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Abstract: This paper presents the asymptotic expressions of the average run length

(ARL) for the cumulative sum (CUSUM) and exponentially weighted moving av-

erage (EWMA) control charts in detecting an unknown mean shift in a stationary

linear process. Based on the ARL expressions, we compare the detection perfor-

mance of the two popular charts in monitoring the mean shifts in such autocorre-

lated processes. Both theoretical analysis and numerical simulation results show

that auto-covariance can play an important role in the detection performance of

the two charts.
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1. Introduction

The average run length (ARL) is an extensively used measure in statistical
process control (SPC) for evaluating and comparing the detection performance
of various control charts. Since the asymptotic expression of an ARL can estab-
lish clear relations between the ARL, the control limit, and various statistical
properties (the expectation, variance and covariance, etc.) of the observation
processes, much effort has been expended on estimating the ARL by various
methods. Asymptotic expressions of the ARL for the cumulative sum (CUSUM),
exponentially weighted moving average (EWMA), Shiryayev-Robert, generalized
likelihood ratio (GLR), and reference-free cumulative score (RFCuscore) control
charts in detecting mean changes in an i.i.d. observation processes, have been
studied by Lorden (1971), Taylor (1975), Pollak and Siegmund (1985), Pollak
(1987), Novikov (1990), Srivastava and Wu (1993, 1997), Siegmund and Venka-
traman (1995) and Han and Tsung (2004, 2006).

As automated sampling technology develops and high-volume production
processes become more common, the need to monitor autocorrelated processes
also increases. To detect mean changes in autocorrelated processes, a variety of
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CUSUM and EWMA methods, enhancements, and new charting schemes have
been developed. See, for example, Alwan and Roberts (1988), Alwan (1992), Har-
ris and Ross (1991), Montgomery and Mastrangelo (1991), Wardell, Moskowitz
and Plante (1992, 1994), Yashchin (1993) Woodall and Faltin (1993), Apley and
Shi (1999), Runger and Willemain (1995), Schmid and Schöne (1997), Zhang
(1998), Lu and Reynolds (1999), Luceño (1999), Jiang, Tsui and Woodall (2000),
Jiang (2001), Apley and Tsung (2002), Shu, Apley and Tsung (2002), Apley and
Lee (2003), Schmid and Rosolowski (2003), Knoth and Schmid (2002, 2004), and
Ben-Gal and Morag (2003). However, the studies of control charts in detecting
the mean changes in autocorrelated processes in the above papers are mainly
based on numerical simulations of ARL.

In studying optimal detection in autocorrelated processes, Bansal and
Papantoni-Kazakos (1986) and Lai (1998) generalized Lorden’s (1971) asymp-
totic theory to the case of stationary ergodic and even more general stochastic
processes for the CUSUM chart. However, their studies involved some strong
assumptions and did not discuss the asymptotic estimation of the ARL0 (the in-
control ARL). The basic idea of Yashchin’s method (1993) to estimate the ARL
involves replacing the sequence of serially correlated observations by a sequence
of i.i.d. observations for which the run length distribution is approximately the
same. Although Wardell, Moskowitz and Plante (1994) presented a closed form of
run-length distributions of special-cause control charts for correlated processes,
the asymptotic estimations of the ARL was not tackled as well. Neither was
this done in Schmid and Schöne (1997) work, in which they only compared the
tail probabilities of the run length of the EWMA chart in both stationary and
i.i.d. Gaussian cases.

Here, the main purpose of the paper is to consider the asymptotic expres-
sions of the ARL for the two popularly used control charts, the CUSUM and
EWMA charts, in detecting an unknown mean shift of stationary autocorrelated
processes. By the comparison of the ARLs based on the asymptotic expressions,
we will see how the auto-covariance of the processes plays an important role on
the detection performance of the two charts. The main method of estimating the
ARL in this paper is the large deviation technique (see Durrett (2005)), which is
in fact different from that used by Pollak and Siegmund (1985), Pollak (1987),
Novikov (1990), Srivastava and Wu (1993, 1997), Siegmund and Venkatraman
(1995) and Han and Tsung (2004).

In the next section, we start with some notes and assumptions for a sta-
tionary linear process. After that, two theorems on the asymptotic expressions
of the ARL are proposed. In Section 3, based on the two theorems, the theo-
retical analysis and numerical simulation comparison of the ARLs in detecting
unknown mean shifts in both i.i.d. normal data and the first-order autoregres-
sive (AR(1)) model are presented. The proofs of the two theorems are put on
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www.stat.sinica.edu.tw as an on-line supplement. The paper concludes in Section
4 with discussion on further studies.

2. Asymptotic Expressions of the ARL for the CUSUM and EWMA
Charts

In this section, we first introduce a discrete-time stationary process and the
popular CUSUM and EWMA charts to monitor it. After that, we present three
conditions on the process and propose two theorems on asymptotic expressions
of the ARL for the CUSUM and EWMA control charts.

Let Xi (i = 0, 1, 2, . . .) be the ith observation on a discrete stationary process
with a constant mean and auto-covariance function. That is, E(Xi) = µ0 for all
i ≥ 0 and

Cov (Xi, Xi+m) = E[(Xi − µ0)(Xi+m − µ0)],

where the auto-covariance function, Cov (Xi, Xi+m) depends only on the lag m.
Such a stationary process is usually presented in the linear form

Xi =
∞∑

j=0

ajξi−j , (2.1)

where the sequence of random variables, ξj , −∞ < j < +∞, are i.i.d. with finite
variance. It is also assumed that

A =
∞∑

j=0

aj 6= 0, ‖A‖ =
∞∑

j=0

|aj | < ∞.

The stationary linear process in (2.1) is referred to as a general linear process
in Chatfield (1996) and as a linear filter model in Box, Jenkins and Reinsel
(1994). The stationary linear process model is quite general and included such
popular autocorrelated processes as stationary autoregressive (AR(p)), moving-
average (MA(q)) and MA(∞)), and autoregressive moving-average (ARMA(p,
q)). Without loss of generality, we further assume that a0 = 1. Thus, Xi = ξi

when ai = 0, i ≥ 1.
Suppose that, at some time τ ≥ 1 , the mean of Xi changes from µ0 to

µ. That is, from time period τ onwards, the mean of Xi undergoes persistent
shifts of sizes µ− µ0, where µ0 is known, and µ and τ are unknown. Meanwhile,
the variance, σ2

X of Xi does not change. We let ξ̄ = E(ξ1), so that µ = ξ̄A.
Without loss of generality, we also assume that µ0 = 0, σ2

X = 1 and µ > 0.
Obviously, E(Xi) = 0 for i < τ and E(Xi) = µ = ξ̄A > 0 for i ≥ τ . That is, the
out-of-control process is

Xi = µ +
∞∑

j=0

ajξi−j ,
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for i ≥ τ with E(ξk) = 0.
We introduce two popular control charts designed to detect the change in

the process. The popular upward-sided CUSUM chart, TC , is defined as

TC(c) = inf

{
n : max

1≤k≤n

[ n∑
i=n−k+1

δ
(
Xi −

δ

2

)]
≥ c

}
, (2.2)

where c > 0 is a control limit and δ/2 > 0 is the reference value. When {Xi} is
i.i.d., Moustakides (1986) and Ritov (1990) proved that the performance of the
CUSUM control chart with a reference value of δ/2 is optimal if the real mean
shift is δσX .

The EWMA is a control chart for detecting a mean shift that relies on

TE(r) = inf{n ≥ 1 : En(r) ≥ c̃},

where r is a weighting parameter (0 < r ≤ 1), c̃ is the control limit and En(r) =
rXn + (1 − r)En−1(r) with E0(r) = 0.

In this paper we only consider the upper-sided CUSUM and EWMA charts,
since it is more difficult to estimate the ARLs of the two-sided CUSUM and
EWMA charts.

Let P0(.) and E0(.) denote the probability and expectation when there is no
change in the mean and variance, that is, µ0 = 0 and σ2

X = 1 and the change point
is τ = ∞. Write Pµ(.) and Eµ(.) as the probability and expectation, respectively,
when the mean shift value is µ > 0 after the change point τ . Here we assume
τ = 1. For a stopping time, T , as the alarm time with a detecting procedure,
the two most frequently used operating characteristics are the in-control ARL
(ARL0) and the out-of-control ARL (ARLµ), defined by

ARL0(T ) = E0(T ), ARLµ(T ) = Eµ(T ).

To obtain the asymptotic ARL for the two control charts, we need three
conditions. Let h(θ) = E(eθξj ) denote the moment-generating functions of ξj .
We suppose that the white noise {ξj} satisfies the following two conditions.

(I) The distribution of ξ1 is not a point mass at E(ξ1).

(II) The moment-generating function of ξ1 satisfies h(θ) < ∞ for some θ > 0
and h̄ = sup{h′(θ)/h(θ) : θ < θ̄} > 0, where θ̄ = sup{θ : h(θ) < ∞}.

Note that, from condition II, it follows that h(θ) is an analytic function for
|θ| < θ̄. It can be shown that many distributions, such as normal, exponential,
uniform and Poisson, satisfy conditions I and II.

Another condition is that
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(III)
∑∞

k=1 k|ak| < ∞. This condition implies that

lim
n→∞

n

∞∑
k=n+1

|ak| = 0. (2.3)

Let ηj = δ(Aξj − δ/2) and hη(θ) = E(eθη1) denote the moment-generating
functions of η1. Let θ(y) satisfy y = h′

η(θ(y))/hη(θ(y)) since h′
η(θ)/hη(θ) is

strictly increasing (see Durrett (2005, p.60)).

Theorem 1. Suppose conditions (I), (II) and (III) hold. Let µ̂ = δ(µ − δ/2).

(i) If 0 ≤ µ < δ/2, then

1
bc

ec(θ∗+o(1)) ≤ ARLµ(TC(c)) ≤ 2c

u
ec(θ∗+o(1)) (2.4)

for a large control limit c, where θ∗ > 0 is a unique positive root of the
equation log h(δAθ)−δ2θ/2 = 0 on θ > 0, u = δAh′(δAθ∗)/h(δAθ∗)−δ2/2 >
0, and b is a positive constant defined by

b = inf
{

x >
1
u

: θ
(1

x

)
− x log hη

(
θ
(1

x

))
≥ 2θ∗

}
. (2.5)

(ii) If µ > δ/2, then

−(1+o(1))
3
√

c log c

(µ̂)
3
2

+
c

µ̂
≤ ARLµ(TC(c)) ≤ c

µ̂
+

2
√

c log c

(µ̂)
3
2

+
e(δσA)2/2

µ̂c
√

2−1
(1+o(1))

(2.6)
for large c.

For the EWMA chart, we let the control limit c̃ be fixed, and the weight
parameter r be so small that the ARL0 becomes large. In the following theorem,
we see that the role of the control limit in the EWMA chart is the same as
the reference value δ/2 in the CUSUM chart, and the weight parameter in the
EWMA chart is like the control limit in the CUSUM chart.

Theorem 2. Suppose that conditions (I), (II) and (III) hold.

(i) If 0 ≤ µ < c̃, then

e
1
r
(θ∗(c̃)+o(1)) ≤ ARLµ(TE(r)) ≤ 3 log r−1

r
e

1
r
(θ∗(c̃)+o(1)) (2.7)

for a small weighting parameter r, where θ∗(c̃) = c̃θc̃ − log hζ(θc̃), θc̃ is a
unique positive root of the equation c̃θ − log h(Aθ) = 0 on θ > 0, and hζ(θ)
is defined by

hζ(θ) = exp
{∫ θ

0

log h(Ax)
x

dx
}

. (2.8)
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(ii) If µ > c̃, then

(1+o(1))
(
1− 1

(log r−1)p

)1
r

log
µ

µ−c̃
≤ ARLµ(TE(r)) ≤ (1+o(1))

1
r

log
µ

µ−c̃
(2.9)

for small r, where p is a positive number.

Remark 1. It is convenient to rewrite the results of the two theorems. For large
c and small r we have

ARLµ(TC(c)) = LCec(θ∗+o(1)), ARLµ(TE(r)) = LEe
1
r
(θ∗(c̃)+o(1)) (2.10)

for 0 ≤ µ < δ/2 and 0 ≤ µ < c̃, respectively, and

ARLµ(TC(c))=(1+o(1))
c

δ(µ−δ/2)
, ARLµ(TE(r))=(1+o(1))

1
r

log
µ

µ−c̃
(2.11)

for µ > δ/2 and µ > c̃, respectively. Here c and c̃ are the control limits of
the CUSUM and EWMA, and LC and LE satisfy 1/(bc) ≤ LC ≤ 2c/u and
1 ≤ LE ≤ 3 log r−1/r, respectively.

Remark 2. It can be seen that the results in (2.11) are the same as those in the
case of Xi, i ≥ 1, being i.i.d. normal variables (see Novikov (1990), Srivastava
and Wu (1993, 1997) and Wu (1994)) as c → ∞ and r → 0.

As an application of the theorems, we give two examples as follows.

Example 1. Let ξi ∼ N(ξ̄, σ) be a normal distribution so that

h(θ) = exp
{

ξ̄θ +
σ2θ2

2

}
,

log hζ(θ) =
∫ θ

0

log h(Ax)
x

dx = µθ +
A2σ2

4
θ2.

It can be shown that u = δ(δ/2 − µ), b = (4 +
√

15)/u and

θ∗ =
1 − 2µ/δ

σ2A2
, θ∗(c̃) =

(c̃ − µ)2

σ2A2
, (2.12)

respectively, for µ < δ/2 and µ < c̃. When ai = 0, i ≥ 1, i.e. A = 1, the
above results become the ones for the i.i.d. Gaussian process. Note that, to
our knowledge, we only find the result θ∗(c̃) = c̃2/σ2 given in Novikov (1990) for
EWMA charts with µ = 0. When the mean shift is 0 < µ < c̃ in an i.i.d. Gaussian
process, the number θ∗(c̃) = (c̃ − µ)2/σ2 for the EWMA chart appears to be a
new result.
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Example 2. Let ξi ∼ exp(λ) be an exponential distribution with parameter
λ > 0. Then, h(θ) = 1/(1 − θ/λ) for θ < λ,

log hζ(θ) = −
∫ θ

0

log(1 − Ax/λ)
x

dx

for Aθ < λ, and θ∗ and θc̃ satisfy, respectively,

− log(1 − δAθ∗

λ
) − δ2θ∗

2
= 0, c̃ +

log(1 − Aθc̃/λ)
θc̃

= 0,

for A/λ = µ < δ/2 and µ < c̃, where µ > A/λ0. Though it is difficult to
obtain the closed forms of θ∗, θc̃ and θ∗(c̃) for the exponential distribution, one
can find the values from numerical calculation. For instance, taking λ = 1, δ =
1, A = 1/4 and c̃ = 2 for the EWMA, we have θ∗ = 3.1872, θc̃ = 3.9987 and
θ∗(c̃) = 2θc̃ − log hζ(θc̃) = 6.3554.

3. Theoretical Analysis and Numerical Comparison of the ARLs

As an application of Theorems 1 and 2, we first compare the ARLs of the
i.i.d. Gaussian and the stationary Gaussian processes, and between CUSUM and
EWMA charts. After that, we illustrate the numerical simulation results of the
ARLs for the one-sided CUSUM and EWMA control charts.

3.1. Theoretical analysis and comparisons of the ARLs

Usually, comparisons of the performance of control charts are made by des-
ignating the common ARL0 and comparing the ARL′

µs of the control charts for
a given shift, µ. The chart with the smaller ARLµ is considered to have better
performance.

Let ARL(i.i.d.)
µ (TC(c′)) and ARL(i.i.d.)

µ (TE(r′)) denote, respectively, the ARL
of the CUSUM and EWMA charts corresponding to the case of {Xi} being an
i.i.d. Gaussian process, that is, ai = 0 for i ≥ 1 and ξ ∼ N(ξ̄, σ), where c′ and
r′ are the control limit and weighting parameter, respectively, for CUSUM and
EWMA charts.

Corollary 1. Suppose {Xi} is a stationary Gaussian process defined in (2.1).
Let µ > δ/2 for the CUSUM chart and µ > c̃ for the EWMA chart. Take large
c′ and c such that ARL

(i.i.d.)
0 (TC(c′)) = ARL0(TC(c)), and small r and r′ such

that ARL
(i.i.d.)
0 (TE(r′)) = ARL0(TE(r)). Then,

ARL(i.i.d.)
µ (TC(c′)) < ARLµ(TC(c)), ARL(i.i.d.)

µ (TE(r′)) < ARLµ(TE(r))

for |A| > 1, and

ARL(i.i.d.)
µ (TC(c′)) > ARLµ(TC(c)), ARL(i.i.d.)

µ (TE(r′)) > ARLµ(TE(r))
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for |A| < 1.

Proof. By (2.10) and (2.12), the equality ARL(i.i.d.)
0 (TC(c′)) = ARL0(TC(c))

means that c′ = (1 + o(1))c/A2 for large c and c′. Thus, by (2.6) or (2.11), we
have

ARL(i.i.d.)
µ (TC(c′)) = (1 + o(1))

c

A2δ(µ − δ/2)
< (1 + o(1))

c

δ(µ − δ/2)
= ARLµ(TC(c)),

for |A| > 1, and

ARL(i.i.d.)
µ (TC(c′)) = (1 + o(1))

c

A2δ(µ − δ/2)
> (1 + o(1))

c

δ(µ − δ/2)
= ARLµ(TC(c)),

for |A| < 1. Similarly, the inequalities above for the EWMA chart can be checked
by using 1/r′ = (1 + o(1))1/(rA2) for small r and r′.

Remark 3. It has been proved by Schmid and Schöne (1997) that the
ARL of the stationary Gaussian process is larger than that of for the case of the
i.i.d. Gaussian process provided all auto-covariances are nonnegative and at least
one is greater than zero. The result is for the case of |A| = |1 +

∑∞
i=1 ai| > 1,

since all auto-covariances are nonnegative and at least one is greater than zero,
which implies that ai ≥ 0 for i ≥ 1 and at least one aj > 0. Obviously, it cannot
be ensured that |A| < 1 if some auto-covariances are negative. However, this is
true in some special cases. For example, let {Xi} be the AR(1) model; that is,
Xi+1 = ρXi + ξi+1, ai = ρi, where |ρ| < 1. We have A = (1 − ρ)−1. Obviously,
0 < A < 1 for ρ < 0. If E(Xi) = 0, then the number ρk, k ≥ 1, is the covariance
of Xi+k and Xi. In this case, the ARLµ of the stationary Gaussian process is
larger (smaller) than in the case of the i.i.d. Gaussian process if ρ > 0 (ρ < 0).

Remark 4. Moustakides (1986) and Ritov (1990) have proved that the perfor-
mance of the one-sided CUSUM control chart with the reference value δ/2 in
detecting the mean shift of i.i.d. Gaussian processes is optimal if the real mean
shift is δ; that is, ARL(i.i.d.)

µ (TC(c′)) = 2c′/µ2 attains its minimal value when
µ = δ. However, by Corollary 1, we see that the optimal case, µ = δ, does
not hold for the CUSUM chart in detecting the mean shift for autocorrelated
processes. It follows from (2.10), (2.11) and (2.12) that

ARL(i.i.d.)
µ (TE(r′))

= (1 + o(1))
1
r′

log
µ

µ − c̃
= (1 + o(1))

log[ARL0(TE(r′))]
c̃2

log
( µ

µ − c̃

)
= (1 + o(1))

log[ARL0(TE(r′))]
µ2

1
x2

log
( 1

1 − x

)
, (3.1)
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where 0 < x = c̃/µ < 1. Since the function x−2 log(1 − x)−1 attains its minimal
value, 2.45541..., at x = 0.71533..., we have the smallest ARL(i.i.d.)

µ (TE(r′)) if
the control limits are chosen to be c̃ = 0.71533µ, where µ is the real mean shift.
While the EWMA chart has the best performance in detecting the mean shift
of i.i.d. processes when c̃ = 0.71533µ, Corollary 1 has it that the optimal case,
c̃ = 0.71533µ, does not hold for the EWMA in detecting the mean shift of the
autocorrelated processes.

The following corollary lists the results of a comparison of ARLs between
CUSUM and EWMA charts for large ARL0. We first introduce a notation. Let

fa(x) = log
( 1

1 − ax

)
− a2x

2(1 − x)
, (3.2)

where a > 0, 0 < x < 1, and 0 < ax < 1. It can be shown that fa(x) > 0 for all
0 < ax < 1 when 1 ≤ a ≤ 2. Moreover, if 0 < a < 1, there is a number a∗1 ∈ (0, 1)
such that fa(x) > 0 for 0 < x < a∗1, and fa(x) < 0 for a∗1 < x < 1; if a > 2, there
is a number a∗2 ∈ (0, 1/a) such that fa(x) < 0 for 0 < x < a∗2 and fa(x) > 0 for
a∗2 < x < 1/a. For instance, a∗1 = 0.85, a∗1 = 0.750, a∗2 = 0.2473 and a∗2 = 0.27,
respectively, correspond to the cases a = 0.357665, a = 0.71533, a = 2.14599 and
a = 3.

Corollary 2. Suppose that {Xi} is a stationary Gaussian process defined in
(2.1). Take large c and small r such that ARL0(TC(c)) = ARL0(TE(r)).
(i) If c̃ < µ < δ/2, then ARLµ(TC(c)) > ARLµ(TE(r)).
(ii) If c̃ > µ > δ/2, then ARLµ(TC(c)) < ARLµ(TE(r)).
(iii) If µ < δ/2 and µ < c̃, then

ARLµ(TC(c)) > ARLµ(TE(r)), for c̃ < min
{

δ,
δ(1 +

√
1 − 2µ/δ)
2

}
;

ARLµ(TC(c)) < ARLµ(TE(r)), for c̃ > max
{

δ,
δ(1 +

√
1 − 2µ/δ)
2

}
.

(iv) If µ > δ/2 and µ > c̃, then

ARLµ(TC(c)) < ARLµ(TE(r)), for
δ

2
≤ c̃ ≤ δ;

ARLµ(TC(c)) < ARLµ(TE(r)), for c̃ <
δ

2
,

δ

µ
< 2a∗1;

ARLµ(TC(c)) > ARLµ(TE(r)), for c̃ <
δ

2
,

δ

µ
> 2a∗1;

ARLµ(TC(c)) > ARLµ(TE(r)), for c̃ > δ,
δ

µ
< 2a∗2;

ARLµ(TC(c)) > ARLµ(TE(r)), for c̃ > δ,
δ

µ
> 2a∗2,
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where a∗1 and a∗2 are defined by fa with a = 2c̃/δ.

Proof. Since ARL0(TC(c)) = ARL0(TE(r)) for large c and small r implies
that 1/r = (1 + o(1))c/c̃2 for large c and small r, it follows from (2.11), (2.12)
and (2.4) that

ARLµ(TE(r)) = (1 + o(1))
c

c̃2
log

µ

µ − c̃
<

1
bc

exp{c(1 − 2µ/δ)
σ2A2

} ≤ ARLµ(TC(c))

for c̃ < µ < δ/2 and large c. This proves (i). Similarly, we can prove (ii). For
(iii), it follows from (2.10) and (2.12) that

log ARLµ(TE(r)) = (1 + o(1))
c(c̃ − µ)2

c̃2σ2A2
,

log ARLµ(TC(c)) = (1 + o(1))
c(1 − 2µ/δ)

σ2A2

for large c. Thus,

log ARLµ(TE(r)) − log ARLµ(TC(c)) = (1 + o(1))
c

c̃2σ2A2
[(c̃ − µ)2 − c̃2(1 − 2µ

δ
)]

= (1 + o(1))
cµ

c̃2δσ2A2
[2c̃2 − 2c̃δ +

µ

δ
].

Note that µ > δ(1 −
√

1 − 2µ/δ)/2 and 2c̃2 − 2c̃δ + µδ > 0 for δ < c̃, or c̃ <

δ(1 −
√

1 − 2µ/δ)/2, or c̃ > δ/2(1 +
√

1 − 2µ/δ). Hence,

log ARLµ(TE(r)) − log ARLµ(TC(c))

= (1 + o(1))
cµ

c̃2δσ2A2
[2c̃2 − 2c̃δ + µδ] < 0 (> 0)

for c̃ < min{δ, δ(1 +
√

1 − 2µ/δ)/2} (c̃ > max{δ, δ(1 +
√

1 − 2µ/δ)/2}). This
proves (iii).

For (iv), let a = 2c̃/δ and x = δ/(2µ). By (2.11), we have

ARLµ(TE(r)) − ARLµ(TC(c))

= (1 + o(1))[
c

c̃2
log

( µ

µ − c̃

)
− c

δ(µ − δ/2)
]

= (1 + o(1))
c

c̃2
[log

( 1
1 − ax

)
− a2x

2(1 − x)
] = (1 + o(1))

c

c̃2
fa(x).

Thus, (iv) follows from the properties of fa.

3.2. Numerical comparison of the ARL for the two control charts

The purpose of this section is to present some simulation results for ARLs
of the upper-sided EWMA and CUSUM control charts for detecting mean shifts
in the AR(1) model: Xi+1 = ρXi + ξi+1, where ξi ∼ N(ξ̄, 1).
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Table 1. Comparison of ARLs for AR(1) model with ρ = 0 (i.i.d. normal data).

µ EWMA EWMA EWMA CUSUM CUSUM CUSUM
r = 0.043615 r = 0.12782 r = 0.384112 c = 3.952 c = 4.722 c = 4.9732
c̃ = 0.357665 c̃ = 0.71533 c̃ = 1.43066 δ = 0.5 δ = 1 δ = 2

0 699.1(682.8) 702.4(695.7) 698.1(696.3) 702.3(687.4) 701.6(695.6) 698(695.4)
0.1 211.4(194.8) 280.7(273.3) 382 (378.7) 255.9(241.1) 329(320.3) 411(399.6)
0.25 68.27(52.92) 94.49(86.56) 168.4(166.4) 82.05(67.16) 119.6(113.2) 203.7(200.9)
0.5 25.7(14.29) 29.26(22.18) 54.13(51.2) 28.39(16.54) 34.61(28.08) 66.8(65.37)
0.75 15.22(6.63) 14.7 (8.96) 22.9 (20.03) 16.22(7.34) 16 (10.61) 27.08(24.89)
1 10.77(3.93) 9.44(4.74) 12.13(9.52) 11.26(4.21) 9.82(5.25) 13.21(10.74)
1.25 8.34(2.66) 6.94(2.99) 7.56(5.16) 8.65(2.81) 7.02(3.17) 7.91(5.67)
1.5 6.84(1.96) 5.47(2.05) 5.36(3.2) 7.04(2.06) 5.48(2.18) 5.46(3.4)
2 5.06(1.24) 3.91(1.22) 3.31(1.55) 5.16(1.28) 3.83(1.26) 3.25(1.62)
3 3.42(0.68) 2.56(0.63) 1.96(0.69) 3.44(0.69) 2.47(0.63) 1.84(0.7)
4 2.63(0.53) 2.02(0.36) 1.4(0.51) 2.64(0.53) 1.94(0.4) 1.32(0.48)

Table 2. Comparison of ARLs for AR(1) model with ρ = 0.5.

µ EWMA EWMA EWMA CUSUM CUSUM CUSUM
r = 0.01798 r = 0.04996 r = 0.1652 c = 10.6122 c = 13.152 c = 13.352
c̃ = 0.357665 c̃ = 0.71533 c̃ = 1.43066 δ = 0.5 δ = 1 δ = 2

0 702.1(684.9) 698(694.2) 702.5(698.8) 697.5(673.5) 701.7(687.9) 701.1(694.3)
0.1 319.6(293.7) 363.9(349.3) 442.7(436.8) 368.3(336.1) 403.5(391.5) 466.5(465.2)
0.25 141.8(115) 171(154.9) 239.3(232.3) 170(137.9) 202.2(185.9) 262.8(258)
0.5 62.39(39.79) 69.36(54.48) 99.86(92.62) 73.41(47.54) 80.74(66.46) 112.45(105)
0.75 38.26(20.06) 38.35(25.57) 50.77(44.07) 43.08(22.18) 43.25(29.68) 57.52(52.41)
1 27.29(12.15) 25.75(14.71) 30.24(23.75) 30.84(13.72) 27.68(16.17) 32.67(26.46)
1.25 21.28(8.27) 18.97(9.22) 20.23(14.29) 23.74(9.01) 20.26(10.49) 21.46(15.83)
1.5 17.41(6.05) 15.17(6.51) 14.78(9.38) 19.26(6.47) 15.7(7.09) 15.42(10.16)
2 12.94(3.72) 10.82(3.79) 9.43(4.74) 14.26(4) 11.08(4.01) 9.52(4.91)
3 8.76(1.89) 7.11(1.8) 5.59(1.88) 9.57(2.03) 7.2(1.85) 5.57(2)
4 6.8(1.19) 5.51(1.11) 4.16(1.06) 7.36(1.25) 5.52(1.16) 4.1(1.13)

The numerical results were obtained based on a 1,000,000-repetition experi-
ment. Tables 1−5 compare the simulation results for various values of the mean
shift µ with change point τ = 1 and ARL0 ≈ 700. The first column in the five
tables lists the mean shifts (µ). In the five tables, the c̃ and c are the control lim-
its, respectively, for EWMA and CUSUM charts, and r and δ are, respectively,
the weight parameters of the EWMA and the reference values of the CUSUM.
The values in the parentheses in every column of Tables 1−5 are the standard
deviations of the simulation results.

By (3.1), we know that the EWMA chart has the best performance in
detecting the mean shift of i.i.d. processes if the control limits are chosen to be
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Table 3. Comparison of ARLs for AR(1) model with ρ = 0.9.

µ EWMA EWMA EWMA CUSUM CUSUM CUSUM
r = 0.003578 r = 0.00731 r = 0.0176 c = 77.732 c = 122.121 c = 161.35
c̃ = 0.357665 c̃ = 0.71533 c̃ = 1.43066 δ = 0.5 δ = 1 δ = 2

0 699.6(775.4) 700.4(704.4) 701.5(688.8) 698.8(612.5) 701(644.4) 699.5(662.5)
0.1 554.1(606.8) 567.6(571.2) 601.7(581.8) 587(498.9) 595.4(540.6) 598(559.5)
0.25 399.1(417.3) 430.2(416.6) 470.5(453.7) 469.5(391.6) 478.3(407.5) 483.8(448.3)
0.5 263.6(255.8) 289(262.3) 326.3(301.7) 334.2(258.3) 335.8(279.3) 346.9(309.3)
0.75 188.7(161.7) 209.6(175.1) 239.6(207.7) 252.2(179.5) 252.5(198.6) 257.1(219.1)
1 144.3(114.1) 161(128) 179.7(151.4) 199.2(129.1) 196(141.8) 202.9(168.1)
1.25 117.1(84.25) 129(94.43) 145.4(113.3) 160.3(97.61) 158.1(109.1) 157.9(124.5)
1.5 98.32(65) 107.1(72.27) 118.1(88.98) 137.8(76.68) 132.3(84.78) 130.8(96.76)
2 73.67(41.78) 79.47(46.81) 83.97(55.44) 105.1(50.83) 98.09(53.88) 92.92(61.18)
3 49.58(22.54) 52.29(24.4) 52.93(27.32) 70.33(27.08) 64.02(27.96) 57.35(30.08)
4 38.31(14.15) 39.59(14.86) 38.66(16.71) 53.91(17.1) 48.4(17.29) 41.62(17.68)

Table 4. Comparison of ARLs for AR(1) model with ρ = −0.5.

µ EWMA EWMA EWMA CUSUM CUSUM CUSUM
r = 0.0703995 r = 0.19198 r = 0.46241 c = 2.4 c = 3.2685 c = 4.9125
c̃ = 0.357665 c̃ = 0.71533 c̃ = 1.43066 δ = 0.5 δ = 1 δ = 2

0 701.3(687.2) 698.9(703.5) 702.7(696.8) 701.9(708.5) 701.8(703.5) 698.9(703.7)
0.1 158.7(146.1) 230.4(226.4) 366(362.3) 199.9(186.2) 336.6(332.7) 493.8(492.5)
0.25 42.09(31.38) 65.64(59.98) 152.2(150.4) 52.21(42.21) 108(104.5) 308.8(305.5)
0.5 14.69(7.38) 17.27(12.69) 42.1(39.77) 16.24(8.68) 24.85(20.14) 116.4(113.1)
0.75 8.7(3.36) 8.43(4.77) 16.33(14.45) 9.23(3.73) 10.13(6.19) 37.91(35.07)
1 6.17(2.04) 5.48(2.56) 8.14(6.28) 6.44(2.22) 6.08(2.96) 13.62(11.09)
1.25 4.79(1.45) 4(1.63) 4.85(3.35) 4.94(1.53) 4.31(1.8) 6.76(4.54)
1.5 3.96(1.07) 3.17(1.2) 3.28(1.99) 3.98(1.11) 3.33(1.3) 4.17(2.44)
2 2.94(0.73) 2.19(0.87) 1.93(1.06) 2.95(0.74) 2.21(0.86) 2.26(1.17)
3 1.82(0.59) 1.23(0.44) 1.09(0.3) 1.79(0.58) 1.24(0.45) 1.16(0.39)
4 1.18(0.39) 1.01(0.11) 1(0.04) 1.17(0.38) 1.01(0.11) 1.01(0.07)

equal to c̃ = 0.71533µ, where µ is the real mean shift. Thus, like CUSUM charts
(with reference values δ = 0.5, δ = 1 and δ = 2), three control limits for the
EWMA chart, c̃ = 0.71533 × 0.5 = 0.357665, c̃ = 0.71533 × 1 = 0.71533 and
c̃ = 0.71533 × 2 = 1.43066, are considered in the numerical simulations.

By comparing the simulation results of the ARLs illustrated in Tables 1−5,
we can make the following remarks.

1. The two charts for detecting the mean shift in the i.i.d. process have better
performance on the whole than for the process with positive auto-covariance ,
ρ > 0, while they have worse performance than for the process with negative
auto-covariance, ρ < 0.
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Table 5. Comparison of ARLs for AR(1) model with ρ = −0.9.

µ EWMA EWMA EWMA CUSUM CUSUM CUSUM
r = 0.069315 r = 0.15822 r = 0.32385 c = 3.2284 c = 6.015 c = 10.9558
c̃ = 0.357665 c̃ = 0.71533 c̃ = 1.43066 δ = 0.5 δ = 1 δ = 2

0 701.9(690.2) 700(704.6) 697.6(690.9) 698.4(689.4) 698.6(680.5) 698.5(688.8)
0.1 135.2(120.9) 241(235.6) 396.6(391.6) 377.7(363.5) 591.9(593.8) 616.2(607.1)
0.25 34.64(23.16) 68.59(60.95) 179.2(173.5) 78.36(60.49) 426.5(424.3) 516(509)
0.5 12.89(5.59) 18.04(11.58) 60.32(54.71) 20.23(8.42) 65.63(49.78) 375.9(371.1)
0.75 7.86(2.69) 9.01(4.26) 24.29(20.31) 11.4(3.5) 18.53(8.08) 237.5(227.9)
1 5.66(1.7) 5.9(2.31) 11.58(8.12) 7.94(2.08) 10.39(3.4) 50.64(39.57)
1.25 4.41(1.22) 4.38(1.48) 6.66(3.76) 6.07(1.45) 7.25(2.01) 15.89(7.46)
1.5 3.63(0.91) 3.46(1.06) 4.51(2.13) 4.91(1.13) 5.53(1.44) 8.95(3.22)
2 2.8(0.69) 2.45(0.91) 2.63(1.18) 3.49(0.73) 3.69(0.87) 4.7(1.38)
3 1.37(0.61) 1.13(0.38) 1.15(0.46) 2.48(0.75) 2.42(0.81) 2.51(0.84)
4 1.01(0.09) 1(0.04) 1(0.03) 1.2(0.45) 1.16(0.42) 1.17(0.45)

2. The optimality of the CUSUM chart for µ = δ, and the EWMA chart
for c̃ = 0.71533µ, in detecting the mean shift of the i.i.d. process does not hold
in the autocorrelated process. For instance, the CUSUM with δ = 1 and the
EWMA with c̃ = 0.71533 in Table 1 (ρ = 0, i.i.d. case) have the minimal values
ARLµ(TC) = 9.82 and ARLµ(TE) = 9.44 respectively, but in Table 5 (ρ = −0.9,
negatively autocorrelated case) the ARLs of the CUSUM with δ = 0.5 and the
EWMA with c̃ = 0.357665 are the minimums.

3. The two charts have their own merits and weaknesses. The EWMA
chart has better performance on the whole than the CUSUM in detecting the
mean shift of the positively autocorrelated process (see Tables 2 and 3), but the
CUSUM chart is more efficient than the EWMA in detecting the mean shift of
the negatively autocorrelated process (see Tables 4 and 5).

4. The simulation results support the results of Corollary 1. Since the
ARL0 is not large enough in the numerical simulation, the simulation results do
not always coincide with the theoretical comparisons given in Corollary 2, the
condition that ARL0 is large is a necessary one.

In Tables 6−8 we give some comparisons between the numerical results
and the estimations in (2.10) and (2.11) for ARL. Let ARLE(ρ, µ, c̃, r) and
ARLC(ρ, µ, δ, c) denote the numerical ARLµ, respectively, for the EWMA and
CUSUM control charts. It follows from (2.12) that

θ∗ = (1 − 2µ

δ
)(1 − ρ)2, (µ <

δ

2
), θ∗(c̃) = (c̃ − µ)2(1 − ρ)2, (µ < c̃),



486 DONG HAN AND FUGEE TSUNG

Table 6. {LE} and {LC} with ARL0 ≈ 700 and ρ = 0 (i.i.d. normal data).

µ EWMA EWMA EWMA CUSUM CUSUM CUSUM
r = 0.043615 r = 0.12782 r = 0.384112 c = 3.952 c = 4.722 c = 4.9732
c̃ = 0.357665 c̃ = 0.71533 c̃ = 1.43066 δ = 0.5 δ = 1 δ = 2
LE LE LE LC LC LC

0 37.22(40.80) 12.83(13.81) 3.39(3.56) 13.50(13.71) 6.24(6.26) 4.83(4.84)
0.1 46.13(52.86) 14.51(15.46) 3.80(4.12) 23.89(25.32) 7.53(7.64) 4.68(4.83)
0.25 52.34(65.98) 17.37(19.28) 4.47(4.73) 11.28(11.99) 4.89(4.83)
0.5 2.05(2.07) 20.36(23.53) 5.68(6.27) 0.90(0.91) 5.56(5.72)
0.75 2.37(2.34) 1.41(1.43) 6.86(7.69) 1.03(1.02) 0.85(0.86) 7.81(8.52)
1 2.44(2.43) 2.21(2.22) 7.48(8.47) 1.07(1.06) 1.04(1.03)
1.25 2.48(2.45) 2.41(2.38) 6.94(7.98) 1.09(1.08) 1.11(1.10) 0.80 (0.80)
1.5 2.52(2.49) 2.48(2.45) 1.54(1.56) 1.11(1.01) 1.16(1.14) 1.10(1.06)
2 2.58(2.53) 2.60(2.56) 2.33(2.32) 1.14(1.12) 1.22(1.19) 1.31(1.28)
3 2.71(2.62) 2.77(2.71) 2.68(2.65) 1.20(1.17) 1.31(1.26) 1.48(1.44)
4 2.82(2.75) 3.02(2.85) 2.80(2.81) 1.25(1.22) 1.41(1.36) 1.60(1.53)

Table 7. {LE} and {LC} with ARL0 ≈ 700 and ρ = 0.5.

µ EWMA EWMA EWMA CUSUM CUSUM CUSUM
r = 0.01798 r = 0.04996 r = 0.1652 c = 10.6122 c = 13.152 c = 13.352
c̃ = 0.357665 c̃ = 0.71533 c̃ = 1.43066 δ = 0.5 δ = 1 δ = 2
LE LE LE LC LC LC

0 118.6(140.1) 53.93(60.35) 31.73(34.70) 49.13(52.78) 26.20(26.36) 24.90(25.29)
0.1 127.0(158.7) 54.72(63.04) 30.36(34.06) 74.96(87.28) 29.08(30.67) 23.13(23.70)
0.25 120.7(162.9) 57.85(67.57) 29.03(31.34) 39.06(42.35) 21.50(21.96)
0.5 2.06(2.07) 54.00(68.24) 26.92(30.88) 1.73(1.76) 21.19(22.64)
0.75 2.45(2.41) 1.44(1.47) 25.18(28.92) 1.52(1.54) 2.47(2.49) 24.97(28.68)
1 2.56(2.49) 2.36(2.34) 22.84(26.52) 1.45(1.43) 2.10(2.07)
1.25 2.61(2.55) 2.57(2.54) 19.26(22.98) 1.40(1.38) 1.93(1.87) 4.02(4.01)
1.5 2.65(2.57) 2.69(2.62) 1.83(1.81) 1.36(1.34) 1.79(1.73) 3.46(3.33)
2 2.72(2.63) 2.81(2.73) 2.85(2.76) 1.34(1.30) 1.68(1.63) 2.85(2.74)
3 2.86(2.73) 3.00(2.88) 3.28(3.12) 1.35(1.30) 1.64(1.57) 2.50(2.35)
4 3.01(2.84) 3.22(3.05) 3.57(3.38) 1.39(1.32) 1.68(1.59) 2.46(2.29)

respectively, for the CUSUM and EWMA charts. Let

LE = LE(ρ, µ, c̃, r) =


ARLE(ρ,µ,c̃,r)

exp{ 1
r θ∗(c̃)} , if µ < c̃

ARLE(ρ,µ,c̃,r)
1
r log µ

µ−c̃

, if µ > c̃,

LC = LC(ρ, µ, δ, c) =


ARLC(ρ,µ,δ,c)

exp{cθ∗} , if µ < δ
2

ARLC(ρ,µ,δ,c)
c

δ(µ− δ
2 )

, if µ > δ
2 .
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Table 8. {LE} and {LC} with ARL0 ≈ 700 and ρ = −0.5.

µ EWMA EWMA EWMA CUSUM CUSUM CUSUM
r = 0.0703995 r = 0.19198 r = 0.46241 c = 2.4 c = 3.2685 c = 4.9125
c̃ = 0.357665 c̃ = 0.71533 c̃ = 1.43066 δ = 0.5 δ = 1 δ = 2
LE LE LE LC LC LC

0 11.76(12.37) 1.74(1.78) 0.03(0.03) 3.17(3.22) 0.45(0.47) 0.01 (0.01)
0.1 19.01(20.52) 2.72(2.86) 0.07(0.06) 7.83(8.41) 0.94(0.97) 0.02(0.02)
0.25 29.06(33.69) 5.19(5.36) 0.17(0.16) 2.76(2.89) 0.08(0.07)
0.5 1.90(1.94) 10.03(11.54) 0.62(0.63) 0.85(0.87) 0.46(0.45)
0.75 2.18(2.20) 1.21(1.26) 1.71(1.81) 0.96(0.97) 0.77(0.79) 2.39(2.48)
1 2.26(2.27) 1.93(1.94) 3.30(3.56) 1.01(1.01) 0.93(0.94)
1.25 2.30(2.32) 2.08(2.12) 4.14(4.66) 1.03(1.03) 0.99(0.99) 0.69(0.71)
1.5 2.36(2.34) 2.16(2.19) 1.14(1.19) 1.04(1.04) 1.02(1.02) 0.85(0.86)
2 2.49(2.39) 2.19(2.23) 1.64(1.69) 1.07(1.06) 1.01(1.03) 0.92(0.93)
3 2.32(2.43) 1.99(2.03) 1.79(1.73) 1.03(1.07) 0.95(0.95) 0.94(0.96)
4 2.04(2.17) 2.27(2.08) 2.41(2.24) 0.91(0.95) 1.08(1.01) 1.23(1.12)

It follows from (2.10) and (2.11) that LC for µ < δ/2 and LE for µ < c̃ satisfy
1/(bc) ≤ LC ≤ 2c/u and 1 ≤ LE ≤ 3 log r−1/r, respectively, for large c and small
r, and both LC for µ > δ/2 and LE for µ > c̃ go to 1 as c → ∞ and r → 0,
respectively, where u = δ(δ/2 − µ) and b = (4 +

√
15)/u.

The numbers {LE} and {LC} with ρ = 0, 0.5,−0.5 and ARL0 ≈ 700 are
given in Tables 6, 7 and 8. The numbers in the parentheses in every column of
Tables 6−8 are {LE} and {LC} with ARL0 ≈ 1, 400.

As can be seen, both {LE} for µ > c̃ and {LC} for µ > δ/2 do not depend
on the number ρ, and they are close to 1 from ARL0 ≈ 700 to ARL0 ≈ 1, 400,
with {LC} approaching 1 more quickly. Conversely, when µ < c̃ and µ < δ/2,
{LE} and {LC} depend heavily on the number ρ. For µ < c̃ and µ < δ/2, we
may conjecture that

LE ∼
√

π√
r(c̃ − µ)(1 − ρ)

, LC ∼ 2 exp{1.166(δ − 2µ)(1 − ρ)}
(δ − 2µ)2(1 − ρ)2

as r → 0 and c → ∞, respectively. In fact, the above conjecture is true when
ρ = 0 (see Srivastava and Wu (1993, 1997)).

4 Conclusion and Discussion

The asymptotic expressions of the ARLs for detecting the mean shifts of
the stationary linear processes extensively generalize known results for i.i.d. pro-
cesses. Our asymptotic expressions for the ARLs in stationary linear processes
demonstrate that the auto-covariance of the processes play an important role on
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the detection performance of the CUSUM and EWMA charts, and they point out
the merits and weaknesses of the two charts, especially in the cases of µ < δ/2
and µ < c̃.

The assumption in this paper that the change point, is τ = 1 is not essential
when the ARL0 is large enough. In fact, by the same methods used to prove our
theorems, we can prove that

−(1 + o(1))
3
√

c log c

(µ̂)3/2
+

c

µ̂
+ τ − 1

≤ ARLµ(TC(c)) ≤ τ − 1 +
c

µ̂
+

2
√

c log c

(µ̂)3/2
+

e(δσA)2/2

µ̂c
√

2−1
(1 + o(1))

for µ > δ/2 and

(1 + o(1))(1 − 1
(log r−1)p

)
1
r

log
µ

µ − c̃
+ τ − 1

≤ ARLµ(TE(r)) ≤ τ − 1 +
1
r

log
µ

µ − c̃
(1 + o(1))

for µ > c̃, when τ > 1 and the ALR0 is large enough.
Two problems deserve further study: (1) the asymptotic expressions of the

ARLs for the CUSUM and EWMA when µ = δ/2 and µ = c̃; and (2) the
asymptotic expressions for the ARLs for the CUSUM and EWMA in detecting
a dynamic mean change of non-stationary processes.
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Schmid, W. and Schöne, A. (1997). Some properties of the EWMA control chart in the presence

of autocorrelation. Ann. Statist. 25, 1277-1283.

Siegmund, D. and Venkatraman, E. S. (1995). Using the generalized likelihood ratio statistic

for sequential detection of a change-point. Ann. Statist. 23, 255-271.

Srivastava, M. S. and Wu, Y. H. (1997). Evaluation of optimum weights and average run

lengths in EWMA control schemes. Comm. Statist. Theory Methods 26, 1253-1267.

Srivastava, M. S and Wu, Y. H. (1993). Comparison of EWMA, CUSUM and Shiryayev-

Roberts procedures for detecting a shift in the mean. Ann. Statist. 21, 646-670.

Shu, L. J., Apley, D. W. and Tsung, F. G. (2002). Autocorrelated process monitoring using

triggered cuscore charts. Quality and Reliability Engineering International 18, 411-421.

Taylor, H. M. (1975). A stopped Brownian motion formula. Ann. Probab. 3, 234-246.

Wardell, D. G., Moskowitz, H. and Plante, R. D. (1992). Control charts in the presence of data

correlation. Management Science 38, 1084-1105.

Wardell, D. G., Moskowitz, H. and Plante, R. D. (1994). Run-length distributions of special-

cause control charts for correlated processes. Technometrics 36, 3-17.

Woodall, W. H. and Faltin, F. (1993). Autocorrelated data and SPC. ASQC Statistics Division

Newsletter 13, 18-21.

Wu, Y. H. (1994). Design of control charts for detecting the change. In Change-point Problems

(Edited by E. Carlstein, H. Muller and D. Siegmund) Inst. Math. Statist. 23, 330-345.

Hayward, CA.

Yashchin, E. (1993). Performance of CUSUM control schemes for serially correlated observa-

tions. Technometrics 35, 37–52.

Zhang, N. F. (1998). A statistical control chart for stationary process data. Technometrics 40,

24-38.

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.

E-mail: donghan@sjtu.edu.cn

Department of Industrial Engineering and Logistics Management, Hong Kong University of

Science and Technology, Hong Kong.

E-mail: season@ust.hk

(Received November 2006; accepted December 2007)


	1. Introduction
	2. Asymptotic Expressions of the ARL for the CUSUM and EWMA Charts
	3. Theoretical Analysis and Numerical Comparison of the ARLs 
	3.1. Theoretical analysis and comparisons of the ARLs
	3.2. Numerical comparison of the ARL for the two control charts

	4 Conclusion and Discussion

