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1 Tow Theorems.

To obtain the asymptotic ARL for the two control charts, we need three conditions presented in
the following.

Let h(0) = E(e%) denote the moment-generating functions of &;. We suppose that the white
noise {{;} satisfies the following two conditions:

(I) The distribution of ¢; is not a point mass at E(§;).

~ (II) The moment-generating function of {; satisfies 1(f) < oo for some 6 > 0 and
h = sup{h/(8)/h(0) : 6 < 0} >0, where 6 = sup{f: h(f) < oo}.

Note that, from condition II, it follows that h(f) is the analytic function for || < 0. It can be
shown that many distributions, such as normal, exponential, uniform and Poisson, satisfy conditions
I and II.

Another condition is about {ay}.

(III)  >°p2, klag| < oc.
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This condition implies that

lim n Y |ax| =0 (1)

n—00
k=n+1

Let n; = 0(A¢&; — g) and h,(0) = E(e) denote the moment-generating functions of 7;. Let
0(y) satisty y = hy (6(y))/hy(6(y))-
Now we present the asymptotic ARLs of the CUSUM chart.

Theorem 1. Suppose conditions (I), (II) and (III) hold. Let i = §(n — /2).
(i) If0 < p < 6/2, then

biec(e’”ro(l)) < ARLM(Tc(C)) < %60(9*+0(1)) (2)
C u

for a large control limit, ¢, where §* > 0 is a unique positive root of the equation log h(6 A8)—6260/2 =
Oon @ >0, u=dJdAn (6A46%)/h(5A0*) — 62/2 > 0 and b is a positive constant defined by

b—infla > 1/u: 9(%) — aloghy(6(2)) = 26°). (3)

T
(ii) If u > d/2 , then

3y/cloge ¢
\(2)3/2 o< ARL,(To(c)) <

c | 2y/cloge e(674)*/2

—(1+0(1)) i (ﬂ)S/Q Iac\/i—l

(140(1)) (4)

for large c.

For the EWMA chart, we let the control limit, ¢, be fixed and the weight parameter, r, be small
such that the ARLy becomes large. In the following theorem, we see that the role of the control
limit, ¢, in the EWMA chart is the same as the reference value §/2 in the CUSUM chart, and the
weight parameter, r, in the EWMA chart is like the control limit, ¢, in the CUSUM chart.

Theorem 2. Suppose that conditions (I), (II) and (III) hold.
(i) If 0 < pu < ¢, then

~ 71 * [~
er (0" (@+o(1) < ARL,(Tg(r)) < 310#6%(9 (@)+0(1)) (5)

for a small weighting parameter r, where 6*(¢) = ¢0z — log h¢(0z), 6z is a unique positive root of
the equation ¢ — logh(Af) =0 on § > 0 and h¢(0) is defined by

0 (6] i
he(9) = exp{/o Ig};(A)daz} (6)
(ii) If g > ¢, then
1 1 1
(1 0(1)(1 = o)y o8 1 < ARLL(Tp(r) < (1+0(1) log -2 (7)



for small r, where p is a positive number.

Remark 1. It is convenient to rewrite the results of the two theorems in the following expres-
sions. For large ¢ and small r we have

ARL,(Tc(c)) = Lee?® M) ARL,(Tp(r)) = Lper® @+ (8)
for 0 < pu < §/2 and 0 < p < ¢ respectively, and
_ c . 1 I
ARL,(To(c)) = (1 +O(1))5(u—5/2)’ ARL,(Tg(r) = (1 +0(1))rlogu_5 (9)

for p > 0/2 and p > ¢, respectively, where c and ¢ are the control limits of the CUSUM and EWMA,
respectively, and Lo and L satisfy 1/(bc) < Lo < 2¢/u and 1 < Lg < 3logr~!/r, respectively.

2 Proofs of Theorem 1

We first present two lemmas. Here, lemma 1 in the following is a slight generalization of the lemma
given in Durrett (2005, P.73) and lemma 2 is the same as Lemma 2 in Han and Tsung (2006). We
omit the proofs of lemma 2.

Lemma 1. Let Z;,1 < k < n, be independent with distributions Fj(x) and the moment-
generating functions hy()), and let Z,1 < k < n, be independent with the distributions F{(y)
and the moment-generating functions hy(6), where hy()\) < 00,1 < k < n, for some A > 0 and

R = g [ R, o) = B (10)

for some A > 0. Let F'* and Fy' denote the distributions of S,, = Z1+...+Z,, and SQ = Z{\+... +Z,Al
respectively. Then,

dF™
ary = ARy (N (N) (11)
and
P(S, > ma) > exp{—mAb+ » _loghi()) + log(F} (mb) — F}(ma))} (12)
k=1

for b > 0 and m > 0.
Proof. Since

Pe) = [ anw [ ane

— 00 — 00

= /OO e hi(\)dF (z) /z_x e Mha(N)dF3\(y)

—0o0 —0o0

= hi(A)ha(N) / / » e AR 2)d 3\ (y)

= hi(M\)ha(\) / e MAFE (u),

— 00



the result holds for n = 1,2. By mathematical induction, we can similarly show that (11) holds for
n > 1.

From (11), it follows that

P(S, > ma) = / e Mhi(\)...hn (V) dEY
mb

hi(A)...hn(N) / e NAFD

ma

v

mb
Bi(N)...hp(X)e™AmP dF}

ma

= hi(\)o i (N)e M [FR (mb) — FT'(ma)]

v

= exp{—mAb+ Z log hi(A\) + log(FY (mb) — FY(ma))}.
k=1

This completes the proof.

Note that, by (10), the mean and the moment-generating function of Z,? can be, respectively,
expressed as

hi(A+ 0)

A
hiy(0) = B (") =

. (13)

Let n; = 0(A¢&; — g) and h,(0) = E(e1) denote the moment-generating functions of 7;. Let
0(y) satisty y = hy (6(y))/hny(0(y))-

Lemma 2. Suppose that the two conditions, (I) and (II), hold. Let pu < §/2; that is, E(n;) =
§(u — 6/2) < 0. Then, there exists at most one 6* € (6(0),6) such that h,(6*) = 1; that is,
log h(6A0*)—6%0* /2 = 0, where 6(0) > 0 satisfies 0 = h; (6(0))/h,(6(0)). Moreover, u = ki (6*) > 0,
log hy;(6(x)) < 0 for x < u and log h,(0(x)) > 0 for x > u, and

1 1
0(—) — xzlogh,(6(—)) > 6* 14
(2) — wloghy(6() > (14
for x > 0 and
1 1 .
0(1) — zlog hy(0(2)) > 20 (15)
x x
for x > b, where the number b is defined by
1 1
b=inf{zx > 1/u: 9(;) — xloghn(ﬁ(g)) > 20%}. (16)

Proof of Theorem 1. (i). We first prove the upward inequality of (2). Without loss of generality,
the number z is considered to be the same as [x] when x is large, where the number [z] denotes

the smallest integer greater than or equal to x. Let Ay = Z§:1 a;j—1. It follows that

n—o0

. RS RS
lim A, = A, nh_)nolon;Ak =A, nh—{Igon;M”'*'k_AM =0, (17)
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and

o] n o, ¢] [o¢]
Tim Y s — Al < lim >N gy < lim Y Jar] = 0. (18)
k=n+1 k=1j=n k=n+1

Here, the last limit follows from (1). For n < m, we have

“ 0
Z (5<Xk - 5) == Ym,n + Zm,n + Um,n
k=m—n+1

where

n

n — Z 6<Ak£m+1—k - é)a Zm,n = 5Z(An+k - Ak)gm—‘rl—n—k
k=1

2
k=1
and
mn—5 E n+k_Ak§m+1nk
k=n+1

Since Yor—1)n,n + Z(2k—=1)nn» k > 1, are mutually independent and identically distributed, and

P,(Tc >m) = Pu( Zn: 5(Xi—g)<c, 1§k§n,1§n§m>
i=n—k+1

= Pu(Yo+ Zog+Unp<c, 1<k<n1<n<m)

IN

Pu (Yv(Zkfl)n,n + Z(Qkfl)n,n + U(Qkfl)n,n <e¢, 1<k<Z K)
for large m, where K is a natural number such that K = max{k : (2k — 1)n < m}, it follows that

PM(TC’ > m)

< Pu<Y(2k—1)n,n + Z(Qk,l)nm <c+e 1<k< K7) +Pu(1g}€ax |U2k 1 nn’ > 6)

IN

[P“<Yn,n~|—Zn7n<c+e) +Z ( (2k—1)nn = € >+P (-U(Qk—l)n,nZE)]

for any small positive number, €.

Next, we estimate P, (Ynm + Zpn <c+ 6). Let

) .
Yi(n) = 5(Aj£n+17j - §>, I<j<n
Zj(n) = (Ant; —A4j)&1—j, 1<j<n

Then, Yo, + Znn = >0 Yi(n) + 320, Zj(n). Let Fj(z) and Gj(z) denote, respectively, the
distributions of Yj(n) and Z;(n), and let hj(\) and I;(\) be, respectively, the moment-generating



functions of Y;(n) and Z;(n) for some A > 6* = 0(u), where §* and u are defined in Lemma 2.
Let Yf‘(n), ZJ’-\(n), 1 < j < n, be independent variables with the distributions Fj’\(y) and G?(y),
respectively, where F j’\(y), Gg\(y) and the corresponding moment-generating functions h;\(ﬁ) and
I;‘(Q) are defined in (15). Denote by F?" and F?" the distributions of Sa, = > =1 Yi(n) +
>io1 Zj(n) and S3, = >0, YN (n) + YU, Z3(n) respectively.

Taking n = (¢ + €)/u and v > u, it follows from Lemma 1 that

P, (Yn,n + Zpn >+ 6) =P, (Szn > un)

> exp{—n\v + Z log hj(A) + Zlog I;(\) + log(F"(nv) — F3™(nu))}. (19)
j=1 j=1

We now prove
F(nv) — F(nu) — 1 (20)
or equality
P({sgn >} U{S) < nu}) 0

for u < hy,(X)/hy(X) < v asn — oo, where hy(A) is the moment-generating function of §( A&y —d/2).
It follows from (13) and (17) that

. : 52\ _hG(A) Ry (M)
Jlggo log hj(\) = jlggo log h(6A;\) — - = log hy(A), ]1i>1£10 O) Y
and
(hy0) 1 1 hi(A+0)
) o (O) = Jim plos = T
o1 hiA+0) —Rhi(\), . 1Thi(A+0) —hj(\) RN
= glog[t + = ey L= 5 ey = hj-()\)'
Similarly,
: : (I}(0))  I;(\)
and
lim Loy _ iy SAnts — ADR(0(Ansy — A)N) _
j=oo Ij(A)  jooo h(0(Antj — Aj)AN)) '
Hence
(1} (0)) h;(A) I5(N)
log h}(0) = th. 0 0+ o(0) = h; 0 0+0(0), logI}(0) = Ij 0 0+ o(0). (21)

J



By Chebyshev’s inequality, we have

P(Sﬁ\n > nv) < exp{—nb (U - % ;log h?(g) + % ;IOg I;\(Q))}
1= RPN 1IN
= exp{—n9<v—nj:1 hj()\) +n;é‘(}\) +0(1))}

as n — oo for small 6. Similarly, we have

n

1 1 ¢
P(—SQ)‘n>—nu) < exp{—nﬁ(—u—n;logh?(—ﬁ)—i—n;loglj‘(—@—i—o(l))}

hiy(A)
= exp{—nﬁ( —u+ hZO\)

+0(1)>}—>0

as n — oo for small . This proves (20).
Note that log hj(A) — log hy(X) and log I;(A) — 0 as j — oo. It follows from (19) that

P,u (Yn,n + Zn,n >c+ 6)

> exp{—n()\v - %Zlog hji(X) — %Zlogfj()\) - %log(F)?"(nv) - Ff"(nu)))}
j=1 Jj=1
= exp{—(c+e) <%)\v - % log hy(X) + 0(1))}

for large ¢, where n = (c +¢€)/u. Since A, v (A > 0*,v > h}(\)/hy())) are arbitrary and h,(0*) = 1,
iy, (0%)/hy(0%) = u. Taking A N\, 0 and v\ h'(A)/h(]), we have

Pu <Yn,n + Zn,n >c+ 6) > 6_(C+6)(9*+0(1)) (22)

for large c.
Let m = t(c + €)(2e(ct90 +e() _ 1) /y for t > 0 and large ¢. Then, K = telcto@ +o(1) 1t

follows from (22) that
. K
[P,u (Yn,n + Zn,n <c+ 6>]K < (1 — @_(C+€)(9 +o(l))) et (23>

as ¢ — 00. On the other hand, by Chebyshev’s inequality we have

P, <Un7n > e> < exp{—fe+ Z log h(6(Anir — Ax)0)}
k=n+1

— oxp{—fe+ 6 i (14 o(1))1'(0)(Apsk — Ag)6}
k=n+1
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for large n. Note that n = (¢ + €)/u. Taking 6 = (¢ + €)(0* + a) /e, where a is a positive constant,
by (18), we have

0* +a

HOI8 Y (1+ oI (Ansk — A)l)}

k=n+1

PM<Unn2(—:> < exp{—(c+e)<0*+a—

= exp{—(c+ &) (0" +a—o(1))}

for large c. Since U(gg—1)n,n, k > 1 are identically distributed, it follows that

ip ( h—L)n ) KP (Unm > e) < Kexp{—(c+ &) (0" +a+o(1))} — 0 (24)
k=1

as ¢ — 0o. Similarly, we can prove that
K
> P~ Ukt =€) < Kexpl{—(c+ (0" +a—o(1)} 0 (25)

as ¢ — oo. From (23) (24) and (25) it follows that P, (T¢ > m) < e *(1 + o(1)) for large c. Thus,
by the properties of exponential distribution, we have

E,(Tc) < (1+0(1))(c+ e)(2ecTE o) 1y /y

for large c. Since € is arbitrary, the upward inequality of (2) is true.

To prove the downward inequality of (2), let

Ve = { Z <X_7><c7 1 <k <min{n,bc—1}, 1 <n <m}
i=n—k+1

and

Wi =4 Z (X—f)<c, bc <k <mn, bc<n<m}
i=n—k+1

for large ¢, where b is defined in (16). Then {Tc > m} = V,,W,,. Since {X;} is the linear
combination of the i.i.d. {;}, it follows from Theorem 5.1 in Esary, Proschan and Walkup (1967)
that P, (Tc > m) > P, (Wp)Pu(Vin),

m min{n,bc} n
0
P.(V) > [] P.( > 5(Xz—§)<c)
n=1 k=1 i=n—k+1
and
P.Wa) = JTTIPu( X 0Xi-3)< c)
n=bc k=bc i=n—k+1



Note that > 1 ., 6(X; —9/2) can be rewritten as

n

)
Z 5<Xk - 5) = Yn,k + Zn,k,c + Un,k,c
k=n—k+1

where

k
Ymk = 25<Aj£n+lfj - g)’ nk:c 25 Ak’-‘r] gn—i—l k—j
j=1
and

nkc* § 5Ak+] §n+1 k—j-
Jj=c+1

Let fr(0), gkc(0) and hy.(0) be the moment-generating functions of Y, p, Zy 1. and Uy, g,
respectively. It follows from (17) and (18) that

2
log h(34;6) — °-7) = hy(6), (26)

. log fi(6) 1
klin;o k _1 %

- &Mw

1 0
lim M lim — Zlogh (Ag+j —A;)0) =0 (uniformly for k> 1)  (27)

c—00 C c—00 C

and

lim log he(9) = lim > log h(5(Akgj — A;)0)

c—00

j=c+1
= lim 6 Y (14 o(1)(0)(Ak+j — 46
j—c+1
< md S (1 o)H Ol — Al
Jj=c+1
< (o) tim Kes 3 Jasl=0 (28)
< (o) lim Zed D Joj| =

Jj=c+1

uniformly for £ < Mc, where M > 0 is a constant.
For k > 1, let x = k/c. By Chebyshev’s inequality, we have

P, S s(x - %)= e)

i=n—k+1

1 1 1
< eXP{—C<9 2 log fx(0) — P log g...(0) — P log hk,c(9)>}-



If x =k/c— 0 as ¢ — oo, taking 6 > 6* it follows from (26), (27) and (28) that
p ( En: 5(Xi—é)>c)
H ' 2/ =
i=n—k+1
1 1 1 (0" —o(1))
< exp{—6<9 = - log fiu(60) — —log grc(0) — — log hk,c(9)>} <e

for large c¢. If b > x = k/c > a > 0, where a is a small positive constant, taking 6(1/z)) such that
1/z=h(0(1/x))/h(6(1/x)), we have

Pu< Zn: 5(X; — g) > c) - PN< Zn: 5(X; — g) > k/x)
i=n—k+1 i=n—k+1
< exp{—k(0(1/2)/ — 1 1og [u(6(1/2)) ~ 7 8o (0(1/2)) —  logh(6(1/2))))
= exp{—c(0(1/2) — . log fi(6(1/2)) ~ ~ loggr.o(0(1/2)) — ~ log . o(6(1/)) )}
_ exp{—c(a(l Jz) — zlog hy(0(1/2)) + 0(1))} < e=e0"+o(1)

for large ¢, where the last equality follows from (14). Thus, taking m = te® +o() /bc for ¢t > 0,
we have

m min{n,bc}

I1 ];[ PM< Zn: (5(Xi—g)<c>

n=1 i=n—k+1

P.(Vin)

v

m min{n,bc}

= 11 kl;Il [1—P“( i 5(Xi—g)20>]

—c(0*+o(1))1b —t
> 1 — e @ rollppem _y o=t

as ¢ — +o0.

Similarly, for x > b, that is, k > bc, we have

P,(Wn) > 1‘! kl_! PM< z}; 15(&2) <c>
n=>bc k=bc 1=n—k+
> TI II (1~ exp{—cl(1/z) — zloghy(6(1/2)) + o(1)]})
n=bc k=bc

> [1 - e—?c(@*+o(1))](m—bc)2 N 1’

as ¢ — +oo, where the last equality follows from (15). Hence, P(T > m) > P(Up,)P(Vy,) — et
as ¢ — +00. This implies the downward inequality of (2).

10



(ii) Let 1 = d(p — 6/2). Then

{Tc >m} = { 2”: (5(Xi—g)<c, 1§k§n,1§n§m}
i=n—k+1

(So8) <o) = (005w < e mi

— {Ymm(,u) + Zmm + Unm < ¢ — m,&}

N

where
Yinm(p) = Z 6(Aim+1—i — ).
i=1

Let fym(0), fzm(0) and fym(6) denote the moment-generating functions of Yy, (1), Zm, m and
Upn.m, respectively. Note that i > 0. Let N = ¢/fi + 2\/clog ¢/ (j1)*/?. We have

N 00
E,(To) = Y Pu(Te>m)+ Y. Pu(Tc>m)
m=1 m=N-+1

< N+ ) P, (Ym,m(u) + Zman + Upm < € — mﬂ)
m=N+1
> 2+/cloge

= N+ ZPM (YN+k,N+k( )+ ZNtk, Nk + Ungre Ntk < —f] Ef);;/g + k])
k=1
> _24/cloge

< N+ ZGXP{—QM[\(Q)?)/% + k] +log fy,n+k(—=0) +10g fz N+k(—0) +10g fun+k(—0)},
k=1

where the last equality follows from Chebyshev’s inequality. Note that p = £A,

N+k N+k

d _ _
0 log fy Nak(=0),o = ~"E(YNirN1k(p)) = =08 Z (Aj —A) =6¢ Z kay,
) N+k
29 108 Frnn(=0)),_, = Var(Yviunv+i(p)) = (60)? Z A3
and
N+k 02 N+k
log fy nik(—0) = 05 Z kar+ (60)* Y~ A3 +0(6?).
7j=1

Taking 0 = (v/N + k)%, by Condition (III) and (17), we have

1 1 L (60 1 sy (o A)?

1 e A2
o Frsssl ) =96 g O ko 5 -

11



uniformly for k& > 1 as ¢ — oo. Similarly, by (18) we can show that both log fz nyix(—(VN +k)™1)
and log fu n+k(—(VN + k)™1) go to 0 uniformly for k¥ > 1 as ¢ — oo. Thus, by taking a positive
constant « such that af < 1, it follows that

o 1 2y/clogec
Bu(Te) < N+ e /Q;ep{ Tl e o)

9 1 ~)3/2
_ N 4 o) /QZexp{ Vcloge+ (0)*2k o)
Ve 2y/cloge/i + ik

0 3/2
+6(60A)2/2 Z exp{_ 2\/E]'Ogc + (/’l’) = k A + 0 1)}

1 : iy (1)*2VE
N+ ————0oA7/2 | ((004)%/2 exp{ ——F—=—= +o(1
ficv2-1 k—g—‘rl { (ap)~t +2 W
o(604)2/2

IN

for large c. This proves the upward inequality of (4).
To prove the downward inequality of (4), let M = ¢/ji — 3y/clogc/(j1)*/?. Then,

M=

Eu(TC) >

P#(TC > m)

3
Il

IV
WE
s
=

P#< 2% X—— <c>

1

i
—
3
I
—
e
Il

P, (Yn,k(u) 4 Zop+ Unp < c— kﬂ)

[
E
b
=

k=1

3
I
o
S
I
A

mM
P YM7M(/L) + ZM7M + UM,M <c— Mﬂ)]

V3
E
VN

m

3
I

)

Il
M=

[1 -P, (YM,M(M) + 2y +Unv 2>

m=1

As in (29), we can similarly check that

3y/clogc
P, (YM,M(M) +Zyum +Umm 2> W>
< (6742 fsveloge |y

=R G
o(50A)2/2
G A/ Zexp{—3logc+o(1)} = T(l +0(1))

for large c. Note that if x/c3 — 0 for > 0 as ¢ — oo, then

o60A2/2, & 4o(604)%/2

~(1-55—) =T F—0+o)

12



as ¢ — 0o. Thus, taking © = M or x = M?, we have

B (7 M . (80 A)2/2 g
> -
ulle) = m:l{ c3 }
[1 B 5<6‘7’§)2/2]M 6(60'14)2/2 M2
S0 A 2 C
1— [1 el 63) / ]

as ¢ — oo. That is, the downward inequality of (4) holds. This completes the proof of Theorem 1.

3 Proof of Theorem 2

We will first prove a lemma before proving Theorem 2. In the following proofs we shall use ¢ simply
to replace ¢ which is the control limit of EWMA chart.

Lemma 3. Let Y, = Y720 Cp(r)én_p and ¢, = A 720 (1-7)%€, g, where O (1) = Z?:o ap—;(1-
r)7,0 <r < 1. Let hyn(0) and h¢ () denote the moment-generating functions of Y, and ¢, re-
spectively. Let n = (ar)~!, where a is a positive number. Then

lim 7 log hy,,(6) = lim 7 log h¢ ,(8) = log h¢ o(0), (30)
r—0 r—0
where

A™ (log h(0))"™

m m!

loghea(0) =D (1—e™)

m=1

om (31)

(log h(0))(™) denotes the mth derivative of the function logh(f) at § = 0. Moreover, if a = a(r) <
C(—logr)~! for some constant C and any 0 < 7 < 1, then

9 log h(Ax)

T

lim 7 log hy,,(0) = lim 7 log h¢ ,,(8) = log h¢o(0) = / dx (32)
r—0 r—0 0

and cf — log h¢ o(0) attains its maximal value at 6. for u < ¢, where 6. is the unique positive root
of the equation cf — log h(Af) =0 on 6 > 0.

Proof. Let log h¢(6) = logh¢ (). Since

loghcn(6) = 3 logh(A(L=1)"0) :zi A Qo HO)™) o,

and



it follows that the second equality of (30) holds for log h¢ . Thus, the first equality of (30) is true
as long as we prove that

i m k A\m| _
lim 7 |(Ci(r)™ = (1= r)"4)™ =0 (33)
k=0
for m > 1, since
- e (log h(0))(™
log hyn(f) = Zlogh (Ch(r Z Z (Ch(r T@m
k=0 k=0 m=1 :
oo n—1
m (log h(0 (m) m
- (C(r) (n(ﬂ))e
m=1 k=0
We first prove that
n—1
rY |Ck(r) = (L=7)* A =0 (34)
k=0

asr — 0.

Let R(p) = (logr~1)P for p > 1. Taking a small r such that n > 1/(rR(2p)), we have

n—1 1/(rR(2p))—1 n—1
> Ci(r) = Y. G+ DY, Gl
h=0 k=0 k=1/(rR(2p))
1/(rR(2p))—1  1/(rR(2p))—1-k ' n—1
= Z a Z (1—7) + Z Cr(r).
k=0 j=0 k=1/(rR(2p))

Furthermore,

1/(rR(2p))-1  1/(rR(2p))—1-k

rl Z ak Z (1—r)]

k=0 j=0
R(p) 1/(rR(2p))—1
< Zlakl (1= (=) CREDR L 3" gy
k=R(p)+1
- - 2[1A]|
< ||A||R(p)[1 — e VEE 4 _—_R(p < =0
1411RG)] R RIS )

as r — 0. Similarly,
1/(rR(2p)—1

_ Al
> 1= r)FlA] < A1 — e-VReD < 1ALy
r 2 (L=r)flAl < |A[[L —e ]_R(2p)—>

14



Thus,

n—1
r Y |Ck(r) = (1= r)" A
k=0
2| Al +|A -
< A Y e -a-nka
k=1/(rR2)
n— R(p) k
2/|Al| + |A . » »
< ”}'z'(p)’ L Y (0= el =Y gl — =)
k=1/(rR(2p)) Jj=1 J=R(p)+1
2/|Al| + |4 - - -
< A Y e ntReplAIG - S
k=1/(rR(2p)) J=R(p)+1
2/|4]] + 4] 1 =
< S +2rREp)|A + = Rp) Y la
R(p) R(p) k=R(p)+1
SI1AJ + [A] + 1
< Al H;(]!))H S0 (35)

as 7 — 0 for n > 1/(rR(2p). This implies (34). Furthermore, (33) follows from

n—1 n—1 m— 1
P 1(Ce(r)™ = (1 =)A= v |(Crlr) = (1= r)*A)( )" = )k AY)|
k=0 k=0 ]=0

IA

n—1
m||A[" Y T |(Cr(r) = (1 =7)FA| =0
k=0

as r — 0 for each m > 1.
Similarly, it can be checked that

lim 7“( log hy n(0)) = lim r(log hgn(a)) - ( log hga(ﬁ)) . (36)

r—0

Moreover, by (30), (31) and (36) we have

BL(0) /he(8) = %Iog h(A0).

This means (32). Note that ¢ —h¢(0)/h¢(0) = ¢ —p > 0 and hi(0)/h¢(0) is strictly increasing since
R'(0)/h(0) is strictly increasing (see Durrett (2005, P.70-73)). Then, there is a unique positive
number, 6, such that ¢ — hg(0:)/he(6:) = 0, or equality, cf. — logh(Af.) = 0, and therefore,
c —log h¢(6) attains its maximal value at 6.. This completes the proofs.

15



Proof of Theorem 2. (i). Let Dy (r) = >77° (}anJrk ;(1 —r)7. The statistics Ey,(r) of the
EWMA can be rewritten as

m—1
En(r)=rX,+(1-r)E T'Z 1—7“ m—k =T Ymn + Zmn + Rmn]
k=0
where
n—1 o)
Ym,n = Z Ck(r)fmfky ZDn,k fm n—k
k=0 k=0
and
m—n—1
Bpn=01-r" Y (1 Xom-n-k, Rmm=0
k=0

for m > n. Let n = 3r~'logr~! for small r. Note that Yinn,k > 1, are i.i.d. random variables
and Zgyn, k > 1, are identically distributed. For large m and any small € > 0, we have

P,u(TE > m) < Pu (Ykn,n + an,n + Rkn,n < 57 1<k< m/n7)

IN

P,u<Ykn,n < E"‘E’ 1<k< m/”v) +PN(1<%1<3’X ‘ann+Rknn| > 6)
T

m/n

&
< [P, (Yn,n <+ e)]m/n + m/nP#(|Zn,n| > 6/2) +y P#(|Rkn,n| > 6/2). (37)
Next, we prove that

Pu(Yon < S4e) <1- exp{—%(c@c “log he(6.)) + o(1)} (38)

for small » > 0.

Let Fj(z) denote the distributions of Cj(r)&;+1,0 < j < n —1. Let Yj’\,O <j<n-—1,be
independent variables with the distributions F?‘( ) for some A > 6.+re and the moment-generating
functions h)‘(é?) defined in (10). Denote by F™ and F}' the distributions of S, Z;:ol Ci(r)&j+
and S} = P > Y)‘ respectively.

Taking v > ¢+ re and 7 = 1/r, it follows from Lemma 1 that

n—1
P, (Yn,n > ; n e) > exp{—iAv + Y log h(C;(r)A) + log(F{(7w) — F} (e +re))}

j=0
n—1
= exp{—f()\v%—erogh 5(r)A) + rlog(FY (nv) — FY'(n(c+ 7€)} (39)
7=0

By (21), we have

W(C5(r)A)

log h}(6) = Cj(ﬂm

0+ o(9)

16



and

as r — 0. Hence, as in (20), we can show that
P({Sﬁ > v} U {S) < fifc+ ’FG)}) — 0;
that is,
F(nv) — FY(n(c+re)) — 1
as 1 — 0 for 0. < hi(A)/he(A) <wv.
It follows from (39) and Lemma 3 that
c 1
P, (Yn,n > ot 6) > exp{—; </\v —log h¢(N) + 0(1))}. (40)

Moreover, A\,v (A > fc,v > hi(A)/h¢(A)) are arbitrary and h(6c)/he(0:) = . Let A ™\, 0, and
v N\ hi(A)/he(A) in (40), we obtain (38).

Let m = 3tr—'log(1/r) exp{%(cf. — log h¢(0.))} for ¢ > 0. By (38), we have

1 m/n
Py (Y < &+ €)™/ < (1= exp{——(cbe —loghc(6)) +0(1)}) " — ¢! (41)
r r
as r — 0.
Note that
1 oo 1 oo n—1 '
- > IDn(r)] < - S angrsl(1—r)
k=0 k=0 j=0
1 1/r ‘ 1 n—1 .
= DA = 1A DA =)+ " > (Al =11451nE —ryt
j=0 j=1/r+1
1 3r~llogr—! 1 -
< A= S a0 (12)
j=1/r+1
and
1 kn—n—1
(1 =" _ )
St Y (=1 =0 (43)
7=0
as r — 0. As in (24) and (25), it can be shown that
m/nPu(\zn,ny > 6/2) -0, m/nPM(yRm,n\ > 6/2) =0 (44)

17



as r — 0. Thus, by (37), (41) and (44) we have
P,(Tg >m)<e’ (45)

as v — 0 for m = 3tr~—'log(1/r) exp{(cf. — log h¢(6.))}. This implies the upward inequality of
().

Let n =r~'logr~! and m = texp{L(cf. — log h¢(6.))} for t > 0. Using Theorem 5.1 in Esary,
Proschan and Walkup (1967), we have

P.(Tg >m) > [][PulBEr(r)<c)

n—1 m
= H P, <Yk,k + Zpr < C/T) H P, (kan + Zgpn + R < C/?").
=1 k=n
Furthermore, by Chebyshev’s inequality and as in (38) and (44), it follows that

1
Pu (Yk,n + Zk,n + Rk,n > C/T> < eXp{_; (C@C - IOg hC(QC) + 0<1)>}

for £ > n and small . Hence

ﬁ P, (Yk,n + Zgpn + Ry < c/r) > (1 — exp{—% (c@c —log h¢(6.) + 0(1))})m_n — et
k=n

as r — 0.

On the other hand, by Lemma 3, we know that cf — log h¢(0) attains its maximal value at 6,
since h-(6)/h¢(0) is strictly increasing and ¢ — hi(0)/h¢(0) = ¢ —p > 0. As in (38) and (44), we
can similarly obtain

P, (Yk,k + Zpi < c/r) > <1 — exp{—% (c@c — log h¢(6c) + 0(1))}), (46)

and therefore

n—1

H P, (Yk,k + Zpi < c/r) > (1 - exp{—% (c&c — log h¢(6c) + 0(1)) })n_l —1
k=1

as r — 0. Thus, P,(Tp > m) > e~ for m = texp{2(c. —logh¢(0.))} as r — 0. This proves the
downward inequality of (5).

(ii). Let Y m(r) = Z}":_Ol [Ci(r)ém—t — u(1 —r)7]. Take N =r~tlog(l —c/u)~! and m = Nt
for t > 1. It follows that

m—1
“Z 1—7“
7=0

‘3\‘:

_ —TNt H _ A Y
e e il

18



for small r. Then,

m—1
P, (Tg>m) < P, (Ym,m(r) + Zyum < ; N (1- r)J)
7=0
c U c
< Pou(Yom(r) + Zimgm < S = E[1 - (1 - ;)t])
= P _Ymm _me H _E_ _Et
w(= Yo () = Zm > B 7 (1 1))
< ep{=0 1= = (1= )]+ 10g fron(—0) +10g frm(~0)},
where
m—1
log fy,m(=0) = ) _[log h(=Cj(r)0) + Ou(1 — )]
§=0
10g f7,m(=0) = Y log h(=Du j(r)0)
5=0

Let d = t(u[l —¢/p — (1 — ¢/p)t]) L. Taking § = rd, it follows from (33) and (42) that

m—1 m—1

Z log h(—C;(r)rd) + rdu(l — )] = (1 + o(1))rd Z [A(1 = 7)? — Cj(r)] = 0
]:0 Jj=0

Zlogh (r)yrd) = —(1 + o(1 rdZD i

as 7 — 0. Thus,
P,(Tg >m) < e~ t1Fo(1))

as r — 0. This implies the upward equality of (7).
Let M = r~!log(1 — ¢/p)~ (1 — [logr~1]7P), where p > 0. Then,

WE

E,(Tg) > P,(Tg > m)

3
1§

ﬁPM< )+ Znp < >

[T P (Yiun () + Zu < &= 20— (1= 1)1

WE

3
I
o
3
o

Il
M=

3
I
~
3
~

[PH (YM,M(T) Vo < ; — gu (1 T)M])}mM.

M=

3
I
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Since

c U (= c)log 5=
© B (=) = (o) R

for small 7, by taking 6 = 3r(logr=1)P*[(n — ¢)log(1 — ¢/p) "1~ and using (35), we have
log fy,m(6) — 0, log fz.m(0) =0
as r — 0, and therefore,
P, (Yarar(r) + Zaras > = = H[1 = (1= 1))

—c)lo —C -1
o 108 frin(0) g fzm )

= exp{—3log ril(l +0(1))+0o(1)} = (1 + 0(1))T3(1+0(1))

> exp{—0(1+0(1))

for small r. Thus,

M
mM
E,(Tc) > Z[l—(1+0(1))7’3(1+0(1)) — M.
=1

as r — 0. This is the downward inequality of (7). This completes the proof of Theorem 2.
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