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Supplementary Material

This note contains proofs for Theorem 1 and some required Lemmas.
In Lii and Rosenblatt (1992), the asymptotic distribution of the MLE was derived based on the

following “quasi” likelihood function

() = —nlogl8] + 3 og fa(4(0)), (s1)

t=—q+1

where z:(0) is a function of {X;:¢=0,£1,£2,...,} satisfying
-1 ~ -1 >0
2(0)=[07(B)| |0:B0(B7] Xi=m(B)Xi = > m(0)X,, (S2)
j=—00
in which |7;(@)| decays to zero exponentially as j — oo for each 8 (unit root cases are excluded).
This “quasi” likelihood is ideal but cannot be computed since the residuals {z;(0)} depend on
the infinite series of {X;} but only finite numbers of them are observed in practice. However,
the “quasi” likelihood can be viewed as the exact likelihood asymptotically. The corresponding
maximizer, called the “quasi-MLE” by Lii and Rosenblatt (1992), is asymptotically equivalent
to the exact MLE. Lii and Rosenblatt (1992) further approximated this “quasi” likelihood by
truncating z¢(0) in (S2) such that it only depends on the observed data, so that the corresponding
truncated likelihood can be implemented in practice. They showed that the maximizer of the
truncated likelihood, which we refer to as the LR MLE, is asymptotically equivalent to the ideal
“quasi-MLE” and therefore is asymptotically equivalent to the MLE.

In this paper, we consider the following objective function:
én('ltb) = _nlog ‘9:| + Z log fU(ét(e))v (83)
t=—q+1

where 2;(0) depends on some plug-in initial variables (2,, ;). When (2., ws)" = 0, the correspond-

ing maximizer is the conditional MLE defined in (12). The joint MLE defined in (13) is another



special case which maximizes ¢, (1) with some particular (%,, ;) as functions of X,. In the fol-
lowing, we shall show that the maximizer of (S3) is asymptotically equivalent to the “quasi-MLE”
when the initial variables (2,, ;) are bounded away from infinity.

Similar to Lii and Rosenblatt (1992), we first define a neighborhood of the true parameter vector
’lnb(] = (00500),:

Qe={we R : | —vg| <ef,

where | - | is the max norm on R (i.e., || = max;{|z;|} for x = (z1,22,...,2411)"). Then, for

small € > 0, there exists d € (0,1) such that

$ax {all roots in 6*(z) and all roots in #(z~1) in absolute Value} <d<1, (S4)
€Qe

which is a direct result from (3.2) in Lii and Rosenblatt (1992). In order to prove Theorem 1, we

need the following lemmas.

Lemma S1 (Exercise 8.8 in Chapter 1, Durrett (2005)) Assume {Xt = 1,2,...} are iid
non-zero random variables, then Y} | X¢2' converges almost surely for |z2| < 1 if and only if

Elog™" | X;| < 0o, where log™ (z) = max{log(z),0}.

Lemma S2 (Proposition 3.1.1 in Brockwell and Davis (1991)) Assume {X}} is any sequence
of random wvariables such that sup, E|X;| < oo. If 37, [¢bj| < oo, then 37;v;X;j converges almost

surely.

Lemma S3 There exists some constant C' > 0 such that
(e 9]
sup |z(0) — 2(80)| < C €'/ Z AN X, ).
Yeq. j=—o00
Proof: According to Equation (3.3)” in Lii and Rosenblatt (1992), there exists some constant
C > 0 such that

sup ‘7['](9) — Wj(ao)’ S Cel/Qdm,
PeQ.

for all j. The lemma follows directly from the expression for z;(€) in (S2). O

Lemma S4 Given the observed data X, = x,, the actual values of the initial variables (z,,ws)

associated with x,, and some plug-in values (Z,,ws), we have

sup |%(0) — z(0)] < Ci(n—1t)"td" |, — ws| + Co(t + ¢)" 1d'|2, — z,|,

heq.
9
s 55 H®) = 2O < Caln = @ o, —wal + Cult + 0 2~ 24,
€Qe
82 1 1
0 |5 40) - O] < o 7P, ol )~
€Qe




fort=—q+1,2,...,n, where |- | is the max norm on the vector space (i.e., |x| = max; |z;|), and

C1-Cg are some positive constants.

Sketch of Proof: For a general MA(q) process, though 2,(0,X,,Z,, W) can be computed
recursively based on the backward and forward recursions (6) and (4), their expressions in terms of
the initials (ws, z,) and @ are quite messy. For simplicity, we only sketch the proof for this lemma
by showing the results for a special case: a non-purely non-invertible MA(2) (ie., r = s = 1)
satisfying 6T (B) = 14 6] B and 6*(B) = 1+ 6;B with |8]| < 1 and |} > 1. The parameter vector
considered in this particular case is ¥ = (01[, ¥,0). Define W; = 0%(B)Z;, we have X; = 6*(B)W,.
According to the forward and backward recursions (4) and (6), the residuals defined in (7) can be

expressed explicitly:

J 1 Y4 1 j .
Woj = *Z 7% Kn—jre+ *@ Wy, 7=12,...,n,

=1
= i (*GI)thﬂ + ( 91)“1 Z,
i=0
= iniﬂ (*91{)1' (%)ZXtiH I i (791)1' (;_T)ntﬂ' W (79]{)t+1 7,
z:to nzjiz i 1 i=0
= - (—91{) (_9—*) Xiite
i=0 ¢=1 1
" _%)n_t %Wn +(-0)" 2o, -
1/91

for t = 0,1,...,n. Note that the residuals {z;} in (S5) are functions of 6, X, and (Z_1,W,,).
We use the notation z,(0) for z:(6, X,,2z_1,w,) where (z_1,w,) are the actual values of initial
conditions to generate the data X, = «x, and the notation 2,(0) for z(0,X,,2_1,w,) where
(2-1,y,) are some plug-in values of initial conditions.

According to (S5), we have

Z -z = —1_(01/%)&1 L " Wy, — W —o)"™ 21—z
(0 -a0) = S0 () G+ ()T G2,

For this particular MA(2) process, the inequality in (S4) becomes
} x|—1
max < |601], |07 <d<1 (S6)
PeQ. { }
Therefore,

sup |2:(0) — z(0)] < C’ld"_tw}n — wp| + C’gdt|2,1 —z_1|.
PeQ.



For this particular example, the other two inequalities can be easily obtained by taking the deriva-
tives of 2,(0) — z:(0) with respect to @ and applying (S6) to them. For a general MA(g), the
linear expression for z,(0, X, Z,, W) can also be derived explicitly but the coefficients are very
complicated in terms of 8. However, the coefficients associated with W and Z, have the orders
O((n — t)*~td"=*) and O((t + q)"~'d") for ¢ € Q.. Consequently, the coefficients of W4 and Z,
have the orders O((n — t)*d""") and O((t + ¢)"d") in the first derivative 92;(8)/96 and have the

orders O((n — t)*T1d"~*) and O((t + q)"*'d") in the second derivative 922,(6)/0000’, respectively.
a

Lemma S5 All of the elements in the derivatives 0z4(0)/00 and 0*2,(0)/0000" have the form

72 oo Vi Zt—j with some {7;} where |v;| decays exponentially as |j| — oo.

Proof: Define V; = 6*(B)Z; and

o) = o5 (14 ng Lt B )]_1:(9;)—138 )™
Under the expression of z(8) in (S2), the elements of partial derivatives satisfy
ﬁg)=E%anWm=ﬁ£%m=ﬁ%wﬂmwwu=—PWM4&p
T = ] V= ) 2y
O I P
gzgg;;) B a(Z;; (#;)) Zey = (0B B 2y

for all possible j and k. Since both [#T(B)]~! and [#*(B)]~! can be expressed as polynomials of B
with infinite order and the coefficients of B* decay exponentially to zero as |k| — oo, therefore all

the partial derivatives have the form > 22 «;Z;; with some {7;} where |y;| decay exponentially

as |j| — oo. O
Lemma S6 Under the assumptions (A1)-(A9) given in Theorem 1,

sup l|€n(1,lz) - én(¢)| — 0, a.s.
e "

Proof: Given /,,(1)) and £,(v) in (S1) and (S3), we have

n

@)~ b = 1| 3 g folal0) — Y lorfola(®)

t=—g+1 t=—q+1



<5 3 lowfola) g fo((6))

= 1% @@ - E o)
t=—q+1 o
N 7 r
< 5, X 10— 20| F o) + (2 G0y - 22 o)
< LY ) - 2@ 2 )|+ Y (20 - 20|22 o) - L o)
n t=—q+1 f" n t=—q+1 fU fa
1

where the first-order Taylor expansion is used with 2;(6) = 2,(0) + u(0)(2:(0) — z:(0)) for some
ut(6) € [0,1] (i.e., 2/ (0) is between z;(0) and 2,(0)). According to Lemma S4, we have

n

o .
sup Ay = =7 (2(00))| sup [2¢(0) — 2:(0)]
Peq. 1 t:—Zqu o heq. t t
< Z ; (2:(00))| {C1(n —t)°~ L=t — w| + Co(t + )" 1dt 2, — zr|}
t=—g+1177
= Gl w3 (-0 22 e
t=—q+1 7
4ol =zl Y (4 ey |52 a0, )
t=—q+1 7
Since f,(z) = 0~ f(z/0) and Assumption (A8), we have
I L _ [ N L[R2
5L aon)| = [ )] o= [ |25 (2 )] ()= o [T <o,
and therefore {% (2¢(00));t=—1,... ,n} are iid random variables with finite second moment.
Moreover,
Z (n—1t)*1d" " < 0o and Z (t+q)" ' < o0,
t=—q+1 t=—gq+1

so that both summations of the coefficients in (S7) converge almost surely and consequently A;
converges almost surely by Lemma S2.

For simplifying As, we first write
2/(0) — 2¢(60) = (2¢(0) — 2(60)) + u(6) (2¢(6) — 2:(6)) ,
which implies

12:(6) — 2:(60)| < |2:(60) — 2:(60)[ + [2:(0) — 2:(0)] -



Under Assumption (A9) with u(-) = fT/(), Ay satisfies

n

o LI (E O (z(60)
A = Zt 0 — Zt 0) — |~
2= 3 1o O 1% (L) - L (2]
< =Y 1a®) - 2@) A{(1+12(80)/0) o 15(6) ~ 2(60)] + o |57(6) ~ 2(60)|'}
t=—q+1
< é > 1a(0) = 2(0) { (1 + |2(80) /o F) o (121(8) — 24(80)] + 2:(8) — 2(0)])
t=—q+1
+ 0 (124(0) — 2(80)| + 2(0) = % (0)])'}.
Therefore,

& Zt k o
up r < s 30 (1 20U sup [a(6) — 200 sup [24(6) — (60)

Peq. =41 (00 =€) Peq. PeQ.
A - |2(00)|" L on2
NTERID (1+ G 20 ) sup 01 = 20)

oo -0t _Ae)m Y. sup [x(6) — 4(6)] <2Z sup |24(6) — 2(60)[" +2° sup |2t<e>zt<e>|f>

t=—q+1 "/JEQS ¢6Qe 'l/}EQe
= A(Ao + Ay + Ass),

where A1, Azo and Asz can be further bounded as follows. According to Lemmas S3 and S4,

C el/? = 12¢(80)["
< l7]
A21 — (UO _ 6)2 _Z { <1 + 0'0 — 6 ) Z d |Xt

t=—q+1

x {C1(n—t)*'d" N, — w| + Co(t + )" 'd 2, — 2|} }

n

(60)
= PCslws —ws| > (n—t)rd"! <1+ (|Zt0 _06 > ( > dilx, - J|)

t=—q+1 j=—o00

A n - 2 (00)|F oo _
+61/204|ZT _Zr| Z (t+q)r 14t <1 + (|o-t0(_0()€|)k> ( Z d|]||Xt—j|> ,
j=—o00

t=—q+1

where C;’s are some positive constants. In the last equation, the second summation in Ao satisfies

Y. (trgd (1 (UO*E ) (Z 11X, ]|)
t=—q+1 J=T®
n 2 1/2 n
(3o (25} ] Z e (£

q+1 t=—q+1 j=—0o0

n 1/2 n N 1/4
(t+ q)2(7“71)dt Z dt (1 + |Zt( 0)|k)
t=—gq+1 t=—q+1 (o0 —¢)

1/2

IN

IN



1/4
X Z dt Zd‘JHXt ] ,
t=—q+1

(S8)
where the series in the first parenthesis is finite and the series in the second parenthesis converges
by Lemma S1, in which the required condition is satisfied

4
0o)|* 0o)|*
Elogt |1+ |2¢(60)] —4Flog [ 1+ |2¢(60)|
(00 — o)F (00—
0 k
< 4E |log [1+ JEACI
(00 — €)F

|2¢(00) ¥
) {|Zt(00)|§006}‘| +4E [log (1 + ﬁ) 1{|Zt(00)|>0'06}‘|
< 4(10g2)P(|2(80)| < oo — €) +4F |log (2%
(log 2) + g B2 (00)]

) {[2180)|>00- e}]
oy — €
< oo,

<

(we use logx < z for > 0 to obtain the third inequality). The series in the third parenthesis of
(S8) converges almost surely by Lemma S2 which satisfies the required condition

4 4
E( 3 dj||th|> < EX} ( > d|j> < oo0.
j=—oc0 j=—00

Under similar derivations, the first summation in As; and each term in Ags and Asg can also be
for Lemma S6, we have

shown to converge almost surely and therefore A, converges almost surely. To complete the proof

Sup ~[n(2h) — bn(3p)] < 7!
Peq. ™

sup (A; + Ag)
PeQ.

a.s.
a
Lemma S7 Under the assumptions (A1)-(A9) given in Theorem 1
- 0
n~1/2 Z — log f5(2:(0)) — = log f(2:(0)) — 0. (S9)
=g LY oY =1,
Proof: The parameter vector 1 contains @ and o. We first consider the partial derivative with
respect to 6:
9] ! 0 ! 9]
‘—logfa 4(6)) - %logfa(%( D] = |22 o) ae6) - 32 al6) 350(6)
2 119 f(20)\ ' (2(0)
< 5[5 ()56 00 -]+ gm0 |7 () - 7 (257))
- Zt<0>>! 7( 75 ()
= DBu+ By + Bt

(S10)



Accordingly, the derivative with respect to 6 in (S9) can be bounded by the sum of {By;},{Ba}
and {Bs;} subject to the decomposition in (S10). By Lemma S4, the first term of (S9) subject to
By in (S10) evaluated at 1), satisfies

n

_ n’l/an_l Z

n1/2[ Z By,

f7, (Ztgeo()))‘ ‘8% (2(6) = Zt(e))lezeo

t=—q+1 ’l,b:’l,bo t=—q+1
— — = f/ 2 (0 s m—t| r 2
< w2yt 30 [ L (D) ey - 0pa o, wil + Cute + 0z, - ).

t=—q+1

in which, by Lemma S2, the two series converge almost surely since

n , n . f/ Zt(eo)
Z (n—1)°d"" < o0, Z (t+q)d <oo, and FE ( ) ‘ < 00
t=—q+1 t=—q+1 F\ o

Therefore, n=1/ 2y Blt]'t/}—'l/) converges to zero almost surely. According to Lemma S5 and
- 70
Assumption (A9), the part of (S9) subject to Bg; in (S10) satisfies

n/[ S By =net Y| (a(«%)) r ( (80) )H ’
t=—q+1 P, t=—q+1 f g0 6-0,
17241 |Zt )| > |5t(00)*2t(90)| |2:(60) — 2:(80)["
< n At_zq+1{< ok o0 ol ]_Zoo 1V Zi—;]|

Following the arguments similar to those in simplifying (S8), one can show that

n~1/ 2[2?:,q+1 BQt]¢:¢o converges to zero almost surely by Lemma S2 since

E(i muzt_jr) (B1Z) (z \%)4@0.

Jj=—00 j=—00

n

Finally, the remaining part of (S9), n~1/2 DD Bgt]¢:¢0, subject to Bs; satisfies
_ n_1/200_1 Z

f zt(00))_f_'(zt BO)H - ‘
P=1p t=—q+1 f( 70 f 00 2(0) — 2(0)) -0,

< Anopt Y {(u%) o5 0) = 2(60)| + " 2(60) — (60

t=—q+1
x {Cy(n — t)*d" iy — ws| + Calt + g)"d' |2, — 2|}

n—1/2 zn: B,

t=—q+1

— 0, a.s.,

in which every cross product series can be shown to converge almost surely using the techniques

given in the proof of Lemma S6.



To complete the proof for Lemma S7, we then consider the partial derivative with respect to

3 08 Fal8)) — 5 Yog La((0)| = 3
< 2|5 (C22) o) - @)1+ 5 1200)

a0 st [ (240 . (2190
By + Bs; + Bey. (S11)

According to this decomposition (S11), the derivative with respect to o in Equation (S9) can be
bounded by three series subject to {By},{Bs:} and {Bg:}. Again, under similar derivations for
showing the convergence of A; and By, one can show that >, B, >, Bs: and Y, Bg: converge

almost surely at ¢ = 1. Therefore, the proof is complete. ad
Lemma S8 Under the assumptions (A1)-(A9) given in Theorem 1,
13 P
H(B(w;) - B(y)) >

where {17} is a sequence converging to 1,

B<¢>z(gjg§;§; e ) Z S 08 L2 (0))

—g+1

and B(v) is the second derivative of ¥, 1og f(2:(0)).
Proof: First, B('l[);) — B(%,) is decomposed as two parts:
B(y;,) = B(wo) = (B(w;) = B(y)) + (B(¢;,) — B(w)).

Lii and Rosenblatt (1992) have shown that

! (B(;) — Blw) =
Therefore, it is enough to show

“{(B(w;) - B@) &

Let ¥} = (0},0) . Since

82 1f/ zt(O) 82215(0) 1 fl ! Zt 0) 8zt(0)3zt(0)
9908’ 108 1o(21(0)) = E_( - ) 9600 +§(7) ( a ) 26 00




we have

= 0? 0?
Buatw) -~ Bt < 3 | on o (00) - s s o)
t=—q+1 n
R 1) | A Et A L)
Th T f ok 0006" lg_g: f ok 0000" |g_g-
n 1 zn: (f_' ' (21: 0;)) [82,5(9)82,5(0)} B (f_/>/ (%(‘%)) {(’)zt(B)@zt(G)}
U;;Qt el I o 00 06’ 0-6" f ok 00 06’ 0-0"

92 (2(6) — 21(9)) ‘
0006’ 0-0"

IN
:q*|’_A
M3 l

|
= —qt1
o 20 5 () -5 G| oo
+U;2 t__an { |<f7/>/ <2t0?)> ‘6(23(029; z(0)) a(ét(Bg; z(0)) n 5(516(03; z(0)) 52665/0)

n

00 06’

) () e2)

Each series in (S12) can be shown to converge almost surely using similar techniques in proving

: (S12)
6-0"

previous lemmas. Moreover, for large enough n such that ¥ € Q., since

T tos fota(o)) = O (L) (210 2200 ] 000y

Do o f o o3 f o

we have

A~ * * 1
Boo W) = BooWi)l < = Y

" n=—q+l1
vy (L (2 s - L (2 aen). e
N op=—gt1 n n

Ignoring the scalar 1/074, the first term on the right hand side of (S13) is bounded by the following:

(7) () - (5) ()] 2+ |(5) (52)

7(07,) + {(26(07,) — 2(07,)) +2124(6),)[126(07,) — 2(6;,)]}

(5) () {5 () ) e

n

2/ (0}) + ERCMESACH]




in which every series in the decomposition converges almost surely under analogous proofs given in

previous lemmas. The second term on the right hand side of (S13) is identical to

2 & 0 . 0
| tou a0 o fo<zt(9>>\¢¢; ,

which also converges with probability one based on the same decomposition given in (S11).
Finally, we consider By,. Since

o 0eLo(a(0) =~ (L) (29) 20220 L (2000 98]

0000 f o o
we have
n 82 2
Boo(wi) - B W)l < D | g toufolan0)) - o ow @)
t=—q+1 wz’ltbn
LS (L) (Y sy [Z0] (2 () [242)]
= o t:—zq-H <f> < 7 )"0 o 0-6; \f 7 )0 | "oe 0-0.,
+U7*12 t:Zq+1 f( fop 00 0-6" f 07*1 00 0-6"
Lo (1Y étw:;)) S (0°) (0 ‘a@tw)zt(e»‘
< wm (%) (222 catony - stony| | 20520
O — f In 0-0"
Lo (1Y étw;)) B (f_’>’<zt<e;>> o aztw)‘
:ﬁt};l <f) < o f e el e PO
1 &S (21: 9;))‘ ’5(215(9) _Zt(e))’
+ z
W tzgﬂ f\ o 06 6-6
1 n I ét(0;)> ! <zt( fl))‘ azt(e)} g
YoE f( o )T \Uan )00 lee: (514
Analogously, each series in the decomposition (S14) converges with probability one. Consequently,
B(4¥) — B(v¥) converges with probability one and n~(B(v}) — B(t%)) Zo. O

Proof of Theorem 1: According to Lemma S6, as n — oo, there exists a sequence of solutions

{'t,AZJn} to the proposed likelihood equations

which satisfy ¢,, € Q. and v¥,, — ¥, with probability one. By Taylor expansion, we have

n

3 (Do) e B, -

0 = a2 [iénw)] A
P=1p, o LOY P=1h,

o



n

0 " 0 0
= pl2 —log f,(2(0 ] +n71/2 [—1 fo(2:(0)) — = log f,(2:(0
Y |55 0 1o ((0) oS [ eesa - prsseae]

+n_1B('¢o) nl/Q("Aﬁn — ) + n! [B('WZ) - B("/’o)} nl/Q("bn — ),

where 1 is between ’(ZJn and 1. According to Lemmas S7 and S8,

n

0=n"1? Z

t=—q+1

%log fa(zt(e)):| +n_1B('¢'O) nl/Q({bn - "pO) +0P(1)7

- 7o

which implies

n

0
> |gglehetao)] %} +op(1).

t=—q+1

n'2(, — ) = [n—leo)}‘l{—n—W

The first term in the above equation is the dominant term and it converges to the limit distribution
of the normalized quasi-MLE which has been shown to be N (0, 2_1) (Lii and Rosenblatt, 1992),
where X is given in Equation (1.7) in Lii and Rosenblatt (1992). Since the joint MLE 1) ; and the
conditional MLE 't,AZJC are the maximizers of the form @n(¢) with different initial setups, they are
both asymptotically equivalent to the quasi-MLE. Namely,

n'/? (=) = N (0,271,
/2 (g — o) <5 N (0,271).
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