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Abstract: In this paper we extend Fisher’s fiducial argument and obtain a gener-

alized fiducial recipe that greatly expands the applicability of fiducial ideas. We

do this assuming as little structure as possible. We demonstrate this recipe on

many examples of varying complexity. We investigate, by simulation and by theo-

retical considerations, some properties of the statistical procedures derived by the

generalized fiducial recipe observing very good performance. We also compare the

properties of generalized fiducial inference to the properties of Bayesian inference.
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1. Introduction

R. A. Fisher’s fiducial inference has been the subject of many discussions

and controversies ever since he introduced the idea during the 1930’s. The idea

experienced a bumpy ride, to say the least, during its early years and one can

safely say that it eventually fell into disfavor among mainstream statisticians.

However, it appears to have made a resurgence recently under the label of gen-

eralized inference. In this new guise, fiducial inference has proved to be a useful

tool for deriving statistical procedures for problems where frequentist methods

with good properties were previously unavailable. Therefore we believe that the

fiducial argument of R. A. Fisher deserves a fresh look from a new angle.

Our main goal is to show that the idea of transferring randomness from the

model to the parameter space seems to be a useful one—giving us a tool to design

useful statistical methods. We depart from the usual tradition in several ways.

When defining fiducial distribution we do not start with a pivotal quantity. In-

stead we start with a data generating equation also called a structural equation.

This often makes no difference to the final result but it gives us the added flex-

ibility of being able to treat continuous and discrete data in a unified fashion.

We then approach the definition of a fiducial probability as a simple transfer of

probability measure. We then investigate some particular examples and notice

that statistical methods designed using the fiducial reasoning have typically very
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good statistical properties as measured by their repeated sampling (frequentist)

performance. This is demonstrated both in simulations and by some asymptotic

considerations.

Thus fiducial inference can be viewed as a procedure that obtains a measure

on a parameter space while assuming less than Bayesian inference does (no prior);

it can also be viewed, as shown by our asymptotic results, as a procedure that in

a routine algorithmic way defines approximate pivots for parameters of interest,

which is one of the main goals of frequentist inference. Moreover, our research

shows that fiducial distributions can be related to empirical Bayes methods.

Unfortunately, we also demonstrate that there is typically no unique way

to define a fiducial distribution. One aspect of the non-uniqueness is related

to problems associated with conditioning on an event of probability zero known

as the Borel paradox—see Casella and Berger (2002, Sec. 4.9.3). Fortunately,

when the model has complete sufficient statistics, which is true in many practical

situations, one gets essentially unique procedures. Moreover, even in the cases

when the minimal sufficient statistics is not complete we offer a particular way of

deriving a fiducial distribution that works very well in a wide range of problems.

We do not attempt to derive a new “paradox free theory of fiducial inference”

as we do not believe this is possible. Instead we assume as little structure as

possible, present a simple recipe that can be used regardless of the dimension of

the parameter space and that is easily implementable in practical applications,

and we study properties of the procedures it produces.

This discussion should be also of interest to people using generalized in-

ference procedures. The reason is that any fiducial distribution can be under-

stood as a distribution on the parameter space implied by a particular general-

ized pivot and most, if not all, generalized pivotal inference procedures in the

published literature are identical to procedures obtained using fiducial inference

Hannig, Iyer and Patterson (2006b). In fact our generalized fiducial recipe has

been developed as a generalization of the idea of a generalized pivot. Therefore,

most ideas presented here are directly applicable for generalized inference as well.

The rest of this paper is organized as follows. In Section 2 we briefly dis-

cuss some aspects of the history of the fiducial argument. Section 3 gives a

heuristic explanation of the fiducial argument. This is followed in Section 4 by a

technical formulation of a generalized fiducial recipe, suggestion of a particular

implementation of the generalized fiducial recipe, and a discussion of practical

uses of the fiducial distribution together with its connection to Bayesian infer-

ence. Section 5 gives some sufficient conditions under which generalized fiducial

distribution leads to confidence sets that are asymptotically exact in the frequen-

tist sense. Section 6 gives several examples that are of independent interest. In

particular we derive a generalized fiducial distribution for a variance component
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problem, a multinomial distribution, and a mixture of two normal populations.

In each case we evaluate the performance of the proposed method by simulation.

Finally, in Section 7 we give examples of non-uniqueness of generalized fiducial

distribution.

2. History

R. A. Fisher introduced the idea of fiducial probability and fiducial inference

Fisher (1930) in an attempt to overcome what he saw as a serious deficiency of the

Bayesian approach to inference-use of a prior distribution on model parameters

even when no information was available regarding their values. Although he

discussed fiducial inference in several subsequent papers, there appears to be

no rigorous definition of a fiducial distribution for a vector parameter θ based

on sample observations. In the case of a one-parameter family of distributions,

Fisher gave the following definition for a fiducial density f(θ|x) of the parameter

based on a single observation x for the case where the cdf F (x|θ) is a monotonic

decreasing function of θ:

f(θ|x) = −∂F (x|θ)

∂θ
. (2.1)

Fisher illustrated the application of fiducial probabilities by means of a numerical

example consisting of four pairs of observations from a bivariate normal distri-

bution with unknown mean vector and covariance matrix. For this example he

derived fiducial limits (one-sided interval estimates) for the population correla-

tion coefficient ρ. Fisher proceeded to refine the concept of fiducial inference in

several subsequent papers (Fisher (1933, 1935a)). In his 1935 paper titled “The

Fiducial Argument in Statistical Inference” Fisher explained the notion of fidu-

cial inference for µ based on a random sample from a N(µ, σ2) distribution where

σ is unknown. The process of obtaining a fiducial distribution for µ was based

on the availability of the student’s t-statistic that served as a pivotal quantity for

µ. In this same 1935 paper, Fisher discussed the notion of a fiducial distribution

for a single future observation x from the same N(µ, σ2) distribution based on a

random sample x1, . . . , xn. For this he used the fact that

T =
x − x̄

s/
√

n

is a pivotal quantity. He then proceeded to consider the fiducial distribution

for x̄′ and s′, the mean and the standard deviation, respectively, of m future

observations xn+1, . . . , xn+m. By letting m tend to infinity, he obtained a simul-

taneous fiducial distribution for µ and σ. He also stated “In general, it appears

that if statistics T1, T2, . . . contain jointly the whole of the information available

respecting parameters θ1, θ2, . . ., and if functions t1, t2, . . . of the T ’s and θ’s can
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be found, the simultaneous distribution of which is independent of θ1, θ2, . . .,

then the fiducial distribution of θ1, θ2, . . . simultaneously may be found by sub-

stitution.” In essence Fisher had proposed a recipe for constructing simultaneous

fiducial distributions for vector parameters. He applied this recipe to the problem

of interval estimation of µ1 −µ2 based on independent samples from two normal

distributions N(µ1, σ
2
1) and N(µ2, σ

2
2) with unknown means and variances, the

celebrated Behrens-Fisher problem. Fisher noted that the resulting inference re-

garding µ1 − µ2 coincided with the approach proposed much earlier by Behrens

(1929). He alluded to the test of the null hypothesis of no difference, based on the

fiducial distribution of µ1−µ2 as an exact test. This resulted in much controversy

as it was noted by Fisher’s contemporaries that the Behrens-Fisher test was not

an exact test in the usual frequentist sense. Moreover, this same test had been

obtained by Jeffreys (1940) using a Bayesian argument with non-informative pri-

ors (now known as Jeffreys priors). Fisher argued that, while Jeffreys approach

gave the same answer as the fiducial approach, the logic behind Jeffreys deriva-

tion was unacceptable because of the use of an unjustified prior distribution on

the parameters. Fisher particularly objected to the practice of using uniform

priors to model ignorance. This led to further controversy especially between

Fisher and Jeffreys.

In the same 1935 paper, Fisher gave a second example of application of his

recipe by deriving a fiducial distribution for φ in the balanced one-way random

effects model

Yij = µ + ai + eij , i = 1, . . . , n1; j = 1, . . . , n2,

where ai ∼ N(0, φ), eij ∼ N(0, θ), and all random variables are independent. An

issue that arose from his treatment of this problem is that the fiducial distribu-

tion assigned a positive probability to the event φ < 0 in spite of the fact that

φ is a variance. Recently, using the ideas from this paper E, Hannig and Iyer

(2008) provided a fiducial solution for the unbalanced version of the one-way

random effects model. It is interesting to remark that simulations reported in

E, Hannig and Iyer (2008) suggest that the fiducial solution leads to confidence

intervals for φ that are conservative, but have an expected length that is shorter

than all other frequentist solutions available in the literature.

Fisher’s 1935 paper resulted in a flurry of activity in fiducial inference. Most

of this activity was directed toward finding deficiencies in fiducial inference and

philosophical concerns regarding the interpretation of fiducial probability. The

controversy seems to have risen once Fisher’s contemporaries realized that, un-

like the case in early simple applications involving a single parameter, fiducial

inference often led to procedures that were not exact in the frequentist sense.

For a detailed discussion of the controversies concerning fiducial inference, the
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reader is referred to Zabell (1992). On a positive note Fraser, in a series of ar-

ticles Fraser (1961, 1966) and a monograph Fraser (1968), attempted to provide
a rigorous framework for making inferences along the lines of Fisher’s fiducial

inference. Fraser proposed to resolve the problems of non-uniqueness by assum-

ing that the statistical model was coupled with an additional group structure,

e.g., location-scale model. He termed his approach structural inference. While
the presence of this additional group structure could be used as a guidance tool

in resolving some sources of non-uniqueness, other sources of non-unqueness still

remain; see Remark 7 in Section 7 for more details. Fraser also introduced the

concept of modeling the data as a function of the parameters and some error
random variable through a structural equation. This is in contrast to the more

usual pivotal equation approach that gets the error random variable as a function

of data and the parameter.

Additional important references include Wilkinson (1977), who attempted
to explain and/or resolve some of the controversies regarding fiducial inference,

Dawid and Stone (1982), who provided further insight by, among other things,

studying situations where fiducial inference led to exact confidence statements,
and more recently, Barnard (1995), who proposed a view of fiducial distribution

based on the pivotal approach that does not seem to suffer some of the problems

reported in earlier literature. However, Barnard (1995) achieves this by ignoring

some of the information available in the data and restricting sets on which fiducial
distribution can be evaluated. A reader interested in additional references on

fiducial inference can consult Salome (1998). Nevertheless, it is fair to say that

fiducial inference failed to secure a place in mainstream statistics.

In Tsui and Weerahandi (1989), a new approach was proposed for construct-
ing hypothesis tests using the concept of generalized P values and this idea

was later extended to a method of constructing generalized confidence inter-

vals using generalized pivotal quantities (GPQs) Weerahandi (1993). Several

papers have appeared since, in leading statistical journals, where confidence in-
tervals have been constructed using generalized pivotal quantities in problems

where exact frequentist solutions are unavailable. For a thorough exposition

of generalized inference see Weerahandi (2004). Iyer and Patterson (2002) and

Hannig, Iyer and Patterson (2006b) noted that every published generalized con-
fidence interval was obtainable using the fiducial/structural arguments. In fact,

Hannig, Iyer and Patterson (2006b) not only established a clear connection be-

tween fiducial intervals and generalized confidence intervals, but also proved the

asymptotic frequentist correctness of such intervals. They further provided some
general methods for constructing GPQs. In particular, they showed that a special

class of GPQs, called fiducial GPQs (FGPQ), provide a direct frequentist inter-

pretation to fiducial inference. However, all these articles focus on continuous

distributions and do not address discrete distributions.
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There is very little published literature dealing with fiducial inference for

parameters of a discrete distribution. Even for the single parameter case such

as the binomial distribution Fisher was aware that there were difficulties with

defining a unique fiducial density for the unknown binomial parameter p. In his

1935 paper (Fisher (1935b)) titled “The Logic of Inductive Inference”, Fisher

gives an example where he suggests a clever device for “turning a discontinu-

ous distribution, leading to statements of fiducial inequality, into a continuous

distribution, capable of yielding exact fiducial statements, by means of a modi-

fication of experimental procedure.” His device was to introduce randomization

into the experimental procedure and is akin to randomized decision procedures.

Inspired by Fisher’s example, Stevens (1950) gave a more formal treatment of

this problem where he used a supplementary random variable in an attempt to

define a unique fiducial density for a parameter of a discrete distribution. He

discussed his approach in great detail using the binomial distribution as an il-

lustration. Unfortunately, this idea seems to have gotten lost, and subsequent

researchers mostly focused on fiducial inference for continuous distributions. A

notable exception is Dempster (1966, 1968) whose theory of upper and lower

fiducial probabilities was designed specifically for discrete distributions. In 1996,

in his Fisher Memorial Lecture at the American Statistical Association annual

meetings, Efron gave a brief discussion of fiducial inference with the backdrop of

the binomial distribution. He said, “Fisher was uncomfortable applying fiducial

arguments to discrete distributions because of the ad hoc continuity corrections

required, but the difficulties caused are more theoretical than practical.” See Efron

(1998). In fact, Efron’s suggestion for how to handle discrete distributions is a

special case of Stevens (1950).

Dempster’s idea of upper and lower probabilities was further developed in the

Dempster-Shafer calculus (Dempster (2008)), a mathematical theory of evidence.

To explain the main paradigm of this theory applied in our context, consider the

following simple example. Let X = I(0,p)(U), where p ∈ (0, 1) is an unknown fixed

number. If we found X = 1, U = 0.3, we could conclude that p ∈ (0.3, 1), e.g.,

we would know that statement {p < 0.1} is not true, statement {p > 0.2} is true,

and {p > 0.9} is unsure. Now more realistically, let us assume that X = 1 and U

is an unknown realization of a U(0, 1) random variable. Just as before we know

p ∈ (U, 1), which now is a random statement. This statement can interpreted

as follows: The event {p < 0.1} is not possible if U > 0.1 as the interval (U, 1)

has empty intersection with (0, 0.1). Hence we assign the probability 0.9 to the

statement “it is not true that{p < 0.1}”. Similarly, if U < 0.1 the interval (U, 1)

has non-empty intersection with both (0, 0.1) and its complement and therefore

{p < 0.1} is unsure with probability 0.1. In other words we assign probability

of 0.1 to the statement “we do not know if p < 0.1”. Finally, {p < 0.1} is
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certain only if U = 0 which has probability 0. Thus we assign probability 0 to

the statement “we are convinced {p < 0.1}”. Similarly, {p > 0.7} is certain with

probability 0.3, because if U > 0.7 the interval (U, 1) is included in the interval

(0.7, 1). The statement {p > 0.7} is unsure with probability 0.7, because again

if U < 0.7 the interval (U, 1) has non-empty intersection with both (0.7, 1) and

its complement. Finally, {p > 0.7} can be excluded only if U = 1 which has

probability 0.

Using a more statistical terminology, the information on the parameter p is

not summarized in terms of measure on the parameter space (0, 1), but rather in

terms of a measure on the space of subsets of the parameter space together with

a rule on how to interpret this measure in terms of the parameter. The second

part of Dempster-Shafer calculus is a rule on how to combine information from

two such measures under the assumption of independence. This rule is too com-

plicated to spell out here, but we remark that it bears similarities to our fiducial

recipe introduced in Section 4. In particular, just as is the case with our pro-

cedure, Dempster’s recombination rule suffers from non-uniqueness due to con-

ditioning on events of probability zero—the Borel paradox. A reader interested

in a more thorough introduction to Dempster-Shafer calculus for statisticians is

referred to Dempster (2008).

As mentioned earlier, fiducial inference has recently made a comeback in ap-

plied literature partially under the guise of generalized inference. In the field of

Metrology there is a movement to establish fiducial and generalized inference as

one of the mainstream methods of that discipline, Wang and Iyer (2005, 2006a,b).

Several researchers have worked on various measures of process repeatability

and reproducibility using generalized confidence intervals derived from general-

ized pivotal quantities. See, for instance, Daniels, Burdick and Quiroz (2005),

Burdick, Park, Montgomery and Borror (2005b), Hamada and Weerahandi

(2000) and Iyer, Wang and Mathew (2004). Finally, McNally, Iyer and Mathew

(2003) have applied the method of generalized confidence intervals to selected

applications in pharmaceutical statistics. Given this flurry of recent activity

generated by applications, we believe that it is important to further develop the

understanding of fiducial inference and its performance in specific problems.

In this paper we provide a general definition for fiducial distributions for

parameters that applies equally well to continuous as well as discrete parent

distributions. The resulting inference is termed generalized fiducial inference,

rather than fiducial inference, to emphasize connection with generalized infer-

ence, as well as the fact that multiple generalized fiducial distributions can be

defined for the same parameter.

We close this section with some quotes. Zabell (1992) begins his Statistical

Science paper with the statement “Fiducial inference stands as R. A. Fisher’s
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one great failure.” On the other hand, Efron, in his 1998 Statistical Science pa-

per (based on his Fisher Memorial Lecture of 1996), in the section dealing with

fiducial inference, has said “I am going to begin with the fiducial distribution,

generally considered to be Fisher’s biggest blunder.” However, in the closing para-

graph of the same section (Section 8), he says “Maybe Fisher’s biggest blunder

will become a big hit in the 21st century !”

3. The Fiducial Argument

The main aim of fiducial inference is to define a distribution for parameters

of interest that captures all of the information that the data contains about these

parameters. This fiducial distribution can later be used for proposing inference

procedures such as confidence sets. In this sense, a fiducial distribution is much

like a Bayesian posterior distribution. Fisher wanted to accomplish this without

assuming a prior distribution on the parameters.

We would like to introduce our understanding of the fiducial argument by

comparing it to the widely accepted notion of likelihood function. Recall that the

likelihood function is obtained by considering the density function of our data,

f(x, ξ), and switching the role of the variable and the parameter. With ξ known

and fixed, the density determines the probability of observing any given value

of x, while the likelihood function considers x fixed and calibrates our belief in

various values of ξ.

The fiducial distribution is based on a similar idea of switching the role of the

parameter and the data. We start with a structural equation X = G(ξ, U) where

ξ is a parameter and U is a random vector with completely known distribution

independent of any parameters. Often one can think of the structural equation

as a detailed description of the noise process U that combines with the signal

ξ to yield observed data X. Thus for any fixed value of the parameter ξ the

distribution of U and the structural equation imply the distribution of the data

X. After observing the data X we can switch the role of data and parameters. In

particular, we fix the value of X and use the distribution of U and the structural

equation (this time considered as an implicit equation) to infer a distribution on

ξ. In other words, one can get a random realization from the fiducial distribution

of ξ by generating U and solving the structural equation for ξ, conditioning on

the fact that the solution exists. We now proceed to demonstrate this idea on a

simple example.

Consider a random variable X from a normal distribution with unknown

mean µ and variance 1, i.e., X = µ + Z where Z is standard normal. If x is

a realized value of X corresponding to the realized value z of Z, then we have

µ = x− z. Of course the value z is not observed. However, a contemplated value

µ0 of µ corresponds to the value x−µ0 of z. Knowing that z is a realization from
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the N(0, 1) distribution, we can evaluate the likelihood of Z taking on the value

x−µ0. Speaking informally, one can say that the “plausibility” of the parameter

µ taking on the value µ0 “is the same” as the plausibility of the random variable

Z taking on the value x − µ0. Using this rationale, we write µ = x − Z where

x is regarded as fixed but Z is still considered a N(0, 1) random variable. This

step, namely, shifting from the true relationship µ = x− z (z unobserved) to the

relationship µ = x−Z, is what constitutes the fiducial argument. We can use the

relation, µ = x − Z, to define a probability distribution for µ. This distribution

is called the “fiducial distribution” of µ. In particular, a random variable M

carrying the fiducial probability distribution of µ can be defined based on the

probabilities of observing the value of Z needed to get the desired value of µ, i.e.,

define M so that

P (M ∈ (a, b)) = P (x − Z ∈ (a, b)) = P (Z ∈ (x − b, x − a)).

For theoretical considerations, it is useful to consider a particular version of this

random variable defined as M = x−Z⋆, where Z⋆ is a standard normal random

variable independent of Z.

In conclusion, notice that to obtain a random variable that has a distribution

described above, we had to take the structural equation X = µ + Z, solve for

µ = X − Z and replace Z with Z⋆, a random variable independent of Z having

the same distribution as Z, to get M = x − Z⋆, where x is the observed value.

4. Generalized Fiducial Recipe

We now generalize the idea described in Section 3 to arbitrary statistical

models. Our definition of generalized fiducial distribution is influenced both

by generalized pivotal quantities and by Fraser’s structural inference—see Ap-

pendix 3 of Dawid, Stone and Zidek (1973) for a very concise description of the

structural inference idea. The main difference between Fraser’s proposal and the

recipe presented below is that we do not assume a group structure.

Let X be a (possibly discrete) random vector with a distribution indexed by

a parameter ξ ∈ Ξ. Assume that the data generating mechanism for X could be

expressed as

X = G(ξ, U), (4.1)

where G is a jointly measurable function and U is a random variable or vec-

tor with a completely known distribution independent of any parameters. The

equation (4.1) can be understood as the equation that was used to generated the

data, and we term it the structural equation. We define a set-valued function

Q(x, u) = {ξ : x = G(ξ, u)}. (4.2)
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The function Q(X, U) could be understood as an inverse of the function G. Here

G defines u as an implicit function of ξ, and x is regarded as fixed. To avoid

measurability problems, assume Q(x, u) is a measurable function of u.

We use the inverse function Q(x, u) to define the fiducial distribution on the

parameter space. However, in some problems the inverse Q(x, u) could contain

more than one element, in which case we need to select one of the element

in Q(x, u) according to some, possibly random, rule. Mathematically this is

achieved as follows: assume for any measurable set S, there is a random element

V (S) with support S, where S is the closure of S. We then use the function

V (Q(x, u)) in our definition.

Finally, notice that the equation x = G(ξ, u) is satisfied for ξ, and u used to

generate our observed data x. In other words for this particular u, the function

Q(x, u) 6= ∅. Therefore, in addition to knowing the distribution of U we also

know that the event {Q(x, u) 6= ∅} has happened and we will have to condition

the distribution of U on this event.

Thus, we define a generalized fiducial distribution of ξ as the conditional

distribution

V (Q(x, U⋆)) | {Q(x, U⋆) 6= ∅}. (4.3)

Here x is the observed value of X and U⋆ is an independent copy of U .

It is useful for future considerations to denote a random element having

the distribution described in (4.3) by Rξ(x). We call this random variable a

generalized fiducial quantity (GFQ). It is often of interest to provide inference

procedures for θ = π(ξ) ∈ R
q in which case we define the marginal fiducial

distribution for θ as the distribution of

Rθ(x) = π(Rξ(x)). (4.4)

We also remark that GFQs are a generalization of fiducial generalized pivotal

quantities (FGPQs) introduced by Hannig, Iyer and Patterson (2006b).

The following examples provide simple illustrations of the definition of a

generalized fiducial distribution.

Example 1. Suppose U = (E1, E2), where Ei are i.i.d. N(0, 1) and

X = (X1,X2) = G(µ,U) = (µ + E1, µ + E2)

for some µ ∈ R. So the Xi are i.i.d. N(µ, 1). Given a realization x = (x1, x2) of

X, the set-valued function Q maps u = (e1, e2) ∈ R
2 to a subset of R, where

Q(x, u) =





{x1 − e1} if x1 − x2 = e1 − e2,

∅ if x1 − x2 6= e1 − e2.
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Notice that Q(x, u) is either empty or is a singleton, hence V does not have to

be considered here.

By definition, a generalized fiducial distribution for µ is the distribution of

x1−E⋆
1 conditional on E⋆

1 −E⋆
2 = x1−x2 where U⋆ = (E⋆

1 , E⋆
2) is an independent

copy of U . Hence a generalized fiducial distribution for µ is N(x̄, 1/2) where

x̄ = (x1 + x2)/2.

Example 2. Suppose U = (U1, . . . , Un) is a vector of i.i.d. uniform (0, 1) random

variables Ui. Let p ∈ [0, 1]. Let X = (X1, . . . ,Xn) be defined by Xi = I(Ui <

p). So the Xi are i.i.d. Bernoulli random variables with success probability p.

Suppose x = (x1, . . . , xn) is a realization of X. Let s =
∑n

i=1 xi be the observed

number of 1’s. The mapping Q : [0, 1]n → [0, 1] is given by

Q(x, u) =






[0, u1:n] if s = 0,

(un:n, 1] if s = n,

(us:n, us+1:n] if s = 1, . . . , n − 1

and
∑n

i=1 I(xi = 1)I(ui ≤ us:n) = s,

∅ otherwise.

Here ur:n denotes the rth order statistic among u1, . . . , un.

Notice that if Q(x, u) is non-empty, it is an entire interval. Therefore we

need to select a particular V (•) and this selection will have an effect on the final

answer. A generalized fiducial distribution for p is given by the distribution of

V (Q(x,U⋆)) conditional on the event Q(x,U⋆) 6= ∅ where V (Q(x,U⋆)) is any

random variable whose support is contained in Q(x,U⋆). By the exchangeability

of U⋆
1 , . . . , U⋆

n it follows that the stated conditional distribution of V (Q(x,U⋆))

is the same as the distribution of V ([0, U⋆
1:n]) when s = 0, V ((U⋆

s:n, U⋆
s+1:n]) for

0 < s < n, and V ((U⋆
n:n, 1]) for s = n. Based on simulations reported in Section 6

a good choice of V ((a, b]) is V ((a, b]) = a with probability 1/2 and V ((a, b]) = b

with probability 1/2. In this case the FQ Rp = BU⋆
s:n + (1 − B)U⋆

s+1:n where B

is a Bernoulli(1/2) random variable. Other choices of V ((a, b]) lead to slightly

different generalized fiducial distributions.

A similar answer can be also obtained by Dempster-Shafer calculus (Dempster

(2008)). The main difference between our proposal and Dempster-Shafer calcu-

lus is the usage of the quantity V (•), i.e., the answer based on Dempster-Shafer

calculus would not use V . It would be based on the distribution of the random

interval (U⋆
s:n, U⋆

s+1:n]. The feasibility of a statement p ∈ A would then be given

as follows: p ∈ A is true with probability py = P ((U⋆
s:n, U⋆

s+1:n] ⊂ A), false with

pn = 1 − P ((U⋆
s:n, U⋆

s+1:n] ⊂ A∁) and undecidable with probability 1 − py − pn.
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While Dempster-Schafer approach is theoretically appealing in its honest

acknowledgment of the fact that there is some chance that we cannot say whether

statement is true or not, we prefer in most applications to resolve this uncertainty

by the choice of V (•). Such a solution leads to answers that are simpler to

interpret and understand for most practitioners. When we return to this example

in Section 6, we discuss the issue of choice of V (•) in more detail. In particular

we propose the use of a particular V (•), already mentioned above, that leads to

first order accurate statistical procedures. In any case we show in Section 6 that,

as n grows, the fiducial distribution becomes insensitive to the choice of V .

Remark 1. As demonstrated in the examples above the recipe in (4.3) does

not lead to a unique distribution. In fact, in addition to the well documented

potential non-uniqueness due to the particular choice of the structural equation,

there are two additional sources of non-uniqueness. As seen in Example 2, the

first source of non-uniqueness is the choice of the random variable V (Q(x, u))

if the set Q(x, u) has more than one element. This typically happens if we

deal with discrete random variables. In this case the choice of V (Q(x, u)) is

necessarily subjective, though some choices could lead to better repeated sample

performance than others.

The second source of non-uniqueness is more subtle and comes from the fact

that in some situations we have P (Q(x, U⋆) 6= ∅) = 0. This usually happens

when dealing with continuous data. If P (Q(x, U⋆) 6= ∅) = 0 the conditional

distribution (4.3) needs to be interpreted as a conditional probability given a

σ-algebra or, equivalently, we need to find a random object H(U⋆) such that

{Q(x, U⋆) 6= ∅} = {H(U⋆) = 0}. In this case (4.3) could be interpreted as

V (Q(x, U⋆)) |H(U⋆) = 0.

Unfortunately, if P (H(U⋆) = 0) = 0, different choices of H could lead to different

conditional distributions. This is related to the Borel’s paradox described, for

example, in Casella and Berger (2002, Sec. 4.9.3).

Notice that the only additional information available to us is the fact that

the value of U⋆ and x must be compatible. In other words U⋆ has to be such

that x = G(ξ, U⋆) for at least one value of ξ, i.e., Q(x, U⋆) 6= ∅. Therefore, any

particular choice of H could be viewed as “added information”. The theory of

probability does not give us a reason to favor one choice of H over another. We

might have some other reason, e.g., additional structure, that would guide us to

a particular choice. However, there could be natural choices of H arising from

different points of view. This could in turn give us more than one generalized

fiducial distribution causing what may be viewed by some as a paradox. We

discuss these issues in much greater detail in Section 7.
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Remark 2. The choice of a particular form of the structural equation (4.1)

could influence the generalized fiducial distribution. This problem is generally

well-known. It is the aim of this paper to discuss the statistical challenges left

after we fix a structural equation. Therefore in the remainder of this paper we

regard data represented by a different structural equation as a different statistical

problem even if they have the same distribution.

It is important to remark that in some practical applications the physical

process by which the data was generated is known. In this case we can and

should choose the structural equation to reflect this process. This eliminates the

problem of non-uniqueness due to the choice of structural equation. A canonical

example arises in the field of metrology, where an unknown quantity is measured

using some known processes. The processes have known physical characteristics

and add errors to the measured quantity in some pre-specified known fashion.

The resulting measured values are expressed as an equation combining some

unknown measured quantities and errors. This equation can be taken as the

structural equation. In fact, the Guide to expression of Uncertainty in Mea-

surements (GUM), an ISO document that is adhered to by national metrology

laboratories of many countries, has an explicit requirement that all measured

values be related to true values through a measurement equation that is really a

structural equation in our terminology. For a particular example see Annex H.1

of GUM.

4.1. Suggested implementation of the recipe

As discussed in Remark 1, when implementing the fiducial recipe for contin-

uous distribution, one needs to make some choices regarding the random vector

used for conditioning. In what follows we recommend one way of resolving this

problem and implementing the generalized fiducial recipe. This implementation

worked well in the simulations we performed. We remark that similar ideas in a

less general form can be already found in Hannig, Iyer and Patterson (2006b).

We first illustrate our approach on a simple (well-known) example and derive

a joint generalized fiducial distribution for the parameters µ and σ2 based on a

random sample from N(µ, σ2).

Example 3. Let X1, . . . ,Xn be i.i.d. N(µ, σ2). We can describe the distribution

of X by means of the structural equations

Xi = µ + σZi, i = 1, . . . , n.

Here the Zi are i.i.d. standard normal random variables. We split our n equations

into two groups: the first two equations are used to solve for µ, σ2; than take the
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remaining n − 2 equations, plug into them the solutions for µ, σ2 obtained from

the first two equations, and condition on them being true. More precisely,

Q(x1, . . . , xn; z1, . . . , zn) =






{(
z1x2−z2x1

z1−z1
,
(

x1−x2
z1−z2

)2
)}

if xl =
zixj−zjxi

zi−zj
−
∣∣∣xi−xj

zi−zj

∣∣∣ zl, l = 3, . . . , n;

∅ otherwise.

Defining

M =
z1x2 − z2x1

z1 − z2
,H =

(
x1 − x2

z1 − z2

)2

, and Rl =
z1x2 − z2x1

z1 − z2
−
∣∣∣∣
x1 − x2

z1 − z2

∣∣∣∣ zl,

we can interpret the generalized fiducial distribution (4.3) as the conditional dis-

tribution of (M,H) given R = x, where R = (R3, . . . , Rn) and x = (x3, . . . , xn).

A simple calculation shows that the joint density of (M,H,R) is

fM,H,R(m,h, x3, . . . , xn) =
e−(

Pn
i=1(m−xi)

2)/(2h)|x1 − x2|
2(2π)n/2hn/2+1

I(0,∞)(h).

However, there is no particular reason why we should have used the first

two equations to solve for µ and σ. Therefore, given the symmetry natural to

independent data, it seems more natural to assume that the two equations used

to solve for µ and σ were selected at random. This leads to

fM,H,R(m,h,x) =
e−(

Pn
i=1(m−xi)

2)/(2h)
(n
2

)−1∑
i<j |xi − xj|

2(2π)n/2hn/2+1
I(0,∞)(h). (4.5)

In any case a simple calculation shows that the fiducial density of R(µ,σ2) =

fM,H|R=x(m,h) is

fR(µ,σ2)
(m,h) =

e−(m−x̄n)2/(2h/n)−(n−1)s2
n/(2h)((n − 1)s2

n)(n−1)/2

√
π/n Γ ((n − 1)/2) 2n/2hn/2+1

I(0,∞)(h). (4.6)

This is the joint fiducial density proposed by Fisher (1935a), which is also

the Bayesian posterior with respect to Jeffreys prior (Jeffreys (1961)). It is

known that statistical methods based on (4.6) lead to exact frequentist inference

Mood, Graybill and Boes (1974).

General Case

We now perform similar computations in a more general situation. Let us

suppose that the parameter of interest ξ is p-dimensional. Recall the structural

equation, X = G(U, ξ). Write G = (g1, . . . , gn) so that Xi = gi(U, ξ) for i =
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1, . . . , n. Set X0 = (X1, . . . ,Xp), Xc = (Xp+1, . . . ,Xn), write U0 = (U1, . . . , Up),

Uc = (Up+1, . . . , Un), and assume that the structural equation can be factorized

into G = (G0,Gc), where

X0 = G0(ξ,U0) and Xc = Gc(ξ,Uc).

Additionally assume that for each fixed ξ ∈ Ξ the functions G0(ξ, · ) and Gc(ξ, · )

are one-to-one and differentiable. Thus

fX(x|ξ) = fU(G−1
0 (x0, ξ),G

−1
c (xc, ξ))JG

−1
0

(x0, ξ)JG
−1
c

(xc, ξ). (4.7)

Finally assume that, for each fixed u0, the mapping G0(· ,u0) is invertible and

differentiable. Denote this inverse mapping by Hξ(x0,u0) and write Hc(x, e) =

Gc(Hξ(x0,u0),uc), setting H = (Hξ,Hc). Thus the definition of the generalized

fiducial distribution (4.3) can be interpreted as the conditional distribution of

Hξ(x,U⋆) |Hc(x,U⋆) = xc. (4.8)

To derive the conditional density of (4.8), notice that if x = G(ξ, e) then

Hξ(x0,u0) = ξ and Hc(x, e) = xc. Finally, for all fixed x,

H−1((ζ, s),x) = (G−1
0 (x0, ζ),G−1

c (s, ζ))

and the Jacobian

JH−1(x, ζ) = JG−1
0 (x0,· )(x0, ζ)JG−1

c
(xc, ζ).

Here JG−1
0 (x0,· ) is the Jacobian constructed by taking derivatives with respect

to ζ. The joint density density of H(x, U⋆) at the point (ζ,xc) is

fH(ζ,xc) = fU (H−1((ζ,xc),x))JH−1((ζ,xc),x). (4.9)

By comparing (4.7) and (4.9) we get

fH(ξ,xc) = fX(x|ξ)J0(x0, ξ) where J0(x0, ξ) =

∣∣∣∣∣
det
(
dG−1

0 (x0, ξ)/(dξ)
)

det
(
dG−1

0 (x0, ξ)/(dx0)
)

∣∣∣∣∣ .

Therefore the conditional density of (4.8) is

r(ξ) =
fX(x|ξ)J0(x0, ξ)∫

Ξ fX(x|ξ′)J0(x0, ξ′) dξ′
. (4.10)

The generalized fiducial distribution in (4.10) depends on the choice of G0

and Gc, which is fairly arbitrary, as there is no particular reason why we should

take the first p coordinates and use them for G0. In fact such a factorization
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can be typically done based on any p coordinates (i1, . . . , ip). In this case it is

reasonable to consider the p coordinates used in G0 as selected at random. This

leads to the following interpretation of the generalized fiducial distribution (4.3):

fRξ
(ξ) =

fX(x|ξ)J(x, ξ)∫
Ξ fX(x|ξ′)J(x, ξ′) dξ′

, (4.11)

where

J(x, ξ) =

(
n

p

)−1 ∑

i=(i1,...,ip)

∣∣∣∣∣∣

det
(
dG−1

0,i (xi, ξ)/(dξ)
)

det
(
dG−1

0,i (xi, ξ)/(dxi)
)

∣∣∣∣∣∣
(4.12)

is the sum taken over all subsets of indexes 1 ≤ i1 < · · · < ip ≤ n, and G0,i is

the function G0 with the indexes i used to do the factorization.

One-parameter Case

It is of interest to show the form of of (4.11) in the case of one-parameter

problems. Let X1, . . . ,Xn be independent continuous random variables each with

density fi(xi|ξ) and distribution function Fi(xi|ξ) respectively, where ξ ∈ R.

Choose the structural equation Xi = F−1
i (θ, U) and assume that the various in-

vertibility conditions stated above are satisfied. In light of this structural equa-

tion, (4.12) becomes

J0,i(xi, θ) =
| ∂
∂θFi(xi, θ)|
fi(xi, θ)

and J(x, θ) = n−1
n∑

i=1

J0,i(xi, θ), (4.13)

and the recommended generalized fiducial density in (4.11) is

fRθ
(θ) =

(∏n
j=1 f(xi, θ)

)
J(x, θ)

∫
Θ

(∏n
j=1 f(xi, θ′)

)
J(x, θ′) dθ′

. (4.14)

Notice that if n = 1, the generalized fiducial density described in (4.14) is Fisher’s

original definition of fiducial distribution.

4.2. Practical matters and relationship with Bayesian inference

Since the distribution of Rξ(x) for each observed x is known (or at least

accessible through simulations), we can use it for statistical inference. The hope

is that any inference procedure based on the distributions of Rξ(x) should give

reasonably good answers. To assess the quality of a statistical procedure we use

the frequentist repeated sample paradigm, e.g., coverage and expected length of

confidence intervals.
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Since a generalized fiducial distribution provides us with a distribution on the

parameter space, its use is similar to the practical use of a Bayesian posterior. For

example, we can take the expected value, the median, or some other functional

of the generalized fiducial distribution to get a point estimator of the parameter

ξ. More importantly, we can find sets C(x) with fiducial probability P (Rξ(x) ∈
C(x)) = 1−α and use them as approximate (1−α)100% confidence sets. These

confidence sets, though not exact, seem to have very good coverage/expected

length properties in small sample simulations, and often are exact asymptotically,

see Section 5.

In addition to finding approximate confidence sets, which is the applica-

tion addressed here, we could also use the generalized fiducial distribution for

hypothesis testing and approximate p-values. In particular, define a family of

regions H(x, α) such that, for each fixed x, the sets H(x, α) are nested and

P (Rθ(x) ∈ H(x, α)) = 1 − α. Then, for each observed x, the fiducial p-value

would be defined as supξ0∈H(supξ0∈H(x,α) α). The form of the regions H(x, α) is

determined based on the alternative hypothesis.

Generalized fiducial distributions can also be used for prediction. This is

done by combining the generalized fiducial distribution on the parameters with

a structural equation for the new observations. This approach produces a pre-

dictive distribution that accommodates in a natural way both the uncertainty in

the parameter estimation and the randomness of the future data.

There is another practical issue that generalized fiducial inference shares

with Bayesian inference. Generalized fiducial distributions are rarely available

in closed form. Therefore we often need to use an MCMC method such as a

Metropolis-Hastings or Gibbs sampler to obtain a sample from the generalized

fiducial distribution. While the basic issues facing implementation of the MCMC

procedures are similar for both Bayesian and generalized fiducial problems, there

are specific challenges related to generalized fiducial procedures.

A careful reader might ask at this point the following natural question. Given

the strong similarities between the use of generalized fiducial and Bayesian infer-

ence is there any difference between the two? The answer is yes.

First, there is a basic philosophical difference. Bayesian approach starts

with a fully specified, single joint probability distribution for (X, ξ). Then it

predicts a value of ξ given X using conceptually simple probabilistic computations

(Bayes Theorem). The specification of this single probability distribution for

(X, ξ) is usually done by selecting a model f(x|ξ) and a prior π(ξ), with the

choice of π(ξ) that can be viewed, in the absence of any prior information, as

arbitrary. The fiducial approach is similar to the usual frequentist approach in the

modeling step, as it considers a number of potential distributions for the observed

data as the model. The idea is that the model is incorporating all the known
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prior information and assumptions. Then the fiducial distribution considers a

likelihood-like idea of switching the role of data and parameters to introduce

the distribution on the parameter space. This distribution then summarizes our

knowledge, including uncertainty, about the unknown (fixed) parameter.

Second, generalized fiducial distribution often cannot be obtained as a

Bayesian distribution with respect to any (proper or improper) prior. An early

example is due to Grundy (1956). This can be understood by carefully studying

the fiducial density in (4.11). This density on the parameter space is visually

similar to the usual Bayes posterior with the role of a prior served by the data

dependent function J(x, ξ). Thus the proposed generalized fiducial distribution is

Bayesian posterior if and only if J(x, ξ) = k(x)l(ξ) where k and l are measurable

functions. However J(x, ξ) typically does not decompose in this way, in which

case the fiducial distribution is not a Bayesian posterior with respect to any

proper or improper prior.

There is one more interesting connection to Bayesian inference. For each

fixed ξ, the quantity J(x, ξ) in (4.12) is, by definition, a U-statistic. Therefore, if

our data is i.i.d. we are guaranteed an a.s. convergence to π(ξ) = Eξ0J0(X1, . . .,

Xp, ξ). In fact, under slightly stronger assumptions on the continuity of the Ja-

cobians J0 we obtain, using Yeo and Johnson (2001), that the convergence is

uniform in ξ on compact sets. At first glance π(ξ) could be considered as an

interesting non-subjective prior. Unfortunately this prior cannot be used in ap-

plications because the expectation in the definition of π(ξ) is taken with respect

to the true unknown parameter ξ0. However, the quantity J(x, ξ) could be con-

sidered as an estimator of π(ξ), leading to an empirical Bayes interpretation of

fiducial distribution (4.11). We illustrate this idea in Example 4 in Section 6. It

is also worth mentioning that though π(ξ) is typically improper, the definition,

of fiducial distribution as a conditional distribution of a random variable given

another, guarantees that the the fiducial distribution in (4.11) is always proper.

Our interpretation of the fiducial recipe also sheds some new light on the

consistency criterion of Lindley (1958). This criterion can be summarized as

follows. Assume that the data is divided in two parts. If we calculate the fiducial

distribution based on one part, use it as a prior and calculate the posterior based

on the second part, we should get the same result as if we calculated the fiducial

distribution based on all the data. Since fiducial distributions typically do not

satisfy this criterion unless they are the same as a Bayesian posterior with respect

to some prior, Lindley argued against the use of fiducial distributions. See Fraser

(2006) for related discussion.

Notice that the proposed function J(x, ξ) depends on all the observations x.

Therefore the generalized fiducial distribution in (4.11) satisfies Lindley’s con-

sistency criterion if and only if J(x, ξ) = k(x)l(ξ), in which case the generalized
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fiducial distribution is the same as the Bayesian posterior with respect to the

prior l(ξ). On the other hand, if we used (4.10) as the generalized fiducial dis-

tribution, we would clearly satisfy Lindley’s criterion as long as the order of the

data remained the same. However, based on our experience from simulations,

(4.11) usually has much better small sample frequentist properties than (4.10),

and is therefore preferred even though it does not satisfy Lindley’s consistency

criterion.

Finally, the comparison between Bayesian and fiducial procedures for dis-

crete data seems a little less clear to us. We comment on some aspects of this

connection in Sections 6. and 7.

5. Asymptotic Consistency Results

In this section we present some general theorems that are applicable in

situations one encounters in developing inference procedures using the gener-

alized fiducial recipe. Consider a parametric statistical problem where we ob-

serve X1, . . . ,Xn, whose joint distribution belongs to some family of distribu-

tions parametrized by ξ ∈ R
p. We are interested in estimating θ = π(ξ) ∈ R

q.

Let S = (S1, . . . , Sk), k ≥ q, denote a statistic based on the Xi’s. Denote by

Rθ(x, U) a random variable having the distribution described in (4.3) and (4.4).

For simplicity of notation we define the following notion of convergence for

open sets.

Definition 1. Sets An converge to an open set A, An → A, if (lim An)◦ = A.

Here lim An = B exists if IAn → IB , IA is the indicator function of A, and B◦ is

the interior of B.

We now state the conditions under which the generalized fiducial distribution

defined in (4.3) leads to asymptotically correct frequentist coverage. We later

show how these conditions can be verified in many applications.

Assumption 1.

1. There exist t(ξ) ∈ R
k such that

√
n (S1 − t1(ξ), . . . , Sk − tk(ξ))

D−→ H = (H1, . . . ,Hk)
⊤, (5.1)

where H has a non-degenerate multivariate normal distribution with mean 0

and variance ΣH .

2. For each fixed h ∈ R
k, there is a random variable R(h) such that

(a) for any xn ∈ R
k satisfying

√
n(xn − t(ξ)) → h, we have

√
n(Rθ(xn) − θ)

D−→ R(h);
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(b) there is a general matrix A and a non-negative definite matrix ΣR such

that AΣHA⊤ = ΣR, and R(h) has multivariate normal distribution with

mean Ah and variance ΣR.

3. C(X, z, s, γ) ⊂ R
d is a collection of regions indexed by random variables X,

vectors z ∈ R
d, s ∈ R

k, and γ ∈ (0, 1) satisfying the following.

(a) C(X, z, s, γ) is an open set with boundary of zero Lebesgue measure.

(b) P (X ∈ C(X, z, s, γ)) = γ.

(c) For all a ∈ R and b ∈ R
d, C(aX + b, az + b, s, γ) = aC(X, z, s, γ) + b.

(d) For all h ∈ R
k, Yn

D−→ R(h), zn → Ah, sn → t(ξ), and γn → γ, we have

C(Yn, zn, sn, γn) → C(R(h), z, t(ξ), γ).

We now state our first theorem; its proof is relegated to the appendix.

Theorem 1. Suppose Assumptions 1 holds and γn → γ. Furthermore assume

that there is a function ζ : R
k → R

d such that for any sn ∈ R
k satisfying√

n(sn − t(ξ)) → h, we have

√
n(ζ(sn) − θ) → Ah, (5.2)

where the matrix A is defined in 2b. Then limn→∞ Pξ (θ ∈ C(Rθ(S), ζ(S), S, γn)) =

γ. In particular C(Rθ(S), ζ(S), S, γ) is a confidence region for θ with asymptotic

coverage probability equal to γ.

Remark 3. This theorem is in truth a theorem about the choice of the region

C(X, γ). There are many regions of probability 1−γ available; Condition 3 gives

shapes of good regions C(X, γ).

For example, if d = 1, one of the typical choices is the upper confidence

region, C(X, γ) = (−∞, q(X, γ)), where q(X, γ) is the γ-quantile of the distri-

bution of X. Other choices are the lower confidence region, and the two sided,

equal tailed region. If d > 1, we can also consider the equal tailed regions. In

fact the conditions on the region are so flexible that they allow for most typical

multiple comparison regions. We demonstrate this in Example 9 in Section 6.

The more important part of the story is hidden in Assumptions 1, 2. These

conditions ensure that the generalized fiducial distribution satisfies the Bernstein-

von Mises theorem—see Chapter 8 of Le Cam and Yang (2000). This happens

quite often. The exact assumptions under which the Bernstein-von Mises theorem

holds for generalized fiducial quantities are the subject of ongoing investigation.

In what follows we present Theorem 2 as a first step in this direction.

Remark 4. It is fairly straightforward to generalize the statements of The-

orem 1 for distributions that are not in the domain of attraction of the

normal distribution. Some examples in that direction have been explored in
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Hannig, Iyer and Patterson (2006b). However, the main ideas are better demon-

strated within the setting we have chosen. In particular the key Condition 2b is

easier to understand if the limiting distribution is normal.

To conclude this section we show that the Assumptions 1 and 2 are satisfied in

the basic regular case. Assume that X1,X2, . . . are i.i.d. with density fθ = f(x, θ)

and distribution function F (x, θ), where θ ∈ Θ and Θ is an open subset of R.

We assume the usual regularity assumptions on fθ. They can be found

for example in Ghosh and Ramamoorthi (2003, pp.34-35), assumptions (i)-(v).

Since they are standard, we do not list them. We also assume an additional

regularity condition.

(v′) Set Ln(θ) =
∑n

i=1 log f(Xi, θ) and assume that for any δ > 0,

inf
|θ−θ0|>δ

min
i=1,...,n

log f(Xi, θ)

|Ln(θ) − Ln(θ0)|
Pθ0−→ 0.

Notice that typically, for a fixed θ0, the numerator goes to negative infinity as

−C1 log n while the denominator goes to negative infinity like −C2n. If this hap-

pens, the assumption (v′) guarantees that C1/C2 remains bounded as a function

of θ.

It is well-known, Theorem 1.4.1 of Ghosh et al. (2003), that there is a statis-

tic (usually called the maximum likelihood estimator) Sn such that
√

n(Sn −
θ0)

D−→ N(0, 1/I(θ0)), where I(θ0) is the Fisher information. Condition 1 is

thereby satisfied.

We now show that the Condition 2 is satisfied as well. Choose the structural

equation Xi = F−1(θ, U) and assume that the various invertibility conditions of

Section 4.1 are satisfied. The fiducial distribution is then given by (4.13) and

(4.14). For future reference we denote the density of
√

n(Rθ−S) by πr(θ,x). Our

second theorem is actually stronger than what is required to verify Condition 2;

the proof is relegated to the appendix.

Theorem 2. Adopt the regularity conditions (i)−(v) of Ghosh et al. (2003,

pp.34-35), (v′) of above and the invertibility conditions of Section 4.1. Assume

further that J(x, •) is continuous in θ, π(θ) = Eθ0J0(X, θ) is finite, π(θ0) > 0

and, on some neighborhood of θ0,

Eθ0

(
sup

θ∈(θ0−δ0,θ0+δ0)
J0(X, θ)

)
< ∞.

Then ∫

R

∣∣∣∣∣πr(θ,x) − e−s2/(2/I(θ0))

√
2π/I(θ0)

∣∣∣∣∣
Pθ0→ 0. (5.3)
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Remark 5. The main idea of the proof is to use the Uniform Strong Law of

Large Numbers to show that the quantity J(x, θ) converges to π(θ) uniformly

on compacts in θ, and then use this to prove that the difference between the

generalized fiducial distribution and the posterior with respect to the prior π(θ)

is negligible. The statement then follows by the regular Bernstein-von Mises

theorem for Bayesian posteriors.

A similar idea will apply even if the parameter space is p-dimensional, in

which case the quantity J(x, ξ) is a U-statistics. One can then replace the Uni-

form Strong Law by the Uniform Strong Law of Large Numbers for U-statistics

Yeo and Johnson (2001). The rest of the proof is basically the same.

6. Examples

The purpose of this section is to explain the use of the generalized fiducial

recipe on several examples of varying complexity.

Variance Component Model

Example 4. The first example is motivated by an unbalanced variance com-

ponents model. Such models arise in heritability studies in animal breeding ex-

periments Burch and Iyer (1997), quality improvement studies in manufacturing

processes Burdick, Borror and Montgomery (2005a), characterizing sources of er-

ror in general variance components models Liao and Iyer (2004), and in many

other applications. In the simplest case one has the model

Yij = µ + Ai + eij,

where µ is an unknown parameter, the Ai are i.i.d. N(0, φ), the eij are i.i.d. N(0, θ),

and all random variables are jointly independent. In metrology, Yij might be the

diameter measurement on a part (ball-bearing) and µ the mean diameter of

the population of ball-bearings output by the process. A random sample of a

ball-bearings is selected. The true diameter of the ith ball-bearing is µ+Ai. Ball-

bearing i is measured ni times. If ni = n for all i we have a balanced one-way

random effects model; in the case of unequal ni, we have an unbalanced one-

way random model. In the balanced case the complete sufficient statistics are

well-known Searle, Casella and McCulloch (1992). In the unbalanced case the

minimal sufficient statistics are incomplete. Inference about φ and θ is typically

based on K independent quadratic forms that have scaled chi-square distributions

and whose expected values have the form θ+ciφ for some known ci, i = 1, . . . ,K.

Hence we illustrate our procedure by obtaining a generalized fiducial distribution

for (φ, θ).
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We use the structural equation

Si =
(ciφ + θ)Ui

ni
, i = 1, . . . ,K,

where c1 > · · · > cK ≥ 0, and U1, . . . , UK are independent chi-square random

variable with n1, . . . , nK numbers of degrees of freedom, respectively.

Since this structural equation satisfies the various assumptions in Section 4.1,

we can use the formula in (4.11). Recall that the recipe suggest taking two

equations to solve for φ and θ and use the rest for conditioning. In particular if

equations i, j are chosen,

G−1
0,(i,j)(S, (φ, θ)) =

(
nisi

ciφ+θ
njsj

cjφ+θ

)

leading to

J0,(i,j)(s, (φ, θ)) =

∣∣∣∣∣∣∣∣∣

det

(
−cinisi/(ciφ + θ)2 −nisi/(ciφ + θ)2

−cinjsj/(cjφ + θ)2 −njsj/(cjφ + θ)2

)

det

(
ni/(ciφ + θ) 0

0 nj/(cjφ + θ)

)

∣∣∣∣∣∣∣∣∣

=
|ci − cj|sisj

(ciφ + θ)(cjφ + θ)
.

The fiducial distribution (4.11) then becomes

fRφ,θ
(φ, θ) = C−1

exp
(
− (1/2)

∑d
i=1 nisi/(ciφ + θ)

)

∏d
i=1(ciφ + θ)ni/2

J(s, (φ, θ)), (6.1)

where C is a normalizing constant and

J(s, (φ, θ)) =

(
K

2

)−1∑

i6=j

|ci − cj |sisj

(ciφ + θ)(cjφ + θ)
.

To set up confidence regions one can use numerical integration. The main

parameter of interest in this situation is φ. The fiducial distribution of φ does

not lead to exact frequentist inference. However, simulation results suggest good

properties (as measured by coverage and length of confidence intervals based on

the fiducial distribution). Moreover, it can be shown that the fiducial distribu-

tion leads to asymptotically correct frequentist inference. If K is fixed, one can

prove it directly using Theorem 1. However, the asymptotics needed in most

practical applications involve letting K → ∞. The proof in this more compli-

cated setting goes well beyond the scope of this paper and the reader is referred
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Figure 1. Contour plots of J(s, (φ, θ)) and π(φ, θ) when K = 4, φ0 = 1, θ0 =

0.2, c1 = 0.01, n1 = 1, c2 = 0.5, n2 = 2, c3 = 1.1, n3 = 4 and c4 = 4, n4 = 1.

Shows that J(s, (φ, θ) is a reasonable estimator of π(φ, θ) even for small ni.

to E, Hannig and Iyer (2008), where an interested reader can find the proof,

simulation study results, and additional discussion.

We end this example with an investigation of the quantity J(s, (φ, θ)) that

plays a role of a “data dependent prior” in (6.1). Assume that K is fixed, (φ0, θ0)

are the “true parameters” used in generating s, and for all i = 1, . . . ,K, ni → ∞.

Strong Law of Large Numbers implies that si → (ciφ0 + θ0) a.s., and

J(s, (φ, θ)) → π(φ, θ) =

(
K

2

)−1∑

i6=j

|ci − cj |(ciφ0 + θ0)(cjφ0 + θ0)

(ciφ + θ)(cjφ + θ)
a.s..

The limit π(φ, θ) is a function of (φ, θ) and does not depend on the data. It can

therefore be considered as a prior. However, this is not feasible as it depends

also on the unknown true parameters. As discussed above J(s, (φ, θ)) could be

considered as a data-based estimator of the infeasible prior π(φ, θ). We illustrate

this in Figure 1, where we show a contour plot of one realization of the random

quantity J(s, (φ, θ)) and a contour plot of the deterministic π(φ, θ) when K = 4;

φ0 = 1, θ0 = 0.2; c1 = 0.01, n1 = 1; c2 = 0.5, n2 = 2; c3 = 1.1, n3 = 4 and

c4 = 4, n4 = 1. The plot demonstrates that the two functions show a surprising

level of agreement even though the values of the ni are very small.

Fiducial inference for the multinomial distribution

The next series of examples considers generalized fiducial inference for the

multinomial distribution on k + 1 categories {1, . . . , k + 1}. The special case

of the binomial distribution (k = 1) has received some recent attention by

Brown, Cai and DasGupta (2001, 2002) and Cai (2005). These authors show
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that the classical solutions based on normal approximations do not have good

small sample properties and they recommend some alternative solutions. The

one recommendation that stands out consistently is the interval estimate based

on the posterior distribution arising from the Jeffreys prior. Later we show that

there is, in fact, one of the fiducial intervals. We also show that there is another

fiducial solution for the binomial parameter p that does just as well.

Example 5. Let X1, . . . ,Xn be i.i.d. multinomial(p) random variables, where

p = (p1, . . . , pk), pj ∈ [0, 1], j = 1, . . . , k, and
∑k

j=1 pj ≤ 1. We derive a general-

ized fiducial distribution for p. Set q0 = 0 and qj =
∑j

l=1 pl, j = 1, . . . , k. The

structural equations for the Xi, i = 1, . . . , n, can be expressed as

Xi =

k∑

j=0

I[qj ,1](Ui), (6.2)

where U1, . . . , Un are i.i.d. U(0, 1) random variables.

Assume that we have observed x1, . . . , xn, and denote the number of occur-

rences of j by nj. For j = 1, . . . , k + 1, define tj =
∑j

r=1 nr. In particular,

tk+1 = n. Let Us:n denote the sth order statistic among U1, . . . , Un. For simplic-

ity of notation define t0 = 0, U0:n = 0 and Un+1:n = 1. The set Q(x,U) 6= ∅ if

and only if

n =

k+1∑

j=1

n∑

i=1

I(Xi = j)I
(
Ui ∈ (Utj−1:n, Utj :n]

)
.

In this case Q(x,U) = Q⋆(x,U), where

Q⋆(x,U) =
{

(p1, . . . , pk)
∣∣∣(q1, . . . , qk) ∈

k×
j=1

(
Utj :n, Utj+1:n

] }
.

Here ×i Ai is the cartesian product of the sets Ai and qi is as in (6.2). In

particular for j = 1, . . . , k, pj = qj − qj−1 and pk+1 = 1 − qk.

The exchangeability of Ui, i = 1, . . . , n, then implies that the conditional

distribution of V (Q(x,U)), conditional on the event Q(x,U) 6= ∅, is the same as

the (unconditional) distribution of V (Q⋆(x,U)). By our definition the general-

ized fiducial quantity is Rp(x) = V (Q⋆(x,U)). Equivalently there is a random

vector D = (D1, . . . ,Dk) with support [0, 1]k such that

Rp(x) = (R1, R2 − R1, . . . , Rk − Rk−1)
⊤, (6.3)

where Rj = Utj :n + Dj(Utj+1:n − Utj :n).
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Notice that if nj = 0 for some j = 2, . . . , k, it would be possible to get a

negative value for Rpi
the ith element of Rp. This can be prevented by requiring

the random vector D to satisfy Dj ≥ Dj−1 whenever nj = 0.

The observation made in the previous paragraph implies that the generalized

fiducial distribution depends on the particular choice of the structural equation

(6.2). In particular, if one or more categories are not observed in our sample, we

might get a different generalized fiducial distribution by relabeling.

Using Theorem 1, we now show that inference based on Rp(s) has good fre-

quentist properties asymptotically. Since we consider equal-tailed regions based

on the distribution of Rp(s), Assumption 1.3 is automatically satisfied. Let

Sj be the number of times we observe value j among the X1, . . . ,Xn. Recall

that S = (S1, . . . , Sk)
⊤ has a multinomial(n, p1, . . . , pk) distribution. Therefore√

n(S/n − p) → H, where H ∼ N(0,Σ) and Σ = diag(p) − pp
⊤. This verifies

Assumption 1.1.

Notice that for any sequence of integers kj , where 0 ≤ kj ≤ j, we have

n(Ukn+1:n − Ukn:n)
D−→ Γ(1, 1). Fix h, set s/n = (p + h/

√
n), and write Wn =

(Us1:n, Us1+s2:n, . . . , Us1+···+sk:n). A simple calculation shows that
√

n(Wn −
q)

D−→ N(g, Σ̂), where gj =
∑j

k=1 hk and Σ̂i,j = min(qi, qj)(1 − max(qi, qj)),

with qj =
∑j

k=1 pk. Thus, by Slutsky’s theorem,
√

n(Rp(S) − p)
D−→ N(h,Σ).

All of Assumption 1 is satisfied. In particular we can conclude that general-

ized fiducial confidence sets will have asymptotically correct frequentist coverage

regardless of the choice of the distribution V (· ).

We further investigate this generalized fiducial quantity in two special cases,

the binomial distribution (k = 1) and the trinomial distribution (k = 2).

Special case 1 - The binomial distribution.

Example 6. For the special case of a binomial distribution, a generalized fiducial

quantity for p is

Rp(x) = Us:n + D(Us+1:n − Us:n), (6.4)

with D being any random variable with support contained in [0, 1], and s being

the observed number of successes.

Recall that the joint density of (Us:n, Us+1:n) is

f(Us:n,Us+1:n)(u, v) =
n!

(s − 1)!(n − s − 1)!
us−1(1 − v)n−s−1, 0 < u < v < 1.

Therefore, the density of Rp is

fRp(p) =

∫ 1

0

∫ p
d
∧ 1−p

1−d

0

(
n

s

)
s(p − dq)s−1
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× (n − s) ((1 − p) − (1 − d)q)n−s−1 dq dFD(d) I(0,1)(p), (6.5)

where FD(d) is the distribution function of D and x ∧ y = min{x, y}. If, addi-

tionally, D is continuous with density fD, (6.5) simplifies to

fRp(p) =

(
n

s

)∫ p

0

∫ 1

p
fD

(
p − u

v − u

)
sus−1(n − s)(1 − v)n−s−1

v − u
dv du I(0,1)(p).

(6.6)
There are many reasonable choices for the distribution of D in the description

of Rp. We have considered five different choices that appeared natural to us. For
the first three choices we took D to be random and independent of U1, . . . , Un.

First, the maximum entropy choice is D ∼ uniform(0, 1).

Second, the maximum variance choice, suggested implicitly by Efron (1998),
is D ∼ uniform{0, 1}. We remark that a direct calculation, cf. Grundy (1956),

shows that these two choices lead to a generalized fiducial distribution that is
not a Bayesian posterior with respect to any prior.

The third choice D ∼ Beta(1/2, 1/2) leads to Rp ∼ Beta(s+1/2, n−s+1/2),
which is the Bayesian posterior for Jeffreys prior.

The fourth choice is a little harder to describe in terms of D. It is Rp ∼
Beta(s+1, n−s+1). This is the scaled likelihood, or posterior with respect to the

flat prior. Beta(s+1, n− s+1) is a generalized fiducial distribution according to
our definition, since it is stochastically larger than the distribution of Us:n, which

is Beta(s + 1, n − s), and stochastically smaller than the distribution of Us+1:n,
which is Beta(s, n − s + 1). This can be seen by noticing that, conditional on

U1, . . . , Un, the distribution of D is given by D = 0 with probability Us:n, D = 1
with probability 1 − Us+1,n, and D ∼ U(0, 1) with probability Us+1:n − Us:n.

The last choice D = 1/2, corresponds to the midpoint of the interval (Us:n,
Us+1:n).

To evaluate the performance of the generalized fiducial distribution and com-

pare the performance of the various choices of D, we carried out an extensive
simulation study. As we have seen earlier, generalized fiducial inference for

the multinomial distribution is asymptotically correct. Therefore, our simula-
tion study concentrated mostly on small values of n. In particular, we consid-

ered n = 3, 6, 9, . . . , 45, 48, 100, 1, 000 and p = 0.01, 0.02, . . . , 0.99. For each of
the combinations of n and p we simulated 5, 000 evaluations of the probability

Q(X) = P (Rp(X) < p|X) using each of the five variations of generalized fiducial
distribution. If the generalized fiducial inference were exact, the Q(X) should

follow the U(0, 1) distribution. The level of agreement of Q(X) with the U(0, 1)
distribution was examined using QQ-plots.

Since generalized fiducial inference is a non-randomized procedure, the dis-
tribution of Q(X) can take only n values. Therefore it cannot be expected that

the agreement with the uniform distribution would be very good for small values
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Figure 2. QQ-plots of Q(X) for n = 12 and p = 0.1, 0.3, 0.5, 0.7, 0.9. The

black color correspond to an area of natural fluctuation of a QQ-plot due to
randomness; the colored graphs correspond to the QQ-plots of the various

generalized fiducial distributions.

of n. However, the agreement improves dramatically as n increases. To illustrate

this, we show the QQ-plots for n = 12 and p = 0.1, 0.3, 0.5, 0.7, 0.9 in Figure 2;
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Figure 3. QQ-plots of Q(X) for n = 6, 21, 48, 100, 1, 000 and p = 0.3. The
black color correspond to an area of natural fluctuation of a QQ-plot due to
randomness; the colored graphs correspond to the QQ-plots of the various

generalized fiducial distributions.

we show QQ-plots for n = 6, 21, 48, 100, 1, 000 and p = 0.3 in Figure 3.

The closer the points on the QQ-plot are to the line y = x, the better the
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performance of the procedure. We can see straightaway that the scaled likelihood

performs worse than any of the other choices. To make this comparison more

rigorous we compute, for each of the choices of D,

A =

∫ 1

0
|FQ(x) − x| dx, and D =

∫ 1

0
(x − FQ(x)) dx,

where FQ(x) is the empirical distribution function of the observed values of the

Q(X). Smaller values of A and D signify better overall fit. Since we are planning

to use the generalized fiducial distribution for inference, one can argue that the

center of the distribution of Q(X) is of little importance. Therefore we also check

for the level of agreement in the tails. To this end, let

Al =

∫ .1

0
|FQ(x) − x| dx, Dl =

∫ .1

0
(x − FQ(x)) dx,

Au =

∫ 1

.9
|FQ(x) − x| dx, and Du =

∫ 1

.9
(FQ(x) − x) dx.

Here we chose Al,Dl to describe the average fit for typical lower tail CIs, and

Au,Du to describe the average fit for typical upper tail CIs. In both cases positive

values of Dl and Du correspond to being conservative, while negative values of

Dl and Du correspond to being anticonservative.

For each fixed n we plotted the graphs of these statistics as functions of

the probability p. For illustration we show plots of of these quantities for n =

6, 21, 48, 50, 100 in Figures 4, 5 and 6.

One finds that the best choice is the maximum variance choice of D ∼
uniform{0, 1} is consistently better than other choices. However, D ∼ U(0, 1) and

D ∼ B(1/2, 1/2) (the maximum entropy and posterior with respect to Jeffreys

prior) were typically very close to it. The last two choices were found to perform

not as well. In particular, the scaled likelihood underperformed the other choices

by a large margin. In light of this we recommend the choice D ∼ uniform{0, 1}.

Remark 6. Cai (2005) has investigated the two-term Edgeworth expansions

for coverage of several one-sided Binomial Confidence Intervals. We remark that

similar calculations can be used to derive the two-term Edgeworth expansion for

the generalized fiducial distributions discussed here. In particular one can show

that, just like confidence intervals based on posteriors calculated using Jeffreys

prior, the maximum variance generalized fiducial distribution leads to confidence

intervals that are first order matching, see Ghosh (1994).
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Figure 4. Plots of Al (solid line) and Dl (dashed line) as functions of p for n =

6, 21, 48, 100, 1, 000. Small values of Al and Dl are preferable. Positive values

of Dl correspond to the method being conservative on average. The various
colors correspond to various choices for the generalized fiducial distribution.
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Figure 5. Plots of Au (solid line) and Du (dashed line) as functions of p for
n = 6, 21, 48, 100, 1, 000. Small values of Au and Du are preferable. Posi-

tive values of Du correspond to the method being conservative on average.

The various colors correspond to various choices for the generalized fiducial

distribution.
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Figure 6. Plots of A (solid line) and D (dashed line) as functions of p for

n = 6, 21, 48, 100, 1, 000. Small values of A and D are preferable. The various
colors correspond to various choices for the generalized fiducial distribution.
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Special case 2 - The trinomial distribution.

Example 7. Some aspects of the fiducial distribution for the parameters of

a trinomial have been investigated by Dempster (1968); he used a trinomial

distribution as an example for his definition of upper and lower probabilities.

In this example we investigate the small sample frequentist properties of the

generalized fiducial distribution for the trinomial parameters. There are many

reasonable choices for the distribution of D in (6.3). We considered five choices

that appeared natural. Based on our experience from Example 6, we take D

independent of U1, . . . , Un.

The maximum entropy choice is achieved by taking D to be U(0, 1)2 if s2 > 0,

and D ∼ U{(x, y), 0 < x < y < 1} if s2 = 0.

The Bayesian posterior for the Jeffreys prior is achieved by taking D1,D2 as

i.i.d. Beta(1/2, 1/2) if s2 > 0, D1 ∼ Beta(1/2, 1/2), and D2 = 1 if s2 = 0.

The third choice is a version of a maximum variance distribution. Here D ∼
uniform{0, 1}2 if s2 > 0, and D ∼ uniform{(0, 0), (0, 1), (1, 1)} if s2 = 0. This

is obtained by maximizing the determinant of the covariance matrix of Rp(x).

Notice that it is also the uniform distribution on the vertices of Q(x, U).

The fourth choice is another version of a maximum variance distribution, it

is obtained by maximizing the smallest eigenvalue of the covariance matrix of

Rp(x). Notice that this distribution is supported on the vertices of Q(x, U).

Our last choice is the uniform distribution on the boundary of Q(x, U).

To evaluate the performance of the generalized fiducial distribution and to

compare the performance of the various choices of D, we performed an extensive

simulation study concentrated on small values of n. In particular we considered

n = 5, 10, 15, . . . , 30, 300 and p1, p2 ∈ {0.05, 0.1, . . . , 0.95} with p1 + p2 < 1. For

each of the combination of the parameters n, p1, p2, we simulated a sample of

2, 000 observations from the trinomial distribution. For each of the trinomial ob-

servation and each of the choice of D we generated a sample of 3, 000 observations

from the generalized fiducial distribution Rp(x).

In order to evaluate the quality of the joint generalized fiducial distribu-

tion we then evaluated the empirical coverage of the one-sided equal tailed

region. In particular, for any random vector X and 0 < α < 1, we define

the one-sided equal-tailed region C(X, α) as the set {(x.y);x ≤ x0, y ≤ y0}
satisfying P (X ∈ {(x.y);x ≤ x0, y ≤ y0}) = α and P ({(x, y);x > x0}) =

P ({(x, y); y > y0}). For simplicity write A(X,p) = infα{p ∈ C(X, α)}. Then

performance can be evaluated by estimating the probability Q(X) = P (Rp(X) ∈
C(Rp(X), A(Rp(X),p))|X) using the simulated data for each of the five variations

of generalized fiducial distribution. If the generalized fiducial inference were ex-

act, Q(X) should follow the U(0, 1) distribution. The level of agreement of Q(X)

with a U(0, 1) distribution was examined using QQ-plots.
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Figure 7. Plots of relative efficiency based on Al for n = 5, 10, 30, 300. The

longer the bar corresponding to a method, the better the method. The

various colors correspond to choices of D.

As above, the function with values in the space of distributions Q(X) takes

only finitely many values. Thus it cannot be expected that the agreement with

the uniform distribution is very good for small values of n. However, the agree-

ment improves dramatically as n increases. Since the QQ-plots generated for the

trinomial distribution are very similar to the figures shown in Example 6, we do

not display them here.

Define A, Al and Au as in Example 6. Since we have one more parameter

than in the binomial case, we need a new way to display the comparison between

the procedures. For each fixed n, p1, p2 and each of the five procedures, we

calculated a relative efficiency of procedure j as minj A(j)/A(i), where A(i) is

the value of A for procedure i. Values close to 1 then mean a relatively good

performance, while small values mean relatively poor performance.

For each fixed n we plotted an image containing a matrix of cells comparing

these relative efficiencies. The cells were then placed on the image depending
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Figure 8. Plots of relative efficiency based on Au for n = 5, 10, 30, 300.

The longer the bar corresponding to a method, the better the method. The

various colors correspond to choices of D.

on values of p1 and p2. For illustration we show plots of these quantities for

n = 5, 10, 30, 300 in Figures 7, 8 and 9.

The best choice for D is the first maximum variance choice (called Vertex

in the figures). Notably, this choice seems to consistently outperform even the

Bayesian posterior computed with respect to Jeffreys prior.

Generalized fiducial inference for a mixture of two normals.

Example 8. In this example we consider the generalized fiducial distribution for

the parameters of a mixture of two normal distributions. This is a prototypical

example that can be used to construct generalized fiducial distributions for many

other problems. In particular, one can use these ideas to construct a robust gen-

eralized fiducial confidence interval for a mean of a normal sample by considering

a mixture of normal and Cauchy distributions—see Glagovskiy (2006). To our

knowledge this is the first time the fiducial paradigm has been used in such a
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Figure 9. Plots of relative efficiency based on A for n = 5, 10, 30, 300. The

longer the bar corresponding to a method, the better the method. The

various colors correspond to choices of D.

complex situation.

Let X1, . . . ,Xn be independent random variables that are either N(µ1, σ
2
1) or

N(µ2, σ
2
2). Moreover, assume that each comes from the second distribution with

probability p, independently of others. For identifiability reasons we assume

that µ1 < µ2. We also assume that we observe at least two data points from

each distribution. Our goal is to find the generalized fiducial distribution of

(µ1, σ
2
1 , µ2, σ

2
2 , p).

We can write a set of structural equations for X1, . . . ,Xn as

Xi = (µ1 + σ1Zi)I(0,p)(Ui) + (µ2 + σ2Zi)I(p,1)(Ui), i = 1, . . . , n,

where Zi are i.i.d. N(0,1) and Ui are i.i.d. U(0,1) random variables. When

finding the set-valued function Q, we need to realize that this inversion will be

stratified based on the possible assignment of the observed xi to one of the two

groups. For simplicity of notation the observed points x and the corresponding
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z values assigned to Groups 1 and 2 are denoted by v1 . . . , vk and h1, . . . , hk, and

w1, . . . , wn−k and r1, . . . , rn−k respectively. We can then write

Q(x1, . . . , xn; z1, . . . , zn, u1, . . . un)

=






{(
h1v2−h2v1

h1−h2
,
(

v1−v2
h1−h2

)2
, r1w2−r2w1

r1−r2
,
(

w1−w2
r1−r2

)2
)}

× (us:n, us+1:n),

for each assignment of the xi to the two groups, if

vl = h1v2−h2v1
h1−h2

−
∣∣∣ v1−v2
h1−h2

∣∣∣ hl, l = 3, . . . , s,

and wl = r1w2−r2w1
r1−r2

−
∣∣∣w1−w2

r1−r2

∣∣∣ rl, l = 3, . . . , n − s;

∅ otherwise.

Similarly as in previous examples, for each possible assignment of the obser-

vations to the two groups, set M1 = (H1v2 − H2v1)/(H1 − H2), N1 = [(v1 − v2)/

(H1 − H2)]
2, M2 = (R1w2 − R2w1)/(R1 − R2), N2 = ((w1 − w2)/(R1 − R2))

2 ,

P = Us:n + Ū(Us+1:n − Us:n), Kl = (H1v2 − H2v1)/(H1 − H2) − |(v1 − v2)/(H1

−H2)|Hl, l = 3, . . . , s, and Ll = (R1w2 − R2w1)/(R1 − R2) − |(w1 − w2)/(R1−
R2)|Rl, l = 3, . . . , n − s.

We interpret the conditional distribution (4.3) as

lim
ε→0+

(
n−2∑

s=3

∑

assignments

P
(
M1 ∈ (m1,m1 + ε), N1 ∈ (n1, n1 + ε),

M2 ∈ (m2,m2 + ε), N2 ∈ (n2, n2 + ε),

P ∈ (p, p + ε),Kl ∈ (vl, vl + ε), Lj ∈ (wj , wj + ε)
))

×
(

n−2∑

s=3

∑

assignments

P
(
Kl ∈ (vl, vl + ε), Lj ∈ (wj , wj + ε)

))−1

= C−1
n−2∑

s=3

∑

assignments

fP (p, s)(n
s

) fM1,N1,K(m1, n1,v)fM2,N2,L(m2, n2,w), (6.7)

where fP is as defined in (6.5) and both fM1,N1,K and fM2,N2,L are as defined in

(4.5). The constant C on the left-hand-side of (6.7) is

C =
n−2∑

s=3

∑

assignments

∫
· · ·
∫

fP (p, s)(n
s

) fM1,N1(m1, n1,v)fM2,N2(m2, n2,w) (6.8)

=
n−2∑

s=3

∑

assignments

Γ(s−1
2 )Γ(n−s−1

2 )
P

1≤i<j≤s |vj−vi|
(s
2)

P

1≤i<j≤n−s |wj−wi|
(n−s

2 )
(n

s

)
4π

n
2
−1
√

s(n−s) (
∑s

i=1(vi−v̄)2)
s−1
2
(∑n−s

i=1 (wi−w̄)2
)n−s−1

2
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Since the sums in the generalized fiducial distribution have a total of 2n−2−
2n−n(n−1) terms, we are unable to get a closed form of the generalized fiducial

density. However, we can still use the derived generalized fiducial distribution

for inference by simulating observations from the generalized fiducial distribution

using a Metropolis-Hastings algorithm.

The main idea is as follows. Once we know the assignment of observations to

Groups 1 and 2, it is straightforward to generate the values of the 5-dimensional

generalized fiducial distribution. This is done by calculating the corresponding

sample means and variances for each group, and using (4.6) and (6.4).

To generate a random assignment, notice that each configuration assignment

has a probability proportional to the corresponding summand in the right-hand-

side of (6.8). We can therefore generate a proposal configuration by taking a

previous assignment, randomly choosing one data point and switching it to the

other group. This new proposed assignment is then rejected or accepted using

the usual Metropolis-Hastings rule. Once we have a new random assignment,

we then generate the observation from the 5-dimensional generalized fiducial dis-

tribution. The stationary distribution of the assignment-valued Markov chain

is clearly the generalized fiducial distribution of the assignment. Therefore this

procedure generates observations from the generalized fiducial distribution after

an adequate burn-in period. It is worth pointing out that even though this pro-

cedure is computationally intensive, it is usable for most situations encountered

in practice.

To evaluate performance, we conducted a small scale simulation study. We

considered a mixture of the N(−1, 1/27) and N(0, 9) distributions, with n = 80,

n = 250 and the mixing proportion p = 0.65. We also considered N(−1.5, 1) and

N(1.5, 1) with n = 100, 250 and p = 0.6. We wish to remark that the second

mixture is actually very hard to estimate. We used the particular choice D ∼
Beta(1/2, 1/2) in the definition of fP in (6.7), cf. (6.5).

For each model we generated a sample from the generalized fiducial dis-

tribution and used it to find a sample from Q1(X) = P (Rµ1(X
⋆) < µ1|X),

Q2(X) = P (Rµ2(X
⋆) < µ2|X), Qd(X) = P (Rµ2−µ1(X

⋆) < µ2 − µ1|X), and

Qp(X) = P (Rp(X
⋆) < p|X). Notice that Qd is measuring the performance of

a fiducial solution for a generalization of a Beherns-Fisher problem where we

want a CI for µ2 − µ1 but do not know which observations belong to which

group.

If the inference based on generalized fiducial distributions were exact, these

random variables would follow a U(0, 1) distribution. To check for agreement,

we constructed QQ-plots. These can be found in Figures 10, 11, 12 and 13. We

see that, while the agreement is not very good in the body of the distribution,

it is actually very good in the tails. This means that the inference based on the
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Figure 10. QQ-plots of Q1(X), Q2(X), Qd(X) and Qp(X) for n = 80 obser-

vations of the p = 0.65 mixture of N(−1, 1/27) and N(0, 9). The blue and

green envelope correspond to an area of natural fluctuation of a QQ-plot due
to randomness taken uniformly and pointwise, respectively. The QQ-plot is

based on 1,000 replications.

generalized fiducial distribution has approximately the stated coverage. We also

see that the inference for µ1, µ2 and µ2 − µ1 seems more accurate than for p,

which is often too conservative. In any case, the performance seemed very good

given the fact we chose mixtures that are hard to estimate. Finally, we remark

that the fit improves for larger n. This leads us to conjecture that the inference

will be correct asymptotically as n → ∞.

Multiple Comparison

Example 9.We include this last example to show that the regions defined in

Assumptions 1.3 are flexible enough to allow for typical multiple comparison

intervals.

Suppose that for each i = 1, . . . ,K, Yij , j = 1, . . . , ni, is i.i.d. N(µi, σ
2
i ).
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Figure 11. QQ-plots of Q1(X), Q2(X), Qd(X) and Qp(X) for n = 250 obser-

vations of the p = 0.65 mixture of N(−1, 1/27) and N(0, 9). The blue and

green envelope correspond to an area of natural fluctuation of a QQ-plot due
to randomness taken uniformly and pointwise, respectively. The QQ-plot is

based on 1,105 replications.

The K samples are assumed independent of each other. We are interested in the

problem of constructing simultaneous confidence intervals for δij = µi − µj for

all i 6= j.

We first observe that, by independence, the generalized fiducial distribution

for δij is the same as the distribution of the GFQ given by Rδij
(S) = Rµi

−Rµj
,

where the GPQ for µp is

Rµp = Ȳp −
SpT

⋆
p√

np

and the T ⋆
p ∼ tnp−1 are independent of the data and of each other.

Define

D(S) = max
i6=j

∣∣∣∣∣
(Y i − Y j) −Rδij

(S)
√

Vij

∣∣∣∣∣ ,
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Figure 12. QQ-plots of Q1(X), Q2(X), Qd(X) and Qp(X) for n = 100 obser-

vations of the p = 0.6 mixture of N(−1.5, 1) and N(1.5, 1). The blue and

green envelope correspond to an area of natural fluctuation of a QQ-plot due
to randomness taken uniformly and pointwise, respectively. The QQ-plot is

based on 1,000 replications.

where Vij = Y i−Y j , i.e., Vij =
S2

i

ni
+

S2
j

nj
. The 100(1−α)% two-sided simultaneous

generalized fiducial CIs for pairwise differences δij, i 6= j, of means of more than

two independent normal distributions are [Lij , Uij ] where

Lij = Y i − Y j − d1−α

√
Vij ,

(6.9)
Uij = Y i − Y j + d1−α

√
Vij

and dγ denotes the 100γ-percentile of the conditional distribution of D(S, S∗, ξ)
given S = s.

To set up confidence regions one can use simulation. The simultaneous

generalized fiducial confidence intervals for δij do not lead to exact frequentist

inference. However, simulation results suggest very good practical properties.
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Figure 13. QQ-plots of Q1(X), Q2(X), Qd(X) and Qp(X) for n = 500 obser-

vations of the p = 0.6 mixture of N(−1.5, 1) and N(1.5, 1). The blue and

green envelope correspond to an area of natural fluctuation of a QQ-plot due
to randomness taken uniformly and pointwise, respectively. The QQ-plot is

based on 600 replications.

For details on the simulation and some generalization we refer the reader to

Abdel-Karim (2005) and Hannig, E, Abdel-Karim and Iyer (2006a).

To show that the generalized fiducial distribution leads at least to asymptot-

ically proper frequentist coverage, define n =
∑K

k=1 nk and assume that ni/n →
pi ∈ (0, 1). It is fairly straightforward to see that S = (Y 1, S

2
1 , . . . , Y K , S2

K)⊤

satisfies Assumption 1.1. Similarly, R = (Rδ12 ,Rδ13 . . . ,Rδ(K−1)K
)⊤ satisfies As-

sumptions 1.2 with the K(K − 1)/2 × 2K matrix

A =





1 0 − 1 0 0 0 · · · 0 0 0 0

1 0 0 0 − 1 0 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · 1 0 − 1 0




.
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Similarly, the assumption in (5.2) is satisfied with the function ζ(S) = A · S

Finally, we need to show that the region described in (6.9) satisfies Assump-

tions 1.3. To that end, observe that the conditional distribution of D(S)|S could

be represented as function of distribution of R, ζ(S), and S. Here the estimator

of variance nVij is a continuous function of S. The various conditions of this

assumption now follow by Slutsky’s Lemma and simple algebra.

7. Non-Uniqueness of Fiducial Distribution

The generalized fiducial recipe of Section 4 seems to provide an approach

for deriving statistical procedures that have good properties. Unfortunately,

it does not lead to a unique generalized fiducial distribution. There are three

main sources of non-uniqueness. First, non-uniqueness is due to the choice of

the structural equation (4.1). However, even if we decide to fix the structural

equation and make it a part of the model, generalized fiducial distribution is still

not defined uniquely.

Out of the two remaining sources of non-uniqueness the more obvious one is

the fact that the sets Q(X, U∗) might have more than one element. This means

that we would not be able to find the exact value of ξ even if we knew both X

and U . Consequently, the data itself is not able to tell us which value of ξ was

used. In order to resolve this non-uniqueness one has to have some apriori way

of choosing between the elements of Q(X, U∗). Fortunately, in many application

we observe that
√

n diam(Q(X, U∗)) → 0. This means that in these cases the

role of the apriori information is asymptotically negligible. In other words the

uncertainty in the fiducial distribution comes mainly from the uncertainty in the

distribution of Q(X, U∗)|{Q(X, U∗) 6= ∅}, which involves no subjective choice

and is typically of the order of n−1/2. Only a small portion of the uncertainty

in the fiducial distribution comes from V (•); this is subjective and usually has

order of n−1. This is in contrast to Bayesian inference where the prior influences

the whole posterior distribution and not just a part of it. Of course such a

decomposition can be expected only in parametric problems and, just as with

the choice of a prior in Bayesian methods, the apriori choice of V (Q(x, u)) plays

a big role in non-parametric and semi-parametric problems.

Based on our experience with the problems we investigated, we recommend

the use of a V (Q(x, u)) that is independent of the data and that maximizes

the determinant of the variance of the generalized fiducial distribution. Another

useful option is to use the uniform distribution on Q(x, u). This second option

should work reasonably well and be fairly easy to implement even if we deal with

higher-dimensional problems.

The final source of non-uniqueness is the Borel paradox. If in the generalized

fiducial recipe (4.3) we have P (Q(x, u) 6= ∅) = 0, the resulting generalized fiducial
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distribution depends on the way we decide to interpret the conditioning. We

consider this to be a more severe problem because it is much harder to investigate

and resolve. To demonstrate the severity of the situation, consider the following

continuation of Example 3.

Example 10. Let X1, . . . ,Xn be i.i.d. N(µ, σ2). In Example 3 we showed two

different way of implementing the generalized fiducial recipe that led to the same

desirable solution. Unfortunately, there are many other ways of implementing the

generalized fiducial recipe that do not lead to good solutions. We demonstrate

one of them here.

We again write the structural equation as

Xi = µ + σZi, i = 1, . . . , n.

For simplicity of notation take n = 2k. If

Mj =
z2j−1x2j − z2jx2j−1

z2j−1 − z2j
, Hj =

(
x2j−1 − x2j

z2j−1 − z2j

)2

j = 1, . . . , k,

we can write

Q(x1, . . . , xn; z1, . . . , zn) =






{(M1,H1)}
if Mj = M1, Hj = H1, j = 2, . . . , k

∅ otherwise.

Defining Dj,1 = Mj−M1, Dj,2 = Hj−H1, j = 2, . . . k, we can interpret the gen-

eralized fiducial distribution (4.3) as the conditional distribution of (M1,H1)|D =

0. A simple calculation shows that this conditional distribution has density

fR(µ,σ2)
(m,h) =

e−(m−x̄n)2/(2h/n)−(n−1)s2
n/(2h)((n − 1)s2

n)n−3/2

√
π/n Γ (n − 3/2) 2n−1hn

I(0,∞)(h). (7.1)

Here x̄n =
∑n

i=1 xi/n and s2
n =

∑n
i=1(xi− x̄n)2/(n−1). The distribution derived

in (7.1) is different from the one derived in (4.6). In fact inference based on (7.1)

will not lead to correct frequentist inference. In fact the coverage probability of

any lower tail confidence interval converges to 0 as n → ∞.

The problem illustrated in Examples 3 and 10 is an instance of Borel paradox

— see for example Section 4.9.3 of Casella and Berger (2002), and also Hannig

(1996), for a thorough discussion of this paradox. The main message of the Borel

paradox is that conditioning on an event of probability zero greatly depends on

the context in which we interpret the conditions.

Consider in particular X|Y = 0, where (X,Y ) is jointly continuous. There

is a random variable U such that (X,U) is jointly continuous and {Y = 0} =
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{U = 0}, but the conditional density of X|Y = 0 is different from the conditional

density X|U = 0. Since there is no theoretical reason to deem either X|Y = 0

or X|U = 0 superior, people often rely on the context of the problem to make

the choice, e.g., conditional distributions in regression settings. However, one

can often come up with a modification of the “story” behind the problem that

leads naturally to a different choice of the conditioning variable. This can be

then presented as a paradox-two apparently equivalent formulations of the same

statistical problem lead to different answers.

Remark 7. Fraser (1968) has linked fiducial inference with group structure. A

very good explanation of his ideas can be found in Appendix 3 of Dawid et al.

(1973). Fraser’s assumption of group structure can guide one in the choice of

structural equation. In particular we can choose X = gU, where g ∈ G is an

element of a group acting on the random vector U. Additionally, with this choice

of structural equation the set Q(x,u) is trivially guaranteed to have at most 1

element for all choices of x and u. Thus, some sources of non-uniqueness are

eliminated. Unfortunately, the second source of non-uniqueness, Borel paradox,

is still present. We again need to interpret a conditional probability that is

conditioned on an event that has probability 0. Having the group structure

presents us with a natural choice of conditioning σ-algebra, the maximal invariant

σ-algebra I. Unfortunately, the problem of non-uniqueness is still present as

demonstrated by Example 7 in Dawid et al. (1973), where the authors show that

addition of information clearly irrelevant to the inference leads to a different

fiducial distribution. This could be explained again by a phenomenon related to

the Borel paradox. The paradox of Dawid et al. (1973) is based on the fact that

the following should be true: P (A|B1) = P (A|B2) = · · · implies P (A|⋃Bi) =

P (A|B1). This is in fact true if P (
⋃

Bi) > 0. It could fail otherwise because of

the Borel paradox. Dawid et al. (1973) have their conditioning sets Bi depend on

the value of an added parameter λ. By symmetry in their example, all conditional

probabilities of interest should be the same. What happens is that depending on

whether the value of λ is fixed (conditioning on Bi) or is unknown (conditioning

on
⋃

Bi) changes the natural σ-algebra for conditioning, the invariant σ-algebra.

This leads to a different answer in each case, hence the paradox.

Finally we remark that if the group G is sufficiently complicated, comput-

ing the conditional expectation with respect to I could be quite complicated.

Therefore, we still suggest using (4.11) whenever applicable, as it can be com-

puted relatively easily.

Remark 8. One particular way of avoiding the Borel paradox presents itself in

the case when the parameter space is an open set in R
p and the model allows

for a p-dimensional complete sufficient statistic that is a smooth function of the
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data. In this case we can first reduce the data by obtaining complete sufficient

statistics and then applying the generalized fiducial recipe to the distribution

of the complete sufficient statistics. A simple Jacobian calculation shows that

the generalized fiducial distribution is independent of the particular form of the

complete sufficient statistics we used. This idea has been used in the first part

of Example 3.

8. Conclusions

In this paper we studied the properties of generalized fiducial distributions

without relying on any additional group assumptions. We have shown how the

fiducial argument could be applied to several problems, and demonstrated by sim-

ulation that it leads to statistical procedures with good small sample frequentist

properties. We also investigated the asymptotic properties of generalized fiducial

distributions and showed that in many examples a generalized fiducial distribu-

tion has good asymptotic properties. Thus fiducial inference appears to be a

good tool for deriving statistical procedures and should not be ignored by the

statistical community.

Finally we investigated an inherent non-uniqueness of fiducial inference that

is in some way similar to the non-uniqueness of Bayesian inference due to the

choice of a prior. We argued that the non-uniqueness of fiducial inference is es-

sentially caused by the Borel paradox, the fact that the conditional distribution

conditioned on an event of probability 0 is not uniquely determined. In fact,

in our opinion, the Borel paradox is the root cause for most of the paradoxes

associated with fiducial inference. The future of the fiducial argument can be

driven by new and exciting applications. The most promising from this point

of view seems to be the fiducial distribution for a mixture of two normals in

Example 8. In fact the ideas of that example are extended in a current work

of Hannig and Lee (2007) that uses it for wavelet thresholding with promising

results. Another possible use is the detection of significant p-values in microar-

ray experiments where a mixture of uniform and beta distribution is typically

used Allison, Gadbury, Heo, Fernández, Lee, Prolla and Weindruch (2002) and

Pounds and Morris (2003).

An important step in the practical application of generalized fiducial infer-

ence would be finding a simple workable formula. We have made a first step in

this direction at (4.11). However, a better understanding of the issues surround-

ing non-uniqueness is needed. A possible tool that can guide our choices can be

the study of higher order asymptotic properties of generalized fiducial distribu-

tion; another tool is inspired by ideas of Dempster (2008). Due to limitations on

precision of measuring devices we never observe a continuous random variable.
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This can be used to change (4.3) so that we always condition on an event of

positive probability at the expense of having a bigger non-uniquness due to the

choice of V (•). Even though this idea is very appealing, more research is needed

to fully understand the computational issues invlolved.

The surprisingly good small sample properties demonstrated in many sta-

tistical applications lead us to believe that if computer simulations had been

available 60 years ago, fiducial argument would have been part of statistical

mainstream today. We hope that this paper will stimulate discussion, further

development, and more appreciation for the great minds who have worked on

this topic in the past.
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Appendix. Proofs

Proof. of Theorem 1. By Assumption 1 and Skorokhod’s Representation

Theorem Billingsley (1995) imply that we can assume without loss of generality

that √
n (S − t(ξ)) → H a.s.. (A.1)

This, Assumptions 2a, and (5.2) ensure that

√
n(Rθ(S) − θ)

D−→ R(H) a.s.
√

n(ζ(S) − θ) → AH a.s.. (A.2)

(Here the a.s. means for almost all sample paths of the process Sn, and subse-

quently almost all values of H.) Therefore by (A.1), (A.2), and Assumption 3d

C
(√

n(Rθ(S) − θ),
√

n(ζ(S) − θ), S, γn

)
→ C (R(H), AH, t(ξ), γ) a.s.. (A.3)

Also, by Assumption 3c we see that

Pξ (θ ∈ C(Rθ(S), ζ(S), S, γn)) = Pξ

(
0 ∈ C(

√
n(Rθ(S) − θ),

√
n(ζ(S) − θ), S, γn)

)
.

To finish the proof, we show that

Pξ(0 ∈ C(
√

n(Rθ(S)− θ),
√

n(ζ(S)− θ), S, γn)) → Pξ(0 ∈ C (R(H), AH, t(ξ), γ)).
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First notice that R(h)−Ah has a multivariate normal distribution with mean

zero and covariance matrix ΣR. It is the same distribution as the distribution of

−AH. Assumption 2a implies

{h : 0 ∈ C(R(h), Ah, t(ξ), γ))} = {h : −Ah ∈ C(R(h) − Ah, 0, t(ξ), γ)}
= {h : −Ah ∈ C(−AH, 0, t(ξ), γ)}. (A.4)

For simplicity of notation, write Hn =
√

n(S − t(ξ)). Also let

Bn ={h : 0∈C(
√

n(Rθ(t(ξ) +
h√
n

)−θ),
√

n(ζ(t(ξ) +
h√
n

)−θ), (t(ξ)+
h√
n

), γn)}

and B = {h : 0 ∈ C(R(h), Ah, t(ξ), γ)}. The sets are chosen to satisfy

{0 ∈ C(
√

n(Rθ(S) − θ),
√

n(ζ(S) − θ), S, γn)} = {Hn ∈ Bn},
{0 ∈ C(R(H), AH, t(ξ), γ)} = {H ∈ B}.

As noted before we have Hn
D−→ H. Moreover Assumptions 2b and 3d imply

that B is open, ∂B = {h : 0 ∈ ∂C(Rθ(h), γ)}, and Bn → B. Assumption 3a and

(A.4) additionally imply that P (H ∈ ∂B) = 0.

Let Dm =
⋃∞

k=m Bk \ (
⋂∞

k=m Bk)
◦. Notice that by Assumption 3d we have

Dm ↓ D ⊂ ∂B and P (H ∈ D) = 0. Moreover, if m ≤ n, Bn△B ⊂ Dm.

Fix an ε > 0. Continuity of probability implies that there is an m1 such that

Pξ(H ∈ Cm1) < ε. Consequently, convergence in distribution implies that there

is an m2 such that, for all n > m2, Pξ(Hn ∈ Cm2) < ε. This implies that for

n > max(m1,m2),

|Pξ(Hn ∈ Bn) − P (Hn ∈ B)| ≤ P (Hn ∈ Cm1) < ε.

Finally notice that

|Pξ(Hn ∈ Bn) − Pξ(H ∈ B)|
≤ |Pξ(Hn ∈ Bn) − Pξ(Hn ∈ b)| + |Pξ(H ∈ Bn) − Pξ(H ∈ B)|.

Thus the Assumption 3b and (A.4), together with the definition of conver-

gence in distribution, imply

Pξ(0 ∈ C(
√

n(Rθ(S) − θ),
√

n(ζ(S) − θ), S, γn) = Pξ(Hn ∈ Bn)

→ Pξ(H ∈ B) = Pξ(0 ∈ C (R(H), AH, t(ξ), γ) = γ.

This concludes the proof of the theorem.

Proof of Theorem 2. Assume without loss of generality that Θ = R, and

recall the definition of J(x, θ) from (4.13). To emphasize its dependence on n
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we write Jn(x, θ) in the rest of the proof. The Strong Law of Large Numbers

implies for all θ, Jn(X, θ) → π(θ), Pθ0-a.s.. By the Dominated Convergence

Theorem, π(θ) is continuous and positive on a neighborhood of θ0. Moreover,

since J(•, θ) is measurable in x we have by the Uniform Strong Law of Large

Numbers (Ghosh and Ramamoorthi (2003, Thm. 1.3.3)),

sup
θ∈(θ0−δ0,θ0+δ0)

|Jn(X, θ) − π(θ)| → 0, Pθ0-a.s.. (A.5)

We closely follow the proof of of the Bernstein-von Mises theorem stated in

the Theorem 1.4.2 of Ghosh et al. (2003). We can write

πr(θ,x) =
Jn(x, Sn + θ/

√
n)eLn(Sn+θ/

√
n)−Ln(Sn)

∫
R

Jn(x, Sn + θ′/
√

n)eLn(Sn+θ′/
√

n)−Ln(Sn) dθ′
.

Just as Ghosh et al. (2003), we first prove that

∫

R

∣∣∣∣Jn(x, Sn +
θ′√
n

)e
Ln(Sn+ θ′√

n
)−Ln(Sn) − π(θ0)e

− θ′I(θ0)
2

∣∣∣∣ dθ′
Pθ0−→ 0. (A.6)

Given any 0 < δ < δ0 and c > 0, we break R into three regions:

A1 = {t : |t| < c log
√

n}, A2 = {t : c log
√

n < |t| < δ
√

n},

and A3 = {t : |t| >
δ
√

n

2
}.

On A1 ∪ A2 we compute
∫

A1∪A2

∣∣∣Jn(x, Sn +
t√
n

)e
Ln(Sn+ t√

n
)−Ln(Sn) − π(θ0)e

− tI(θ0)
2

∣∣∣dt

≤
∫

A1∪A2

∣∣∣∣Jn(x, Sn +
t√
n

) − π(Sn +
t√
n

)

∣∣∣∣ e
Ln(Sn+ t√

n
)−Ln(Sn)

dt

+

∫

A1∪A2

∣∣∣∣π(Sn +
t√
n

)e
Ln(Sn+ t√

n
)−Ln(Sn) − π(θ0)e

− tI(θ0)

2

∣∣∣∣ dt. (A.7)

Since π(θ) (possibly truncated at large values) is a prior, the fact that the second

term on the right-hand side of (A.7) goes to 0 in probability follows from the

Bayesian version of the Bersntein-von Mises theorem. For details, see the proof

of Theorem 1.4.3 in Ghosh et al. (2003).

Notice that
∫

A1∪A2

∣∣∣∣Jn(x, Sn +
t√
n

) − π(Sn +
t√
n

)

∣∣∣∣ e
Ln(Sn+ t√

n
)−Ln(Sn)

dt

≤ sup
t∈A1∪A2

∣∣∣∣Jn(X, Sn +
t√
n

) − π(Sn +
t√
n

)

∣∣∣∣
∫

A1∪A2

e
Ln(Sn+ t√

n
)−Ln(Sn)

dt.(A.8)
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Recall that
√

n(Sn − θ0)
D−→ N(0, 1/I(θ0)), and therefore that

Pθ0

(
{Sn + t/

√
n; t ∈ A1 ∪ A2} ⊂ (θ0 − δ0, θ0 + δ0)

)
→ 1.

Moreover, it is established in the proof of Theorem 1.4.3 in Ghosh et al. (2003)

that
∫

A1
eLn(Sn+s/

√
n)−Ln(Sn) ds = Op(1). Therefore the right-hand-side of (A.8)

goes to 0 in probability, by (A.5).

Turning our attention to A3, notice that
∫

A3

∣∣∣Jn(x, Sn +
t√
n

)e
Ln(Sn+ t√

n
)−Ln(Sn) − π(θ0)e

− tI(θ0)
2

∣∣∣dt

≤
∫

A3

Jn(X, Sn +
s√
n

)e
Ln(Sn+ s√

n
)−Ln(Sn)

+

∫

A3

π(θ0)e
− tI(θ0)

2 dt.

The second integral clearly goes to zero. The first integral is
∫

A3

Jn(X, Sn +
s√
n

)e
Ln(Sn+ s√

n
)−Ln(Sn)

=
1

n

n∑

j=1

∫

A3

J(Xj , Sn+
s√
n

)f(Xj , Sn +
s√
n

)e
Ln(Sn+ s√

n
)−Ln(Sn)−log f(Xj ,Sn+

s√
n

)
ds

Notice that the definition of J implies
∫

R
J(Xj , Sn + s/

√
n)f(Xj , Sn + s/

√
n) =

1. The convergence to zero therefore follows by the regularity assumptions (v)

and (v′). Thus (A.6) is established. Finally, (5.3) is derived from (A.6) by

straightforward algebra as exhibited in the proof of Theorem 1.4.3 of Ghosh et al.

(2003).
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