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Abstract: A procedure for computing exact maximum likelihood estimates (MLEs)

is proposed for non-Gaussian moving average (MA) processes. By augmenting

the data with appropriate latent variables, a joint likelihood can be explicitly ex-

pressed based on the observed data and the latent variables. The exact MLE can

then be obtained numerically by the EM algorithm. Two alternative likelihood-

based methods are also proposed using different treatments of the latent variables.

These approximate MLEs are shown to be asymptotically equivalent to the exact

MLE. In simulations, the exact MLE obtained by EM performs better than other

likelihood-based estimators, including another approximate MLE due to Lii and

Rosenblatt (1992). The exact MLE has a smaller root mean square error in small

samples for various non-Gaussian MA processes, particularly for the non-invertible

cases.
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phase.

1. Introduction

Consider a qth order moving average (MA(q)) process

Xt = θ(B)Zt, (1.1)

where {Zt} is an independent and identically distributed (i.i.d.) sequence of
random variables with zero mean and finite variance, B is the backshift operator
(i.e., BkYt = Yt−k),

θ(z) = 1 + θ1z + · · · + θqz
q,

and θq 6= 0. The moving average polynomial, θ(z), is said to be invertible if
all the roots of θ(z) = 0 are outside the unit circle in the complex plane, and
non-invertible otherwise (Brockwell and Davis (1991, Thm. 3.1.2))

If the process {Xt} is Gaussian, the polynomial θ(z) is not identifiable unless
the invertibility assumption, or the minimum phase condition, is further imposed.
This is because the probability structure of {Xt} is fully determined by the mod-
ulus of θ(e−iω) (or the second order spectrum) in the Gaussian case, and the
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phase information of θ(e−iω) is not available. However, for a non-Gaussian pro-
cess, the phase information is available based on the likelihood function or the
higher-order spectra (which are zero for Gaussian processes), and therefore the
model (1.1) becomes identifiable. In this study, we are interested in estimating
θ(z) for a non-Gaussian process without imposing the invertibility assumption.
Such non-Gaussian MA processes are useful for the deconvolution problems that
arise in such fields as seismology, signal processing, astronomy, and engineering
(Wiggins (1978), Donoho (1981), Scargle (1981) and Mendel (1991)). For exam-
ple in seismology, {Xt} is the observed seismogram sequence and the question of
interest is to determine the weights {θj} that represent the signature of a distur-
bance passing through a medium, and to recover the signal {Zt} as the seismic
reflectivity of Earth, which is typically non-Gaussian distributed and usually has
a spiky appearance (Lii and Rosenblatt (1982)). As another example in signal
processing, a voiced speech signal can be modeled by (1.1) as the output of a
non-Gaussian (quasi-periodic) impulse train {Zt} passing through the vocal tract
filter θ(B) (Rabiner and Schafer (1978)). More applications can be found in the
above-mentioned references, and in Breidt and Hsu (2005).

In the literature, there are two likelihood-based estimation methods for (1.1)
that do not impose the invertibility assumption. One is the quasi-likelihood
method that leads to the least absolute deviation (LAD) estimators (Huang and
Pawitan (2000)). The other is the approximate maximum likelihood estimation
(Lii and Rosenblatt (1992)), which was also generalized for the non-minimum
phase ARMA models (Lii and Rosenblatt (1996)). The approach by Huang and
Pawitan (2000) uses the Laplacian likelihood but does not require the assump-
tion of Laplacian errors. Conditioning on some initial variables set to zero, the
maximizer of Huang and Pawitan’s conditional Laplace likelihood was shown to
be consistent only for a process with heavy tailed errors. Alternatively, Lii and
Rosenblatt (1992) considered a truncation in the representation of the innovations
in terms of all available observations, and approximated the likelihood function
based on these truncated innovations. The maximizer of the truncated likeli-
hood was shown to be asymptotically equivalent to the exact MLE under mild
conditions. This truncation scheme provides a feasible implementation for non-
Gaussian processes, though it causes some information loss in estimation that is
negligible asymptotically, but more serious in small samples. In this study, we
adopted ideas from Breidt and Hsu (2005) to give an expression for the exact
likelihood by introducing q latent variables. Exact MLEs of the parameters for
general MA processes can then be obtained. In addition, we propose two alterna-
tive estimators through different treatments of the latent variables. One is called
the conditional MLE, in which the latent variables are set to be zero. The other is
called the joint MLE, in which the latent variables are estimated simultaneously
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with the model parameters. We show that these alternative estimators have the
same asymptotic distribution as the exact MLE.

The rest of the paper is organized as follows. In Section 2, we first review
the recursions given by Breidt and Hsu (2005) for computing the residuals and
the likelihood for a MA process. In Section 3, the procedures for solving the
exact MLE by the EM algorithm and two alternative estimators are introduced.
In Section 4, numerical simulations are conducted to evaluate the performance
of different estimators in finite samples for various non-Gaussian MA processes.
A brief discussion follows in Section 5.

2. MA Processes and the Likelihoods

Assume the order q is finite and known. Rewrite (1.1) as

Xt = θ(B)Zt = θ†(B)θ∗(B)Zt, (2.1)

with
θ∗(z) = 1 + θ∗1z + · · · + θ∗sz

s 6= 0 for |z| ≥ 1,

θ†(z) = 1 + θ†1z + · · · + θ†rz
r 6= 0 for |z| ≤ 1,

where r + s = q, θ∗s 6= 0 if s 6= 0, and θ†r 6= 0 if r 6= 0. The moving average
polynomial θ(z) is invertible if s = 0, and non-invertible otherwise. Here we only
consider the cases without unit roots (i.e., θ(B) has no roots on the unit circle)
since the asymptotic theory for the unit root cases is completely different and
more complicated. Some recent asymptotic results for a non-Gaussian MA(1)
with unit root can be found in Breidt, Davis, Hsu and Rosenblatt (2006). (See
the references in that paper for the Gaussian MA(1) with unit root.)

According to Breidt and Hsu (2005), define

Wt = θ†(B)Zt,

so that
Zt = Wt − (θ†(B) − 1)Zt. (2.2)

Then,

Xt = θ∗(B)Wt

= (1 + θ∗1B + · · · + θ∗sB
s)Wt

= θ∗s θ̃(B
−1)Wt−s, (2.3)

where

θ̃(z) = 1 +
θ∗s−1

θ∗s
z + · · · + θ∗1

θ∗s
zs−1 +

1
θ∗s

zs. (2.4)
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Consequently,

Wt−s =
Xt

θ∗s
−

(
θ̃(B−1) − 1

)
Wt−s. (2.5)

By incorporating the latent variables Zr = (Z−q+1, . . . , Z−q+r)′ and W s =
(Wn−s+1, . . . ,Wn)′, the random vector (Xn,Zr, W s) is a linear transformation
of the residuals (Z−q+1, . . . , Z−1, Z0, Z1, . . . , Zn), and consequently the joint dis-
tribution of (Xn, Zr, W s) satisfies

p(xn,zr, ws; θ, σ) = |θ∗s |−n
n∏

t=−q+1

fσ(zt(θ)), (2.6)

where fσ(z) = σ−1f(z/σ) is the probability density function of Zt with the scale
parameter σ, θ = (θ†,θ∗) consists of the MA parameters with θ† ≡ (θ†1, . . . , θ

†
r)′

and θ∗ ≡ (θ∗1, . . . , θ
∗
s)

′ representing the invertible and non-invertible parts, re-
spectively. Note that {zt(θ) : t = −q + 1, . . . , n} in (2.6) are functions of θ,
Xn, Zr and W s, denoted as zt(θ, Xn, Zr, W s) for completeness in the follow-
ing context, which can be solved recursively by (2.3) and (2.5) with the initial
conditions (Zr, W s).

Since the latent variables Zr and W s are unobserved in practice, we pro-
pose three estimators of θ by maximizing the joint distribution (2.6) subject to
different treatments of the latent variables. Details about these estimators are
described in the next section.

3. Estimation Methods

Three estimators of ψ = (θ′, σ)′ are introduced for a non-Gaussian MA
process based on the joint likelihood in (2.6). The first estimator is the exact
MLE solved by the EM algorithm in which the latent variables (Zr, W s) are
treated as missing data and are integrated out in the log joint likelihood. The
algorithm is given in the following two steps.

• E-step: Compute the conditional expectation of the log likelihood log p(Xn, Zr,
W s; θ, σ) given Xn = xn which satisfies

Q (ψ|ψold) = −n log |θ∗s | +
n∑

t=−q+1

Eold [log fσ (zt(θ, Xn, Zr, W s)) |Xn = xn] ,

where the expectation Eold is taken on the latent variables (Zr, W s) with
respect to the conditional distribution given Xn = xn evaluated at the current
parameter estimates ψold = (θ′

old, σold)′.

• M-step: Update ψ by ψnew = argmaxψ Q (ψ|ψold).
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These two steps are repeated recursively until convergence is achieved. In general,
the maximizer of the scale parameter σ in the M-step has a closed form given
θ, simplifying the maximization in the M-step. However the expectation in the
E-step is analytically intractable and therefore we adopt a Monte Carlo (MC)
method to compute the expectation numerically, which is exactly the MCEM
algorithm introduced by Wei and Tanner (1990). The same idea was used in
Breidt and Hsu (2005) for obtaining the best mean square predictors for non-
Gaussian MA processes.

More precisely, the expectation in the E-step can be expressed as

Qt(ψ|ψold) ≡ Eold [log fσ (zt(θ, Xn, Zr, W s)) |Xn = xn]

=
∫

log fσ (zt(θ, xn, zr, ws)) p(xn, zr, ws; ψold)dzrdws∫
p(xn,zr, ws; ψold)dzrdws

=

∫
log fσ (zt(θ, xn, zr, ws))

[∏n
k=−q+1 fσold

(zk(θold, xn, zr,ws))
]
dzrdws∫ ∏n

k=−q+1 fσold
(zk(θold,xn, zr, ws))dzrdws

. (3.1)

Following Breidt and Hsu (2005), these q-dimensional integrals can be evaluated
by a MC method with importance sampling as follows. Let h(zr, ws) be a q-
dimensional joint density (called the importance sampler) satisfying

supp(h) ⊃ supp
(∫

p(xn, zr, ws;ψold) dxn

)
, (3.2)

where supp(h) is the support of h. For any
(
z

(i)
r , w

(i)
s

)
∈ supp(h), define the

importance weight

A
(
xn,z(i)

r , w(i)
s ; ψold

)
=

∏n
k=−q+1 fσold

(
zk(θold,xn, z

(i)
r , w

(i)
s )

)
h

(
z

(i)
r , w

(i)
s

) .

Then (3.1) can be written as

Qt(ψ|ψold) =
∫

log fσ (zt(θ, xn,zr, ws))A (xn, zr, ws;ψold) h (zr, ws) dzrdws∫
A (xn, zr, ws; ψold) h (zr, ws) dzrdws

=
Eh [log fσ (zt(θ, xn, Zr,W s))A (xn, Zr, W s; ψold)]

Eh [A (xn,Zr, W s; ψold)]
, (3.3)

where the expectation in (3.3) is taken with respect to h(zr, ws). The Monte
Carlo approximation for the ratio in (3.3) is

Q̂t(ψ|ψold) =

∑M
i=1 log fσ

(
zt(θ, xn,z

(i)
r ,w

(i)
s )

)
A

(
xn, z

(i)
r , w

(i)
s ; ψold

)
∑M

i=1 A
(
xn, z

(i)
r , w

(i)
s ; ψold

) ,(3.4)



550 NAN-JUNG HSU AND F. JAY BREIDT

where M is the number of draws in the importance sampling and {(z(i)
r , w

(i)
s ); i =

1, . . . ,M} are q-dimensional random vectors drawn from the importance sampler
h(zr, ws). Consequently, the Monte Carlo approximation of Q (ψ|ψold) is

Q̂ (ψ|ψold) = −n log |θ∗s | +
n∑

t=−q+1

Q̂t(ψ|ψold),

which is the one used in the implementation of the E-step. Issues about the
convergence of the MCEM algorithm, the choice of the MC sample size M and the
computational cost can be found in Levine and Casella (2001) and the references
therein.

Theoretically, the choice of the importance sampler h(zr, ws) is fairly arbi-
trary as long as the condition in (3.2) is satisfied. However, the performance of
the MC estimator depends on the choice of h(zr, ws). One should avoid using an
importance sampler that produces a lot of small importance weights and a few ex-
tremely large weights, since this makes the variability of the MC estimator large.
Moreover, variance reduction methods can be incorporated with the importance
sampling technique to further improve the accuracy of the algorithm. Methods
for choosing and evaluating importance samplers and for reducing variance in
importance sampling are thoroughly reviewed in Evans and Swartz (2000). For
simplicity, one may use the marginal distributions of Zr and W s or the condi-
tional distribution of (Zr, W s) given Xn = xn under the Gaussian assumption.

The second estimator is the conditional MLE in which the latent variables
are set to be zero. Namely,

ψ̂c = argmax
ψ

{
− n log |θ∗s | +

n∑
t=−q+1

log fσ (zt(θ, xn,0,0))
}

. (3.5)

The third estimator is the joint MLE in which the latent variables are estimated
simultaneously with the other parameters; that is

(ψ̂J , ẑr, ŵs) = arg max
(ψ,zr,ws)

{
−n log |θ∗s |+

n∑
t=−q+1

log fσ (zt(θ, xn,zr, ws))
}

.(3.6)

Lii and Rosenblatt (1992) studied the same estimation problem and pro-
posed an approximate likelihood approach. In their approach, the innovation
Zt is first represented as a linear combination of both past and future data
{Xt : t = 0,±1,±2, . . . } and then this infinite series is further approximated
by a truncated series only in terms of observed data {Xt : t = 1, . . . , n}. Ac-
cordingly, the likelihood function is approximated by plugging in these truncated
innovations. The corresponding maximizer, denoted as LR MLE, is shown to be
asymptotically equivalent to the exact MLE under some mild conditions. Under
similar conditions, we show that the conditional MLE (3.5) and the joint MLE
(3.6) are both equivalent to the exact MLE asymptotically.
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Theorem 1. Assume that the density of the innovations {Zt} satisfies fσ(z) =
σ−1f(z/σ), EZ4

t < ∞, and that the following conditions hold.

A1 : f(x) > 0 for all x;
A2 : f ∈ C2;

A3 : f ′ ∈ L1 with
∫

f ′(x)dx = 0;

A4 :
∫

xf ′(x)dx = −1;

A5 :
∫

f ′′(x)dx = 0;

A6 :
∫

xf ′′(x)dx = 0;

A7 :
∫

x2f ′′(x)dx = 2;

A8 :
∫

(1 + x2)[f ′(x)]2/f(x)dx < ∞;

A9 : |u(z + h) − u(z)| ≤ A
(
(1 + |z|k)|h| + |h|`

)
for all z, h with positive

constants k, `, A, where u(·) =
(
f ′/f

)
,
(
f ′/f

)′
.

Then, for the MA process in (2.1), we have

n
1
2 (ψ̂c − ψ0)

d−→ N
(
0,Σ−1

)
,

n
1
2 (ψ̂J − ψ0)

d−→ N
(
0,Σ−1

)
,

where ψ̂c is the conditional MLE defined in (3.5), ψ̂J is the joint MLE in (3.6),
ψ0 is the true parameter vector and Σ is the Fisher information matrix associated
with the exact likelihood defined at (1.7) in Lii and Rosenblatt (1992).

Assumptions A1−A8 are exactly those used in Breidt, Davis, Lii and Rosen-
blatt (1991) and Lii and Rosenblatt (1992, 1996). These assumptions guarantee
that the information matrix associated with the likelihood has the usual prop-
erties. Assumption A9, originally used by Lii and Rosenblatt (1992), is similar
to the Lipschitz condition for the smoothness of the first and second deriva-
tives of the log likelihood function. These assumptions are fairly standard and
hold for a variety of densities, including mixture of normals, the t distribution
with degrees of freedom greater than four, and the exponential power family
f(x) ∝ exp(−c|x/σ|α) with α ≥ 2. We prove Theorem 1 by first showing the
asymptotic equivalence between the conditional MLE, joint MLE and the quasi-
MLE (defined by Lii and Rosenblatt (1992)) and then using the results in Lii and
Rosenblatt (1992). Details about the proof are given in the on-line supplement.
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Table 1. Model settings for simulations.

model type parameter settings error distribution

θ†(B) θ∗(B) fσ(z)
MA(1) invertible 1 + 0.5B Laplace or t(4)

invertible 1 + 0.8B Laplace
non-invertible 1 + 2B Laplace or t(4)
non-invertible 1 + 1.25B Laplace

MA(2) invertible (1 − 0.5B)(1 − 0.8B) Laplace
non-invertible 1 − 0.5B 1 − 1.25B Laplace
non-invertible (1 − 2B)(1 − 1.25B) Laplace

4. Simulation Study

To investigate the performance of the proposed estimators in finite samples,
a simulation study was conducted as follows. We considered MA(1) and MA(2)
processes for both invertible and non-invertible cases. Two innovation distribu-
tions were studied:

Laplace : f(x) = (2σ)−1 exp(−|x|
σ

),

t(4) : f(x) =
Γ(5

2)
2
√

πσ

(
1 +

1
4

(x

σ

)2
)− 5

2

.

For MA(1), we considered two invertible cases (s = 0, r = 1) with parameter
values θ†1 = 0.5, 0.8 and two non-invertible cases (s = 1, r = 0) with θ∗1 = 1.25, 2.
For MA(2), we considered three situations including purely invertible (s = 0, r =
2), non-purely non-invertible (s = r = 1) and purely non-invertible (s = 2, r = 0)
cases. The parameter settings are given in Table 1.

For each process, 500 realizations with sample sizes n = 50 and n = 100 were
generated. For each realization, four likelihood-based estimators were computed,
including the exact MLE by EM, the conditional MLE, the joint MLE and the
LR MLE. For implementing the LR MLE, we set qtrunc = 10 as the truncation
number for both sample sizes, which is the same as Lii and Rosenblatt (1992)
in their simulations. Consequently, the effective data length (n − 2qtrunc) be-
comes 30 for the cases with n = 50, and 80 for the cases with n = 100. As
expected, such truncation gains computational convenience in the implementa-
tion but loses information in the inference. For comparison, we also report the
estimation performance for the MA coefficients using a cumulant-based method
which maximizes the absolute residual kurtosis (see Breidt, Davis and Trindade
(2001) at (4.17), or Rosenblatt (2000, Sec. 8.7)).

The estimation performance of various estimators for MA(1) processes with
Laplace innovations is summarized in Tables 2−3 in terms of biases, standard
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Table 2. Biases, standard errors, root mean square errors, and the proportion
of correctly-identified invertibility structure (PROP) for various estimators
under an invertible MA(1) process Xt = (1 + θ†1B)Zt with Laplace innova-
tions (500 replicates).

(a) θ†1 = 0.5

n = 50 n = 100

Estimator θ†1 = 0.5 σ = 1 PROP θ†1 = 0.5 σ = 1 PROP
LR MLE bias 0.0002 -0.0143 0.494 -0.0007 0.0000 0.910

s.e. 0.1527 0.1809 0.0845 0.1059
rmse 0.1527 0.1814 0.0845 0.1059

MLE by EM bias 0.0050 -0.0125 0.922 0.0006 -0.0004 0.966
s.e. 0.1074 0.1358 0.0722 0.0920
rmse 0.1075 0.1364 0.0722 0.0920

Joint MLE bias 0.0030 -0.0279 0.786 0.0007 -0.0082 0.936
s.e. 0.1116 0.1335 0.0727 0.0913
rmse 0.1117 0.1364 0.0727 0.0916

Cond. MLE bias 0.0010 -0.0272 0.696 0.0004 -0.0079 0.928
s.e. 0.1060 0.1341 0.0704 0.0914
rmse 0.1060 0.1368 0.0704 0.0917

ASD 0.1225 0.1414 0.0866 0.1000
cumulant-based bias 0.2465 0.596 0.1377 0.742
method s.e. 0.3057 0.2811

rmse 0.3927 0.3130

(b) θ†1 = 0.8

n = 50 n = 100

Estimator θ†1 = 0.8 σ = 1 PROP θ†1 = 0.8 σ = 1 PROP
LR MLE bias 0.0096 -0.0226 0.728 0.0028 -0.0151 0.928

s.e. 0.0911 0.1746 0.0634 0.1086
rmse 0.0916 0.1760 0.0635 0.1097

MLE by EM bias 0.0047 -0.0220 0.838 0.0057 -0.0167 0.960
s.e. 0.0805 0.1406 0.0551 0.0972
rmse 0.0806 0.1423 0.0554 0.0986

Joint MLE bias 0.0214 -0.0316 0.824 0.0082 -0.0228 0.958
s.e. 0.0844 0.1375 0.0562 0.0965
rmse 0.0871 0.1411 0.0568 0.0992

Cond. MLE bias -0.0079 -0.0206 0.800 -0.0078 -0.0152 0.924
s.e. 0.0807 0.1423 0.0556 0.0969
rmse 0.0811 0.1437 0.0562 0.0981

ASD 0.0849 0.1414 0.0600 0.1000
cumulant-based bias 0.0263 0.556 0.0431 0.702
method s.e. 0.3080 0.2241

rmse 0.3092 0.2282
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Table 3. Biases, standard errors, root mean square errors, and the proportion
of correctly-identified invertibility structure (PROP) for various estimators
under a non-invertible MA(1) process Xt = (1 + θ∗1B)Zt with Laplace inno-
vations (500 replicates).

(a) θ∗1 = 2

n = 50 n = 100

Estimator θ∗1 = 2 σ = 1 PROP θ∗1 = 2 σ = 1 PROP
LR MLE bias 0.2696 -0.0450 0.814 0.0983 -0.0361 0.980

s.e. 0.9960 0.3122 0.3979 0.1926
rmse 1.0319 0.3154 0.4098 0.1960

MLE by EM bias 0.0331 0.0429 0.720 -0.0163 0.0469 0.820
s.e. 0.4919 0.2552 0.2517 0.1746
rmse 0.4930 0.2587 0.2522 0.1807

Joint MLE bias 0.2149 -0.0639 0.866 0.0772 -0.0334 0.988
s.e. 0.7184 0.2602 0.3218 0.1696
rmse 0.7499 0.2679 0.3309 0.1729

Cond. MLE bias 0.2566 -0.0674 0.864 0.0785 -0.0338 0.990
s.e. 0.8857 0.2652 0.3213 0.1706
rmse 0.9221 0.2737 0.3307 0.1739

ASD 0.4899 0.2828 0.3464 0.2000
cumulant-based bias 0.0294 0.604 0.1491 0.756
method s.e. 1.6005 1.3662

rmse 1.6008 1.3743

(b) θ∗1 = 1.25

n = 50 n = 100
Estimator θ∗1 = 1.25 σ = 1 PROP θ∗1 = 1.25 σ = 1 PROP
LR MLE bias 0.0334 -0.0319 0.836 0.0001 -0.0024 0.946

s.e. 0.2723 0.2133 0.0894 0.1273
rmse 0.2744 0.2157 0.0894 0.1273

MLE by EM bias -0.0022 -0.0024 0.878 0.0005 0.0029 0.964
s.e. 0.1505 0.1689 0.0889 0.1188
rmse 0.1505 0.1689 0.0889 0.1188

Joint MLE bias 0.0000 -0.0153 0.838 -0.0093 -0.0003 0.970
s.e. 0.1959 0.1760 0.0855 0.1176
rmse 0.1959 0.1767 0.0860 0.1176

Cond. MLE bias 0.0419 -0.0332 0.888 0.0176 -0.0132 0.952
s.e. 0.2103 0.1769 0.0929 0.1186
rmse 0.2145 0.1800 0.0946 0.1193

ASD 0.1326 0.1768 0.0938 0.1250
cumulant-based bias -0.1044 0.596 -0.0656 0.642
method s.e. 1.0471 0.7376

rmse 1.0522 0.7405
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errors and root mean square errors. The asymptotic standard error (ASD) un-
der the likelihood-based methods for each process is also given in the table for
comparison. Moreover, the proportion of correctly-identified invertibility struc-
tures (i.e., r and s) is recorded for each estimator (denoted as PROP in the
tables). For example, in Table 2(a), the underlying process was invertible and
there were 247 realizations (out of 500 realizations) with the LR MLE in the
invertible region, which leads to PROP = 247/500 = 0.494. Based on the results
in Table 2 for the invertible MA(1), the MLE by EM, the joint MLE and the
conditional MLE performed competitively, and all of them outperformed the LR
MLE in terms of root mean square error. Also note that the difference was more
significant for the cases with n = 50. For determining invertibility, the MLE by
EM performed best among the four estimators with very high PROP values. In
contrast, the LR MLE had the lowest PROP value, but improved as the sample
size increased. As expected, the cumulant-based method was much less efficient
than the likelihood-based methods.

Based on the results in Table 3 for the non-invertible MA(1), the MLE
by EM outperformed the other estimators with a large difference in terms of
the root mean squared errors. The second best were the joint MLE and the
conditional MLE, which were fairly competitive with each other. The LR MLE
still performed worst among the likelihood-based methods, in particular for small
samples and when the root was away from the unit circle. As an example, the
relative efficiency of LR MLE with respect to MLE by EM was about 0.48 for
n = 50 and 0.62 for n = 100 with θ = 2. But, in contrast to the invertible cases,
the PROP values associated with the LR MLE were much closer to those for the
joint MLE and the conditional MLE. The cumulant-based methods perform even
worse for non-invertible cases. The estimation results for the MA(1) processes
with t(4) innovations are shown in Table 4 and are fairly similar to the previous
cases.

The results for MA(2) are summarized in Table 5. For the invertible case,
the performances of the four likelihood-based estimators were very similar. For
the invertible parameters in the non-purely non-invertible case, the performances
of the four estimators were again very similar. But, for the non-invertible param-
eters, MLE by EM performed best and the conditional MLE performed worst.

In our simulation study, we used the Laplace distribution since the corre-
sponding estimators are analogous to the least absolute deviation estimator, and
we used the t distribution to illustrate the situations for heavy-tailed innovations.
Strictly speaking, the Laplace distribution does not satisfy the assumption (A2)
and the t(4) distribution does not have finite fourth moment. But our results
demonstrate that the proposed estimators are still effective even in some cases
for which the assumptions used in the asymptotic theory are not completely
satisfied.
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Table 4. Biases, standard errors, root mean square errors, and the proportion
of correctly-identified invertibility structure (PROP) for various estimators
under MA(1) process with t(4) innovations (500 replicates).

(a) Invertible MA(1): Xt = (1 + 0.5B)Zt

n = 50 n = 100

Estimator θ†1 = 0.5 σ = 1 PROP θ†1 = 0.5 σ = 1 PROP
LR MLE bias 0.0668 -0.0235 0.446 0.0107 -0.0123 0.794

s.e. 0.1170 0.1724 0.0851 0.1023
rmse 0.1347 0.1740 0.0857 0.1030

MLE by EM bias 0.0237 -0.0114 0.782 0.0070 -0.0063 0.902
s.e. 0.1221 0.1383 0.0807 0.0939
rmse 0.1244 0.1388 0.0810 0.0941

Joint MLE bias 0.0431 -0.0166 0.650 0.0106 -0.0144 0.848
s.e. 0.0993 0.1388 0.0773 0.0944
rmse 0.1083 0.1397 0.0780 0.0955

Cond. MLE bias 0.0350 -0.0153 0.634 0.0058 -0.0141 0.844
s.e. 0.0927 0.1387 0.0755 0.0945
rmse 0.0991 0.1395 0.0757 0.0955

ASD 0.1449 0.1323 0.1025 0.0935
cumulant-based bias 0.2398 0.572 0.1459 0.696
method s.e. 0.2961 0.2686

rmse 0.3811 0.3056

(b) Non-invertible MA(1): Xt = (1 + 2B)Zt

n = 50 n = 100
Estimator θ∗1 = 2 σ = 1 PROP θ∗1 = 2 σ = 1 PROP
LR MLE bias 0.1379 -0.0091 0.894 0.1259 -0.0224 0.918

s.e. 0.7350 0.3021 0.5128 0.2112
rmse 0.7478 0.3022 0.5280 0.2124

MLE by EM bias 0.0015 0.0515 0.714 -0.0319 0.0447 0.738
s.e. 0.6656 0.2661 0.2997 0.1752
rmse 0.6656 0.2710 0.3014 0.1808

Joint MLE bias 0.1902 -0.0499 0.898 0.0938 -0.0263 0.954
s.e. 0.6663 0.2630 0.4158 0.1873
rmse 0.6930 0.2677 0.4262 0.1892

Cond. MLE bias 0.2218 -0.0629 0.908 0.1132 -0.0340 0.954
s.e. 0.6575 0.2614 0.4270 0.1859
rmse 0.6939 0.2689 0.4417 0.1889

ASD 0.5797 0.3186 0.4099 0.2253
cumulant-based bias -0.0406 0.636 0.0849 0.822
method s.e. 1.5431 1.4425

rmse 1.5436 1.4450
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Table 5. Biases, standard errors, root mean square errors, and the proportion
of correctly-identified invertibility structure (PROP) for various estimators
under a MA(2) process with Laplace innovations (n = 100, 500 replicates).

(a) invertible: Xt = (1 − 0.5B)(1 − 0.8B)Zt

Estimator θ†1 = −1.3 θ†2 = 0.4 σ = 1 PROP

LR MLE bias -0.0135 0.0128 -0.0176 0.776
s.e. 0.0772 0.0660 0.1061
rmse 0.0784 0.0672 0.1075

MLE by EM bias -0.0149 0.0057 -0.0301 0.798
s.e. 0.0749 0.0684 0.1165
rmse 0.0764 0.0687 0.1203

Joint MLE bias -0.0202 0.0102 -0.0307 0.800
s.e. 0.0731 0.0657 0.0939
rmse 0.0759 0.0665 0.0988

Cond. MLE bias 0.0047 -0.0001 -0.0158 0.650
s.e. 0.0748 0.0596 0.0988
rmse 0.0749 0.0596 0.1001

ASD 0.0917 0.0917 0.1000
cumulant-based bias -0.0360 0.1439 0.224
method s.e. 0.4031 0.2717

rmse 0.4047 0.3075

(b) non-purely non-invertible: Xt = (1 − 0.5B)(1 − 1.25B)Zt

Estimator θ†1 = −0.5 θ∗1 = −1.25 σ = 1 PROP

LR MLE bias -0.0352 -0.0626 -0.0452 0.864
s.e. 0.1019 0.2378 0.1429
rmse 0.1078 0.2459 0.1499

MLE by EM bias -0.0122 -0.0399 -0.0228 0.602
s.e. 0.0901 0.1198 0.1160
rmse 0.0910 0.1263 0.1183

Joint MLE bias -0.0312 -0.0333 -0.0381 0.870
s.e. 0.0957 0.1594 0.1289
rmse 0.1006 0.1628 0.1345

Cond. MLE bias -0.0187 -0.0917 -0.0521 0.750
s.e. 0.0912 0.1782 0.1282
rmse 0.0931 0.2004 0.1384

ASD 0.1732 0.1875 0.1803
cumulant-based bias -0.1490 -0.0474 0.468
method s.e. 0.2875 1.4177

rmse 0.3238 1.4185
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(c) purely non-invertible: Xt = (1 − 2B)(1 − 1.25B)Zt

Estimator θ∗1 = −3.25 θ∗2 = 2.5 σ = 1 PROP
LR MLE bias -0.2093 0.2276 -0.0289 0.856

s.e. 0.9141 1.0066 0.2165
rmse 0.9378 1.0321 0.2184

MLE by EM bias -0.2906 0.2957 -0.0689 0.948
s.e. 0.8296 0.9489 0.2204
rmse 0.8790 0.9939 0.2309

Joint MLE bias -0.3256 0.3240 -0.0643 0.928
s.e. 1.0561 1.1363 0.2103
rmse 1.1051 1.1816 0.2200

Cond. MLE bias -0.4942 0.5709 -0.0988 0.842
s.e. 1.3598 1.4938 0.2241
rmse 1.4468 1.5992 0.2449

ASD 0.5387 0.5728 0.2500
cumulant-based bias -0.1124 0.2203 0.346
method s.e. 1.8020 1.9365

rmse 1.8056 1.9490

5. Discussion

We proposed an algorithm for computing the exact MLE for a non-Gaussian
MA process, in which the data are augmented by suitable latent variables so
that the likelihood can be expressed without loss of information. Two alter-
native estimators, the joint MLE and conditional MLE, are suggested that are
much easier to compute but still asymptotically equivalent to the MLE. Simula-
tion results suggest that the exact MLE solved by the EM algorithm performs
better than other estimators under various non-Gaussian MA processes in finite
samples. Moreover, the joint MLE and the conditional MLE outperformed Lii
and Rosenblatt’s approximate MLE for most of the cases.

In defining the conditional MLE, we set each latent variable equal to its
unconditional mean, zero, as a natural and convenient choice. In fact, the latent
variables can be set to arbitrary finite values for computing the conditional MLE,
since the effect of the latent variables is negligible asymptotically. However, initial
values may affect the performance of estimators in finite samples. Empirical
evidence has been found in our simulation results that the joint MLE (with the
estimated initial values) performs better than the conditional MLE, especially
for the non-invertible cases.

Another practical issue is that the innovation density, required by the likeli-
hood-based methods, is usually unknown. One can estimate the MA coefficient
by maximizing the Laplace likelihood first to obtain an initial estimate (which
corresponds to the least absolute deviation estimate) and then computing the
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residuals. Based on these residuals, a suitable parametric density can be sug-
gested and the estimates for MA coefficients can be refined. Similar recommen-
dations were also made by Lii and Rosenblatt (1996) for the non-minimum phase
ARMA processes.
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