SUPPLEMENTS FOR "A BERNSTEIN-VON MISES THEOREM FOR DOUBLY CENSORED DATA"

Yongdai Kim
Seoul National University, Korea

Supplementary Material

In this manuscript, we provide detailed proofs of the existence of the unique solution of (2.1) in $\operatorname{Kim}(2007)$ on \mathcal{Q}_{0}. Also, we prove that \mathcal{Q}_{0} is a measurable subset of \mathcal{Q} and $V=U^{-1}$ is measurable.

S1. Detailed proof of Theorem 1

The following theorem proves the existence of the solution of (2.1) when $\mathbf{Q} \in \mathcal{Q}_{0}$.

Theorem 1 For a given $\mathbf{Q} \in \mathcal{Q}_{0}$, the system of equations (2.1) has a solution in \mathcal{D}_{I}^{3}.
Proof. For given $\mathbf{Q} \in \mathcal{Q}_{0}$, suppose that Q_{1} has only finitely many jumps at $0<x_{1}<\cdots<x_{k}<\infty$. We will show that the solution of the first equation of (2.2) exists in \mathcal{D}_{I}. Let Φ be a mapping from \mathcal{D}_{I} to \mathcal{D} defined by

$$
\Phi\left(S_{1}\right)=Q .(t)-\int_{u \leq t} \frac{S_{1}(t)}{S_{1}(u)} d Q_{2}(u)+\int_{t<u} \frac{1-S_{1}(t)}{1-S_{1}(u)} d Q_{3}(u)
$$

for $S_{1} \in \mathcal{D}_{I}$. Suppose S_{1} has jumps only at $\left\{x_{1}, \ldots, x_{k}\right\} \cup \Psi_{2} \cup \Psi_{3}\left(=\left\{t_{1}<\right.\right.$ $\left.\left.t_{2}<\ldots<t_{l}\right\}\right)$. Mykland and Ren (1996) proved that $\Psi\left(S_{1}\right)$ is also in \mathcal{D}_{I} and has jumps only at $\left\{t_{1}<t_{2}<\ldots<t_{l}\right\}$. Hence, if we consider S_{1} as a vector in $\Omega=\left\{\mathbf{y} \in[0,1]^{l}: 1 \geq y_{1} \geq y_{2} \geq \cdots \geq y_{l} \geq 0\right\}$, then Φ is a mapping from Ω to Ω. Since Φ is continuous and Ω is a compact convex set, by the Brouwer fixed point theorem (Ortega and Rheinboldt (1970)), there exists $S_{1} \in \Omega$ such that $S_{1}=\Phi\left(S_{1}\right)$, which completes the proof of the existence of the solution of the first equation of (2.2). If we define S_{2} and S_{3} by the second and third equations of (2.2), $\mathbf{S}=\left(S_{1}, S_{2}, S_{3}\right)$ is a solution of (2.1).

For general $\mathbf{Q} \in \mathcal{Q}_{0}$, we can make a sequence of $\mathbf{Q}_{n} \in \mathcal{Q}_{0}$ such that they have only finitely many jumps and $\sup _{t \in[0, \infty)}\left|Q_{n k}(t)-Q_{k}(t)\right| \rightarrow 0$ as $n \rightarrow \infty$ for $k=1,2,3$. For instance, set $Q_{n 2}=Q_{2}$ and $Q_{n 3}=Q_{3}$. As for Q_{1}, choose t_{k} in $\left(z_{k-1}, z_{k}\right)$ for $k=1, \ldots, n_{23}+1$ such that $\Delta Q_{1}\left(t_{k}\right)>0$, and let $A_{n}=\{t$: $\left.\Delta Q_{1}(t) \geq 1 / n\right\} \cup\left\{t_{1}, \ldots, t_{n_{23}+1}\right\}$. Since A_{n} has only finite number of elements, we write $A_{n}=\left\{0=v_{0}<v_{1}<v_{2}<\cdots<v_{l}<v_{\infty}\right\}$. Let $Q_{n 1}(t)=1-\sum_{j=1}^{l} w_{j} I\left(v_{j} \leq\right.$ t) where $w_{j}=Q_{1}\left(v_{j-1}\right)-Q_{1}\left(v_{j}\right)$ for $j=1, \ldots, l-1$ and $w_{l}=Q_{1}\left(v_{l-1}\right)$. Then, it is easy to show that $\sup _{t \in[0, \infty)}\left|Q_{n 1}(t)-Q_{1}(t)\right| \rightarrow 0$ as $n \rightarrow \infty$.

For given \mathbf{Q}_{n}, let \mathbf{S}_{n} be a solution of (2.1). Since \mathbf{S}_{n} are uniformly bounded and nonincreasing functions, Helly's selection theorem implies that there is a subsequence $\mathbf{S}_{n_{k}}$ such that $\mathbf{S}_{n k}$ converges to $\mathbf{S} \in \mathcal{D}^{3}$ pointwisely. Since $S_{n_{k} 2}$ and $S_{n k 3}$ have jumps only at Ψ_{2} and Ψ_{3} respectively, they converge to S_{2} and S_{3} uniformly. Since $Q_{n_{k} 1}$ converges uniformly to Q_{1}, the first equation of (2.1) implies that $S_{n_{k} 1}$ converges to S_{1} uniformly. Hence, S_{1} is a solution of the first equation of (2.2); thus, \mathbf{S} is a solution of (2.1).

The following theorem proves that the solution is unique.

Theorem 2 For given $\mathbf{Q} \in \mathcal{Q}_{0}$, the system of equation (2.1) has a unique solution.
Proof. For given $\mathbf{Q} \in \mathcal{Q}_{0}$, suppose there are two solutions $\mathbf{S}_{1}=\left(S_{11}, S_{12}, S_{13}\right)$ and $\mathbf{S}_{2}=\left(S_{21}, S_{22}, S_{23}\right)$ in \mathcal{D}_{I}^{3} for (2.1). It is easy to see from the second and third equations of (2.1), $S_{k 2}$ and $S_{k 3}$ have jumps only at Ψ_{2} and Ψ_{3} respectively for $k=1,2$. Also, from the first equation of $(2.1), \Delta S_{k 1}(t)<0$ and $S_{k 2}(t)-S_{k 3}(t)>0$ whenever $\Delta Q_{1}(t)<0$. Since $\Delta Q_{1}(t)<0$ for some $t<z_{1}$ or $t>z_{n_{23}}$ and $S_{k 2}$ and $S_{k 3}$ have only finitely many jumps we have $\inf _{t \in[0, \infty)} S_{k 2}(t)-S_{k 3}(t)>0$.

By the second equation of $(2.2), S_{k 2}(0)=1$ and hence $S_{k 3}(0)<1$. Similarly, by the third equation of $(2.2), S_{k 3}(\infty)=0$ and so $S_{k 2}(\infty)>0$. Also, the integration by part using (2.1), it follows

$$
Q .(t)=S_{k 3}(t)+S_{k 1}(t)\left(S_{k 2}(t)-S_{k 3}(t)\right) .
$$

Since $Q .(0)=1$ and $Q .(\infty)=0$, we have $S_{k 1}(0)=1$ and $S_{k 1}(\infty)=0$; that is, $S_{k 1}$ is a survival function for $k=1,2$.

From (2.1), we have

$$
\begin{align*}
& 0=-\int_{t}^{\infty}\left(S_{12}-S_{13}\right) d\left(S_{11}-S_{21}\right)-\int_{t}^{\infty}\left[\left(S_{12}-S_{22}\right)-\left(S_{13}-S_{23}\right)\right] d S_{21} \tag{1}\\
& 0=-\int_{t}^{\infty} S_{11} d\left(S_{12}-S_{22}\right)-\int_{t}^{\infty}\left(S_{11}-S_{21}\right) d S_{22} \tag{2}\\
& 0=-\int_{t}^{\infty}\left(1-S_{11}\right) d\left(S_{13}-S_{23}\right)+\int_{t}^{\infty}\left(S_{11}-S_{21}\right) d S_{23} \tag{3}
\end{align*}
$$

for all $t \geq 0$.
Suppose $S_{11} \neq S_{21}$. Then, without loss of generality, we can find $0 \leq t_{1}<$ $t_{2} \leq \infty$ such that $S_{11}(t)=S_{21}(t)$ for $t \leq t_{1}, S_{11}(t)<S_{21}(t)$ for all $t \in\left(t_{1}, t_{2}\right)$ and $S_{11}\left(t_{2}\right) \geq S_{21}\left(t_{2}\right)$. Note also such t_{1} and t_{2} are outside Ψ_{23}. We will show $\left(S_{12}-S_{22}\right)-\left(S_{13}-S_{23}\right)$ must change the sign on $\left(t_{1}, t_{2}\right)$. First, suppose $\left(S_{12}-\right.$ $\left.S_{22}\right)-\left(S_{13}-S_{23}\right)$ is positive on $\left(t_{1}, t_{2}\right)$. Then, from (1), $d\left(S_{11}-S_{21}\right) \geq 0$ on $\left(t_{1}, t_{2}\right)$. If this is true, then

$$
S_{11}(t)-S_{21}(t)=\int_{t_{1}+}^{t} d\left(S_{11}-S_{21}\right) \geq 0
$$

which contradicts the assumptions that $S_{11}<S_{21}$ on $\left(t_{1}, t_{2}\right)$. Second, Suppose $\left(S_{12}-S_{22}\right)-\left(S_{13}-S_{23}\right)$ is negative on $\left(t_{1}, t_{2}\right)$. Since $t_{2} \notin \Psi_{23}$, we can find $\delta>0$ such that it has the negative sign on $\left(t_{1}, t_{2}+\delta\right)$. Then,

$$
S_{11}(t)-S_{21}(t)=S_{11}\left(t_{2}\right)-S_{21}\left(t_{2}\right)-\int_{t}^{t_{2}+} d\left(S_{11}-S_{21}\right) \geq 0
$$

which is again a contradiction. Hence, $\left(S_{12}-S_{22}\right)-\left(S_{13}-S_{23}\right)$ must change the sign on $\left(t_{1}, t_{2}\right)$. Since we assume that $S_{11}(t)<S_{21}(t)$ for all $t \in\left(t_{1}, t_{2}\right)$, from (2) and (3), we have $d\left(S_{12}-S_{22}\right) \leq 0$ and $d\left(S_{13}-S_{23}\right) \geq 0$ on $\left(t_{1}, t_{2}\right)$. Since $S_{11}(t)=S_{21}(t)$ on $t \leq t_{1}$, the first equation of (1) implies that $\left(S_{12}\left(t_{1}\right)-\right.$ $\left.S_{22}\left(t_{1}\right)\right)-\left(S_{13}\left(t_{1}\right)-S_{23}\left(t_{1}\right)\right)=0$. Hence, for $t \in\left(t_{1}, t_{2}\right)$, it follows

$$
\left(S_{12}(t)-S_{22}(t)\right)-\left(S_{13}(t)-S_{23}(t)\right)=\int_{t_{1}}^{t} d\left(S_{12}-S_{22}\right)-d\left(S_{13}-S_{23}\right) \leq 0
$$

which contradicts that fact that $\left(S_{12}-S_{22}\right)-\left(S_{13}-S_{23}\right)$ must change the sign on $\left(t_{1}, t_{2}\right)$. Hence, S_{11} should be the same as S_{21}. The uniqueness of $S_{k 2}$ and $S_{k 3}$ easily follow from the second and third equations of (2.2).

S2. Measurability of \mathcal{Q}_{0}

Theorem 3 For given $\mathrm{D}_{n}, \mathcal{Q}_{0}$ is a measurable subset of \mathcal{Q}
Proof. It is clear that $\mathcal{Q}_{1} \times \mathcal{Q}_{02} \times \mathcal{Q}_{03}$ are measurable subsets of \mathcal{Q}. Hence,
Let \mathcal{Q}_{d} be the set of all discrete probability measures on $[0, \infty) \times\{1,2,3\}$. By Proposition 2.2.4 of Ghosh and Ramamoorthi (2003), \mathcal{Q}_{d} is measurable with respect to the weak topology. Since the Skorohod topology is stronger than the weak topology, \mathcal{Q}_{d} is also measurable with respect to $\mathcal{B}_{\mathcal{Q}}$.

Let $G_{k}=\left\{Q_{1}: Q_{1}\left(z_{k}\right)-Q_{1}\left(Z_{k-1}\right)\right\} \times \mathcal{Q}_{2} \times \mathcal{Q}_{3}$ and $H_{k}=\left\{Q_{1}: \Delta Q_{1}\left(z_{k}\right)=\right.$ $0\} \times \mathcal{Q}_{2} \times \mathcal{Q}_{3}$. Note that the σ-field on $\mathcal{D}[0, \infty)$ generated by the Skorohod topology is equivalent to the σ-field generated by the finite dimensional sets (i.e $\left.\left(Q_{1}\left(t_{1}\right), \ldots, Q_{1}\left(t_{k}\right)\right)\right)$. See Pollard (1984) Theorem 6, p127. Hence, G_{k} are measurable since $\sigma\left(Q_{1}\left(z_{k}\right), Q_{1}\left(z_{k-1}\right)\right) \times \mathcal{Q}_{2} \times \mathcal{Q}_{3}$ are measurable. Also, H_{k} are measurable since $H_{k}=\lim _{n \rightarrow \infty}\left\{Q_{1}: Q_{1}\left(z_{k}\right)-Q_{1}\left(z_{k}-1 / n\right)=0\right\} \times \mathcal{Q}_{2} \times \mathcal{Q}_{3}$ are measurable.

Finally, we can write

$$
\mathcal{Q}_{0}=\mathcal{Q}_{1} \times \mathcal{Q}_{02} \times \mathcal{Q}_{03} \bigcap \mathcal{Q}_{d} \bigcap\left(\cap_{k=1}^{n_{23}+1}\left(G_{k} \cap H_{k}\right)\right)
$$

and hence \mathcal{Q}_{0} is measurable with respect to $\mathcal{B}_{\mathcal{Q}}$.

S3. Measurability of V

Theorem 4 The mapping V from $\left(\mathcal{Q}, \mathcal{B}_{\mathcal{Q}}\right)$ to $\left(\mathcal{D}_{I}^{3}, \mathcal{B}_{\mathcal{D}_{I}^{3}}\right)$ induced by the integral equations (2.1) is measurable.

Proof. We will show that the induced mapping is continuous. Suppose \mathbf{Q}_{n} be a sequence converging to \mathbf{Q} on \mathcal{Q}_{0}. Let $\mathbf{S}_{n}=V\left(\mathbf{Q}_{n}\right)$ and $\mathbf{S}=V(\mathbf{Q})$. The Helly's selection theorem yields that \mathbf{S}_{n} converges to \mathbf{S} pointwisely. In turn, this implies that $S_{n 2}$ and $S_{n 3}$ converges to S_{2} and S_{3} uniformly since they have finitely many jumps with the same support. Hence, it suffices to show that $S_{n 1}$ converges to S_{1} with respect to the Skorohod topology.

By definition of the Skorohod topology, there exists a sequence of nonnegative continuous increasing functions $\lambda_{n}(t)$ on $[0, T]$ for any given $T>0$ such that $Q_{n 1}\left(\lambda_{n}(t)\right) \rightarrow Q_{1}(t)$ and $\lambda_{n}(t) \rightarrow t$ uniformly on $t \in[0, T]$. Let $Q_{n k}^{\lambda}(t)=Q_{n k}\left(\lambda_{n}(t)\right)$. for $k=1,2,3$. Then, it is easy to see from (2.1) that $S_{n k}^{\lambda}(t)=S_{n k}\left(\lambda_{n}(t)\right)$ for $k=1,2,3$ are the unique solution of (2.1) with \mathbf{Q}_{n}^{λ}. Now,
since $\mathbf{Q}_{\mathbf{n}}^{\lambda}$ converges to \mathbf{Q} uniformly on $[0, T]$, similar arguments used in the proof of Theorem 2 yield that \mathbf{S}_{n}^{λ} converges to \mathbf{S} uniformly on $[0, T]$. Hence, $S_{n 1}\left(\lambda_{n}(\cdot)\right)$ converges to $S_{1}(\cdot)$ uniformly on $[0, T]$ and so $S_{n 1}$ converges to S_{1} with respect to the Skorohod topology.

References

Ghosh, J.K. and Ramamoorthi, R.V. (2003). Bayesian nonparanetrics. Springer series in Statistics, New York.

Kim, Y. (2009). A Bernstein-von Mises theorem for doubly censored data. Statistica Sinica.

Mykland, P.A. and Ren, J.J. (1996). Algorithms for computing self-consistent and maximum likelihood estimators with doubly censored data . Ann. Statist, 24, 1740-1764.

Ortega, J.M. and Rheinboldt, W.C. (1970). Iterative solutions of nonlinear equations in several variables, Academic Press, New York, 1970.

Pollard, D. (1987). Convergence of stochastic processes. Springer Series in Statistics, New York.

