t_1, t_2)$, it follows

$$(S_{12}(t) - S_{22}(t)) - (S_{13}(t) - S_{23}(t)) = \int_{t_1}^t d(S_{12} - S_{22}) - d(S_{13} - S_{23}) \le 0,$$

which contradicts that fact that $(S_{12} - S_{22}) - (S_{13} - S_{23})$ must change the sign on (t_1, t_2) . Hence, S_{11} should be the same as S_{21} . The uniqueness of S_{k2} and S_{k3} easily follow from the second and third equations of (2.2). \Box

S2. Measurability of Q_0

YONGDAI KIM

Theorem 3 For given D_n , Q_0 is a measurable subset of Q

Proof. It is clear that $Q_1 \times Q_{02} \times Q_{03}$ are measurable subsets of Q. Hence,

Let \mathcal{Q}_d be the set of all discrete probability measures on $[0, \infty) \times \{1, 2, 3\}$. By Proposition 2.2.4 of Ghosh and Ramamoorthi (2003), \mathcal{Q}_d is measurable with respect to the weak topology. Since the Skorohod topology is stronger than the weak topology, \mathcal{Q}_d is also measurable with respect to $\mathcal{B}_{\mathcal{Q}}$.

Let $G_k = \{Q_1 : Q_1(z_k) - Q_1(Z_{k-1})\} \times Q_2 \times Q_3 \text{ and } H_k = \{Q_1 : \Delta Q_1(z_k) = 0\} \times Q_2 \times Q_3$. Note that the σ -field on $\mathcal{D}[0,\infty)$ generated by the Skorohod topology is equivalent to the σ -field generated by the finite dimensional sets (i.e $(Q_1(t_1), \ldots, Q_1(t_k)))$). See Pollard (1984) Theorem 6, p127. Hence, G_k are measurable since $\sigma(Q_1(z_k), Q_1(z_{k-1})) \times Q_2 \times Q_3$ are measurable. Also, H_k are measurable since $H_k = \lim_{n\to\infty} \{Q_1 : Q_1(z_k) - Q_1(z_k - 1/n) = 0\} \times Q_2 \times Q_3$ are measurable.

Finally, we can write

$$\mathcal{Q}_0 = \mathcal{Q}_1 \times \mathcal{Q}_{02} \times \mathcal{Q}_{03} \bigcap \mathcal{Q}_d \bigcap \left(\bigcap_{k=1}^{n_{23}+1} (G_k \cap H_k) \right)$$

and hence \mathcal{Q}_0 is measurable with respect to $\mathcal{B}_{\mathcal{Q}}$.

S3. Measurability of V

Theorem 4 The mapping V from $(\mathcal{Q}, \mathcal{B}_{\mathcal{Q}})$ to $(\mathcal{D}_I^3, \mathcal{B}_{\mathcal{D}_I^3})$ induced by the integral equations (2.1) is measurable.

Proof. We will show that the induced mapping is continuous. Suppose \mathbf{Q}_n be a sequence converging to \mathbf{Q} on \mathcal{Q}_0 . Let $\mathbf{S}_n = V(\mathbf{Q}_n)$ and $\mathbf{S} = V(\mathbf{Q})$. The Helly's selection theorem yields that \mathbf{S}_n converges to \mathbf{S} pointwisely. In turn, this implies that S_{n2} and S_{n3} converges to S_2 and S_3 uniformly since they have finitely many jumps with the same support. Hence, it suffices to show that S_{n1} converges to S_1 with respect to the Skorohod topology.

By definition of the Skorohod topology, there exists a sequence of nonnegative continuous increasing functions $\lambda_n(t)$ on [0,T] for any given T > 0such that $Q_{n1}(\lambda_n(t)) \to Q_1(t)$ and $\lambda_n(t) \to t$ uniformly on $t \in [0,T]$. Let $Q_{nk}^{\lambda}(t) = Q_{nk}(\lambda_n(t))$. for k = 1, 2, 3. Then, it is easy to see from (2.1) that $S_{nk}^{\lambda}(t) = S_{nk}(\lambda_n(t))$ for k = 1, 2, 3 are the unique solution of (2.1) with \mathbf{Q}_n^{λ} . Now, since $\mathbf{Q}_{\mathbf{n}}^{\lambda}$ converges to \mathbf{Q} uniformly on [0, T], similar arguments used in the proof of Theorem 2 yield that \mathbf{S}_{n}^{λ} converges to \mathbf{S} uniformly on [0, T]. Hence, $S_{n1}(\lambda_{n}(\cdot))$ converges to $S_{1}(\cdot)$ uniformly on [0, T] and so S_{n1} converges to S_{1} with respect to the Skorohod topology. \Box

References

- Ghosh, J.K. and Ramamoorthi, R.V. (2003). *Bayesian nonparanetrics*. Springer series in Statistics, New York.
- Kim, Y. (2009). A Bernstein-von Mises theorem for doubly censored data. Statistica Sinica.
- Mykland, P.A. and Ren, J.J. (1996). Algorithms for computing self-consistent and maximum likelihood estimators with doubly censored data . Ann. Statist, 24, 1740-1764.
- Ortega, J.M. and Rheinboldt, W.C. (1970). Iterative solutions of nonlinear equations in several variables, Academic Press, New York, 1970.
- Pollard, D. (1987). Convergence of stochastic processes. Springer Series in Statistics, New York.