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Abstract: The aim of this paper is to recover a signal based on inhomogeneous

noisy data (the amount of data can vary strongly from one point to another.) In

particular, we focus on the understanding of the consequences of the inhomogeneity

of the data on the accuracy of estimation. For that purpose, we consider the model

of regression with a random design, and we consider the minimax framework. Using

the uniform metric weighted by a spatially-dependent rate in order to assess the

accuracy of estimators, we are able to capture the deformation of the usual minimax

rate in situations where local lacks of data occur (the latter are modelled by a design

density with vanishing points). In particular, we construct an estimator both design

and smoothness adaptive, and we develop a new criterion to prove the optimality

of these deformed rates.
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1. Introduction

Motivations. A particularly prominent problem in statistical literature is the
adaptive reconstruction of a signal based on irregularly sampled noisy data. In
several practical situations, the statistician cannot obtain “nice” regularly sam-
pled observations, because of various constraints linked with the source of the
data, or the way the data is obtained. For instance, in signal or image processing,
the irregular sampling can be due to the process of motion or disparity compen-
sation (used in advanced video processing), while in topography, measurement
constraints are linked with the properties of the ground. See Feichtinger and
Gröchenig (1994) for a survey on irregular sampling, Almansa, Rouge and Jaf-
fard (2003), Vàzquez, Konrad and Dubois (2000) for applications concerning,
respectively, satellite image and stereo imaging, and Jansen, Nason and Silver-
man (2004) for examples of geographical constraints.

Such constraints can result in a lack of data that can be locally very strong.
As a consequence, the accuracy of a procedure based on such data can become
very poor locally. The aim of the paper is to study, from a theoretical point of
view, the consequences of the inhomogeneity of the data on the reconstruction of
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a univariate signal. Natural questions arise: how does the inhomogeneity impact
the accuracy of estimation? What does the optimal convergence rate become in
such situations? Can the rate vary strongly from one point to another, and how?

The model. We model the available data [(Xi, Yi); 1 6 i 6 n] by

Yi = f(Xi) + σξi, (1.1)

where ξi are i.i.d. Gaussian standard and independent of the Xi’s, and where
σ > 0 is the noise level. The design variables Xi are i.i.d. with density µ with
respect to the Lesbesgue measure. The density µ is unknown to the statistician
and, for simplicity, we assume that its suppport is [0, 1]. The more the density µ is
“far” from the uniform law, the more the data drawn from (1.1) is inhomogeneous.
A simple way to include situations with local lacks of data within the model (1.1)
is to allow the density µ to vanish at some points. Most papers assume µ to be
uniformly bounded away from zero, see references below.

In practice, µ is unknown (this would require knowing the constraints making
the observation irregularly sampled), as is the smoothness of f . Therefore, a
useful procedure would adapt both to the design and to the smoothness of f .
Such a procedure (that is proved to be optimal) is constructed here.

Methodology. We want to reconstruct f globally under sup norm loss. The
choice of sup norm for measuring the error of estimation is crucial. Indeed,
it appears that it allows one to capture in a simple way the consequences of
inhomogeneity on the convergence rate: when the data are inhomogeneous, the
optimal rate is deformed (in comparison with the usual rate), see Theorem 1
and 2 in Section 2.

The sup norm choice leads to a particular adaptive estimation method that
can handle “very” inhomogeneous designs. This method involves an interpolation
transform, where the scaling coefficients are estimated by local polynomials with
a smoothing parameter selected by a Lepski-type procedure, see for instance Lep-
ski, Mammen and Spokoiny (1997). The Lepski-type procedure developed here
is adapted to the random design setting when the design law is unknown. Note
that the original adaptive method from Lepski, see for instance Lepski (1990),
was developed only in the Gaussian white noise model, which is an idealized ver-
sion of (1.1) when the design is uniform: see for instance Brown and Low (1996)
and Brown et al. (2002).

If we measure the error of estimation with L2-norm, which is more standard
in nonparametric literature, the phenomenon of deformation of the rate does not
occur: see for instance the results from Chesneau (2007), which allow design den-
sities that can vanish. Moreover, in L2 estimation, more standard tools are used,
like orthogonal series, splines, or wavelets, see for instance Green and Silverman
(1994), Efromovich (1999) and Härdle et al. (1998).
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Literature. Pointwise estimation at a point where the design can vanish
is studied in Hall et al. (1997), with the use of a local linear procedure. This
design behaviour is given as an example in Guerre (1999), where a more gen-
eral setting for the design is considered with a Lipschitz regression function.
In Gäıffas (2005a), pointwise minimax rates over Hölder classes are computed
for several design behaviours, and an adaptive estimator for the pointwise risk
is constructed in Gäıffas (2005b). In these papers, it appears that, depending
on the design behaviour at the estimation point, the range of minimax rates
is very wide: from very slow (logarithmic) rates to very fast quasi-parametric
rates. Many adaptive techniques have been developed in literature for handling
irregularly sampled data. Among wavelet methods, see Hall et al. (1997) for in-
terpolation; Antoniadis, Gregoire and Vial (1997), Antoniadis and Pham (1998),
Brown and Cai (1998), Hall, Park and Turlach (1998) and Wong and Zheng
(2002) for tranformation and binning; Antoniadis and Fan (2001) for a penal-
ization approach; Delouille, Franke and von Sachs (2001) and Delouille, Simoens
and Von Sachs (2004) for the construction of design-adapted wavelet via lifting;
Pensky and Wiens (2001) for projection-based techniques; Kerkyacharian and
Picard (2004) for warped wavelets. For model selection, see Baraud (2002). See
also the Ph.D. manuscripts of Maxim (2003) and Delouille (2002).

2. Results

To measure the smoothness of f , we consider the standard Hölder class
H(s, L), where s, L > 0, defined as the set of all the functions f : [0, 1] → R such
that

|f (bsc)(x) − f (bsc)(y)| 6 L|x − y|s−bsc, ∀x, y ∈ [0, 1],

where bsc is the largest integer smaller than s. Minimax theory over such classes
is standard: we know from Stone (1982) that in (1.1), the minimax rate is
(log n/n)s/(2s+1) over H(s, L) whenever µ is continuous and uniformly bounded
away from zero.

We use the notation µ(I) :=
∫
I µ(t)dt. We recall that µ is the common

density of the Xi (wrt the Lebesgue measure). If F = H(s, L) is fixed, we
consider the sequence of positive curves hn(·) = hn(·; F, µ) satisfying

Lhn(x)s = σ
( log n

nµ([x − hn(x), x + hn(x)])

) 1
2 (2.1)

for all x ∈ [0, 1], and we define

rn(x;F, µ) := Lhn(x;F, µ)s.

Since h 7→ h2sµ([x−h, x+h]) is increasing for any x, these curves are well-defined
(for n large enough) and unique.
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Figure 1. rn(·) and αn(·) for several sample sizes.

In Theorem 1 below, we show that rn(·) = rn(·; F, µ) is an upper bound over
F . This spatially-dependent rate is achievable by an adaptive estimator over a
whole family of Hölder classes. In Theorem 2 below, we prove that, in some sense,
this rate is optimal. We give an explicit example of such a spatially-dependent
rate.

Example. When s = 1, σ = L = 1, and µ(x) = 4|x − 1/2|1[0,1](x), the solution
to (2.1) can be written as rn(x) = (log n/n)αn(x), where
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In this example, the amount of data is low at the middle of the unit inter-
val. The consequence is that the convergence rate has two “regimes”. Indeed,
rn(1/2) = (log n/n)1/4 is slower than the rate at the boundaries rn(0) = rn(1) =
(log n/n)1/3, which comes from the standard minimax rate (log n/n)s/(2s+1) with
s = 1. Hence, in this example, rn(·) switches from one “regime” to another.
In view of Theorem 2 below, we know that, in some sense, this phenomenon is
unavoidable. We show the shape of this deformed rate for several sample sizes
in Figure 1

In what follows, an . bn means that an 6 Cbn for any n, where C > 0 is
independent of n. From now on, C stands for a generic constant that can vary
from place to place — it can depend on the parameters of the setting, namely
R,L,Q,w(·), but not on f nor n. Let Efµ denote the expectation with respect
to the joint law Pfµ of [(Xi, Yi); 1 6 i 6 n]. Let w(·) be a loss function, namely a
non-negative and non-decreasing function such that w(0) = 0 and w(x) 6 A(1 +
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|x|b) for some A, b > 0. If Q > 0, we define HQ(s, L) := H(s, L)∩{f | ‖f‖∞ 6 Q}
(the constant Q need not to be known). Let R be a fixed natural integer.

Upper bound. In this section, we show that the spatially-dependent rate rn(·)
defined by (2.1) is an upper bound over Hölder classes.

Assumption D. We assume that µ is continuous, and that µ(x) > 0 for any x or
µ(x) = 0 for a finite number of x. Moreover, for any x such that µ(x) = 0, we
assume that there exists β(x) > 0 such that µ(y) = |y − x|β(x) for any y in a
neighbourhood of x.

Theorem 1. Under Assumption D, for any F = HQ(s, L) where s ∈ (0, R + 1],
the estimator f̂n given by (3.2) satisfies

sup
f∈F

Efµ

[
w( sup

x∈[0,1]
rn(x)−1|f̂n(x) − f(x)|)

]
6 C (2.2)

as n → +∞, where rn(·) = rn(·; F, µ) is given by (2.1) and where C > 0 is a
fixed constant, depending on the paremeters R,L,Q,w(·).

This theorem assesses the estimator f̂n (constructed in Section 3 below) over
function sets F in a family of Hölder classes. This estimator is smoothness adap-
tive, since it converges with the spatially-dependent rate rn(·, F, µ) uniformly
over F , which is the optimal rate in view of Theorem 2 below. Moreover, this es-
timator is also “design-adaptive”, since it does not depend within its construction
on the (unknown) design density.

Remark. Within Theorem 1, there are two situations.

• µ(x) > 0 for any x: we have rn(x) ³ (log n/n)s/(2s+1), which is the standard
minimax rate over H(s, L) (an ³ bn means an . bn and bn . an). However,
this result is new since adaptive estimators over Hölder balls in regression
with random design have not been previously constructed.

• µ(x) = 0 for one or several x: the rate rn(·) can vary strongly, depending on the
behaviour of µ; in the example, rn(·) goes from (log n/n)1/4 to (log n/n)1/3.

Remark. For the statement of Theorem 1, we need to assume that ‖f‖∞ 6 Q

for some Q > 0 (unknown). This assumption is necessary, since the upper bound
is uniform over Hölder classes, for the sup norm risk.

Remark. Implicitly, we assumed in Theorem 1 that s ∈ (0, R + 1], where R is a
known parameter. Indeed, in the minimax framework considered here, the fact
of knowing an upper bound for the smoothness s is usual in the study of adaptive
methods.

Optimality of rn(·). We have seen that the rate rn(·) defined by (2.1) is an
upper bound over Hölder classes, see Theorem 1. In Theorem 2 below, we prove
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that this rate is indeed optimal. In order to show that rn(·) is optimal in the
minimax sense over some class F , the classical criterion consists in showing that
for some constant C > 0,

inf
bfn

sup
f∈F

Efµ

[
w( sup

x∈[0,1]
rn(x)−1|f̂n(x) − f(x)|)

]
> C, (2.3)

where the infimum is taken among all estimators based on the observations (1.1).
However, this criterion does not exclude the existence of another normalisation
ρn(·) that can improve rn(·) in some regions of [0, 1]. Indeed, (2.3) roughly
consists of a minoration of the uniform risk over the whole unit interval and
then, only over some particular points. Therefore, we need a new criterion that
strengthens the usual minimax one to prove the optimality of rn(·). The idea is
simple: we localize (2.3) by replacing the supremum over [0, 1] by the supremum
over any (small) inverval In ⊂ [0, 1], that is

inf
bfn

sup
f∈F

Efµ

[
w( sup

x∈In

rn(x)−1|f̂n(x) − f(x)|)
]

> C, ∀In. (2.4)

It is noteworthy that in (2.4), the length of the intervals cannot be arbitrarily
small. Actually, if an interval In has a length smaller than a given limit, (2.4)
does not hold anymore. Indeed, beyond this limit, we can improve rn(·) for the
risk localized over In: we can construct an estimator f̂n such that

sup
f∈F

Efµ

[
w( sup

x∈In

rn(x)−1|f̂n(x) − f(x)|)
]

= o(1), (2.5)

see Proposition 1 below. The phenomenon described in this section, which con-
cerns uniform risk, is related to the results of Cai and Low (2005) for shrunk
L2 risks. In what follows, |I| stands for the length of an interval I. Recall that
µ(I) =

∫
I µ(x)dx.

Theorem 2. Suppose that
µ(I) & |I|β+1 (2.6)

uniformly for any interval I ⊂ [0, 1], where β > 0, and let F = H(s, L). Then,
for any interval In ⊂ [0, 1] such that

|In| ∼ n−α (2.7)

with α ∈ (0, (1 + 2s + β)−1), we have

inf
bfn

sup
f∈F

Efµ

[
w

(
sup
x∈In

rn(x)−1|f̂n(x) − f(x)|
)]

> C (2.8)

as n → +∞, where rn(·) = rn(· ; F, µ) is given by (2.1).
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Corollary 1. If vn(·) is an upper bound over F = H(s, L) in the sense of (2.2),
we have

sup
x∈In

vn(x)
rn(x)

> C

for any interval In as in Theorem 2. Hence, rn(·) cannot be improved uniformly
over an interval with length nε−1/(1+2s+β), for any arbitrarily small ε > 0.

Proposition 1. Let F = HQ(s, L) and `n be a positive sequence satisfying
log `n = o(log n).

(a) Let µ be such that 0 < µ(x) < +∞ for any x ∈ [0, 1]. If In is an interval
satisfying

|In| ∼
(`n

n

) 1
1+2s

,

we can contruct an estimator f̂n such that

sup
f∈F

Efµ

[
w

(( n

log n

) s
2s+1 sup

x∈In

|f̂n(x) − f(x)|
)]

= o(1).

(b) Let µ(x0) = 0 for some x0 ∈ [0, 1], and µ([x0 − h, x0 + h]) = hβ+1 where
β > 0 for any h in a fixed neighbourhood of 0. If

In =
[
x0 −

(`n

n

) 1
1+2s+β

, x0 +
(`n

n

) 1
1+2s+β

]
,

we can contruct an estimator f̂n such that

sup
f∈F

Efµ

[
w( sup

x∈In

rn(x)−1|f̂n(x) − f(x)|)
]

= o(1).

Remark. Note that in case (a), rn(x) ³ (log n/n)s/(2s+1) for any x ∈ [0, 1], and
that (2.6) holds with β = 0.

This proposition entails that rn(·) can be improved for localized risks (2.5)
over intervals In with size (`n/n)1/(1+2s+β), where `n can be a slow term such
has (log n)γ for any γ > 0. A consequence is that the lower bound in Theorem 2
cannot be improved, since (2.8) does not hold anymore when In has a length
smaller than (2.7). This phenomenon is linked both to the choice of the uniform
metric for measuring the error of estimation, and to the nature of the noise within
the model (1.1). It is also a consequence of the minimax paradigm: it is well-
known that the minimax risk actually concentrates on some critical functions of
the considered class (that we rescale and place within In here, hence the critical
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length for In), a property that allows one to prove lower bounds such that in
Theorem 2.

3. Construction of an Adaptive Estimator

The adaptive method proposed here differs from the techniques mentioned in
the Introduction. Indeed, it is not appropriate to apply a wavelet decomposition
of the scaling coefficients at the finest scale, since it is a L2-transform, while the
criterion (2.2) uses the uniform metric. This is the reason why our analysis is
focused on a precise estimation of the scaling coefficients. Each scaling coefficient
is estimated by a local polynomial estimator (LPE) of f with an adaptively
selected bandwidth.

Let (Vj)j>0 be a multiresolution analysis of L2([0, 1]) with a scaling function
φ compactly supported and R-regular (the parameter R comes from Theorem 1);
this ensures that

‖f − Pjf‖∞ . 2−js (3.1)

for any f ∈ H(s, L) with s ∈ (0, R + 1], where Pj denotes the projection onto
Vj . We use Pj as an interpolation transform. Interpolation transforms in the
unit interval are constructed in Donoho (1992) and Cohen, Daubechies and Vial
(1993). We have Pjf =

∑2j−1
k=0 αjkφjk, where φjk(·) = 2j/2φ(2j · −k) and αjk =∫

fφjk. We consider the largest integer J such that N := 2J 6 n, and we
estimate the scaling coefficients (αjk)06k62j at the high resolution level j = J .
If α̂Jk are estimators of αJk, we simply consider

f̂n :=
2J−1∑
k=0

α̂JkφJk. (3.2)

Let us denote by PolR the set of all real polynomials with degree at most R.
Suppose for the moment that we are given some accurate estimators f̄k ∈ PolR
of f over the support of φJk. Then αJk =

∫
fφJk ≈

∫
f̄kφJk. In the particular

situation where the scaling function φ has R moments, that is∫
φ(t)tpdt = 1p=0, p ∈ {0, . . . , R}, (3.3)

and when f is s-Hölder for s ∈ (0, R + 1], accurate estimators of αJk are given
by

α̂Jk := 2−
J
2 f̄k(k2−J). (3.4)

This comes from the fact that when f ∈ H(s, L), we have
∫

fφJk ≈
∫

fkφJk =
2−J/2f(k2−J), where fk is the Taylor expansion of f at k2−J up to the order bsc.
If φ does not satisfies (3.3),

∫
f̄kφJk can be computed exactly using a quadrature
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formula, in the same way as in Delyon and Juditsky (1995). Indeed, there is a
matrix QJ (characterized by φ) with entries (qJkm) for (k,m) ∈ {0, . . . , 2J − 1}2,
such that ∫

PφJk = 2−
J
2

∑
m∈ΓJk

qJkmP (
m

2J
) (3.5)

for any P ∈ PolR. Within this equation, the entries of the quadrature matrix QJ

satisfy
qJkm 6= 0 → |k − m| 6 Lφ and m ∈ ΓJk, (3.6)

where Lφ > 0 is the support length of φ (the matrix QJ is band-limited). For
instance, if we consider the Coiflets basis, which satisfies the moment condi-
tion (3.3), we have qJkm = 1k=m, and we can directly use (3.4). If the (φ(·−k))k

are orthogonal, then qJkm = φ(m − k), see Delyon and Juditsky (1995).
For the sake of simplicity, we assume in what follows that φ satisfies the

moment condition (3.3), thus the coefficients αJk are estimated by (3.4). Each
polynomial f̄k in (3.4) is a local polynomial estimator computed at k2−J with
smoothing parameter ∆̂k (the so-called “bandwidth”, which is, here, an interval

included in [0, 1] containing the point k2−J). Hence we write f̄k = f̄
(b∆k)
k . The

smoothing parameters ∆̂k are selected via an adaptive rule. Below, we describe
the computation of the local polynomial estimators and we define the selection
rule for the ∆̂k.

Local polynomials. The polynomials used to estimate each scaling coeffi-
cient are defined via a slightly modified version of the local polynomial estimator
(LPE). This linear method of estimation is standard, see for instance Fan and
Gijbels (1995, 1996), among many others. For any interval δ ⊂ [0, 1], we define
the empirical sample measure µ̄n(δ) := (1/n)

∑n
i=1 1Xi∈δ, where 1Xi∈δ equals

one if Xi ∈ δ, and zero otherwise. If µ̄n(δ) > 0, we introduce the pseudo-inner
product

〈f , g〉δ :=
1

µ̄n(δ)

∫
δ
fg dµ̄n, (3.7)

with ‖g‖δ := 〈g , g〉1/2
δ the corresponding pseudo-norm. A local polynomial esti-

mator is computed for each point of the regular grid {k2−J ; 0 6 k 6 2J}. Let
δ be an interval containing k2−J . The standard LPE at k2−J is defined as the
polynomial f̄

(δ)
k of degree R which is the closest to the data in the least square

sense, with respect to the localized empirical norm ‖ · ‖δ. More precisely, if
ϕkp(·) := (· − k2−J)p, 0 6 p 6 R, we look for f̄

(δ)
k ∈ Span{ϕkp(·); 0 6 p 6 R}

satisfying
〈f̄ (δ)

k , ϕ〉δ = 〈Y , ϕ〉δ (3.8)
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for any ϕ(·) ∈ {ϕkp(·); 0 6 p 6 R}. The coefficients vector θ̄
(δ)
k ∈ RR+1 of the

polynomial f̄
(δ)
k is therefore a solution, when it makes sense, to the linear system

X(δ)
k θ = Y(δ)

k , where for 0 6 p, q 6 R,

(X(δ)
k )p,q := 〈ϕkp , ϕkq〉δ and (Y(δ)

k )p := 〈Y , ϕkp〉δ. (3.9)

This is the standard definition of the LPE. Moreover, whenever µ̄n(δ) = 0, we
simply take f̄

(δ)
k = 0. We modify this linear system as follows: when the smallest

eigenvalue of X(δ)
k (which is non-negative) is too small, we add a correction term

to bound it from below, with

X̄(δ)
k := X(δ)

k + (nµ̄n(δ))−
1
2 IdR+11Ωk(δ){ ,

say, where IdR+1 is the identity matrix in RR+1 and

Ωk(δ) :=
{
λ(X(δ)

k ) > (nµ̄n(δ))−
1
2
}
, (3.10)

where λ(M) stands for the smallest eigenvalue of a matrix M . The quantity
(nµ̄n(δ))−1/2 comes from the variance of f̄

(δ)
k , and this particular choice preserves

the convergence rate of the method. This modification of the classical LPE is
convenient in situations with little data. Below is a precise definition of the LPE
at k2−J that we consider here.

Definition 1. When µ̄n(δ) > 0, we consider the solution θ̄
(δ)
k of the linear system

X̄(δ)
k θ = Y(δ)

k , (3.11)

and take f̄
(δ)
k (x) := (θ̄(δ)

k )0 + (θ̄(δ)
k )1(x− k2−J) + · · ·+ (θ̄(δ)

k )R(x− k2−J)R. When
µ̄n(δ) = 0, we take f̄

(δ)
k := 0.

Adaptive bandwidth selection. The adaptive procedure selecting the intervals
∆̂k is based on a method introduced by Lepski (1990), see also Lepski et al.
(1997), and Lepski and Spokoiny (1997). If a family of linear estimators can be
“well-sorted” by their respective variances (e.g. kernel estimators in the white
noise model, see Lepski and Spokoiny (1997)), the Lepski procedure selects the
largest bandwidth such that the corresponding estimator does not differ “signif-
icantly” from estimators with a smaller bandwidth. Following this principle, we
construct a method which adapts to the unknown smoothness, and additionally
to the distribution of the data (the design density is unknown). Bandwidth selec-
tion procedures in local polynomial estimation can be found in Fan and Gijbels
(1995), Goldenshluger and Nemirovski (1997), or Spokoiny (1998), among others.
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The idea of the adaptive rule for selecting the interval δ at the point k2−J

is the following: when f̄
(δ)
k (x) is close to f(x) for x ∈ δ (that is, when δ is

well-chosen), we have in view of (3.8) that

〈f̄ (δ′)
k − f̄

(δ)
k , ϕ〉δ′ = 〈Y − f̄

(δ)
k , ϕ〉δ′ ≈ 〈Y − f , ϕ〉δ′ = 〈ξ , ϕ〉δ′

for any δ′ ⊂ δ and ϕ(·) ∈ {ϕkp(·); 0 6 p 6 R}, where the right-hand side is a noise
term. Hence, in order to “remove” this noise, we select the largest δ such that
the noise term remains smaller than an appropriate threshold for any δ′ ⊂ δ and
ϕ(·) ∈ {ϕkp(·); 0 6 p 6 R}. At each point of the regular grid {k2−J ; 0 6 k 6 2J},
the bandwidth ∆̂k is selected in a fixed set of intervals Gk, called the grid and
defined below, as follows:

∆̂k := argmax
δ∈Gk

{
µ̄n(δ) | ∀δ′ ∈Gk, δ

′ ⊂ δ, ∀p ∈ {0, . . . , R},

|〈f̄ (δ′)
k − f̄

(δ)
k , ϕkp〉δ′ | 6 ‖ϕkp‖δ′Tn(δ, δ′)

}
,

(3.12)

where

Tn(δ, δ′) := σ
[( log n

nµ̄n(δ)

) 1
2 + DCR

( log(nµ̄n(δ))
nµ̄n(δ′)

) 1
2
]
, (3.13)

with CR := 1 + (R + 1)1/2 and D > (2(b + 1))1/2, if we want to prove Theorem 1
with a loss function satisfying w(x) 6 A(1 + |x|b). The threshold choice (3.13)
can be understood in the following way: since the variance of f̄

(δ)
k is of order

(nµ̄n(δ))−1/2, we see that the two terms in Tn(δ, δ′) are ratios of a penalizing
log term and the variance of the estimators compared by the rule (3.12). The
penalty term is linked with the number of comparisons necessary to select the
bandwidth. To prove Theorem 1, we use the grid

Gk :=
∪

16i6n

{[
k2−J − |Xi − k2−J |, k2−J + |Xi − k2−J |

]}
, (3.14)

and we recall that the scaling coefficients are estimated by α̂Jk := 2−J/2f̄
(b∆k)
k

(k2−J).

Remark. In this form, the adaptive estimator has a complexity O(n2). This can
be decreased using a smaller grid. An example of such a grid is the following: first,
we sort the (Xi, Yi) into (X(i), Y(i)) such that X(i) < X(i+1); then we consider
i(k) such that k2−J ∈ [X(i(k)), X(i(k)+1)] (if necessary, we take X(0) = 0 and
X(n+1) = 1) and, for some a > 1 (to be chosen by the statistician), we introduce

Gk :=
[loga(i(k)+1)]∪

p=0

[loga(n−i(k))]∪
q=0

{[
X(i(k)+1−[ap]), X(i(k)+[aq ])

]}
. (3.15)
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With this grid, the selection of the bandwidth is fast, and the complexity of the
procedure is O(n(log n)2). We can use this grid in practice, but we need extra
assumptions on the design if we want to prove Theorem 2 with this grid choice.

4. Proofs

We provide the proofs of the main material only; we omit some technical
details, that can be found in the online version of the paper, available at Statistica
Sinica’s webpage.

We recall that the weight function w(·) is non-negative, non-decreasing, and
such that w(x) 6 A(1 + |x|)b for some A, b > 0. We denote by µn the joint law
of X1, . . . , Xn, and by Xn the sigma-field generated by X1, . . . , Xn. |A| denotes
both the length of an interval A and the cardinality of a finite set A. M> is the
transpose of M , and ξ = (ξ1, . . . , ξn)>. We take xk := k2−J for k ∈ {0, . . . , 2J}.
As before, C stands for a generic constant that can vary from place to place.

Proof of Theorem 1. To prove the upper bound, we use the estimator defined
by (3.2), where φ is a scaling function satisfying (3.3) (for instance the Coiflets
basis), and where the scaling coefficients are estimated by (3.4). Using (3.1) and
the fact that rn(x) & (log n/n)s/(1+2s) for any x, we have supx∈[0,1] rn(x)−1‖f −
PJf‖∞ = o(1). Hence,

sup
x∈[0,1]

rn(x)−1|f̂n(x) − f(x)| . sup
x∈[0,1]

rn(x)−1
∣∣∣ 2J−1∑

k=0

(α̂Jk − αJk)φJk(x)
∣∣∣

. max
06k62J−1

sup
x∈Sk

rn(x)−12
J
2 |α̂Jk − αJk|,

where Sk denotes the support of φJk. Then, expanding f up to the degree
bsc 6 R and using (3.3) and (3.4), we obtain

sup
x∈[0,1]

rn(x)−1|f̂n(x) − f(x)| . max
06k62J−1

sup
x∈Sk

rn(x)−1|f̄ (b∆k)
k (xk) − f(xk)|. (4.1)

Since |Sk| = 2−J ³ n−1, we have

sup
x∈Sk

rn(x)−1 . rn(xk)−1. (4.2)

Indeed, since µ is continuous, rn(·) is continuously differentiable and we have
supx∈Sk

|rn(x)−1 − rn(xk)−1| 6 2−J‖(r−1
n )′‖∞, where g′ stands for the derivative

of g. Moreover, |(rn(x)−1)′| . h′
n(x)hn(x)−(s+1) . n−1, since h′

n(x) is uniformly
bounded and hn(x) & (log n/n)1/(2s+1), thus (4.2).

In what follows, ‖·‖∞ denotes the supremum norm in RR+1. The follow-
ing lemma is a version of the bias-variance decomposition of the local polyno-
mial estimator, see for instance Fan and Gijbels (1995, 1996), Goldenshluger and
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Nemirovski (1997), Spokoiny (1998), among others. We define the matrix E(δ)
k :=

Λ(δ)
k X̄(δ)

k Λ(δ)
k , where X̄k is given by (3.9) and Λ(δ)

k := diag[‖ϕk0‖−1
δ , . . . , ‖ϕkR‖−1

δ ].

Lemma 1. Conditionally on Xn, for any f ∈ H(s, L) and δ ∈ Gk, we have

|f̄ (δ)
k (xk) − f(xk)| . λ(E(δ)

k )−1
(
L|δ|s + σ(nµ̄n(δ))−

1
2 ‖U(δ)

k ξ‖∞
)

on Ωk(δ), where U(δ)
k is a Xn-measurable matrix of size (R + 1) × (nµ̄n(δ)) sat-

isfying U(δ)
k (U(δ)

k )> = IdR+1.

The proof of Lemma 1 is given in the online version of the paper. Note that
within this lemma, the bandwidth δ can change from one xk to another. We
write Uk := U(δk)

k for short. Define W := Uξ where U := (U>
0 , . . . ,U>

2J )>.
In view of Lemma 1, W is, conditionally on Xn, a centered Gaussian vector
such that Efµ[W 2

k |Xn] = 1 for any k ∈ {0, . . . , (R + 1)2J}. We introduce WN :=
max06k6(R+1)2J |Wk| and the event WN :=

{
|WN−E[WN |Xn]| 6 LW (log n)1/2

}
,

where LW > 0. We recall the following classical results about the supremum of
a Gaussian vector (see for instance in Ledoux and Talagrand (1991)):

Efµ

[
WN |Xn

]
. (log N)

1
2 . (log n)

1
2 ,

Pfµ

[
W{

N |Xn

]
. exp(−

L2
W (log n)

2
) = n−L2

W
2 . (4.3)

Take Tk := {µ̄n(∆k) 6 µ̄n(∆̂k)} and Rk := σ
(
log n/(nµ̄n(∆k))

)1/2, where the
intervals ∆k are given by

∆k := argmax
δ∈Gk

{
µ̄n(δ) | L|δ|s 6 σ

( log n

nµ̄n(δ)

) 1
2
}

.

There is an event Sn ∈ Xn such that µn[S{
n] goes to zero faster than any power

of n, and such that Rk ³ rn(xk) and λ(E(∆k)
k ) > λ0 for some constant λ0 > 0,

uniformly for any k ∈ {0, . . . , 2J − 1}. The construction of this event can be
found in the online version of the paper. We write

|f̄ (b∆k)
k (xk) − f(xk)| 6 Ak + Bk + Ck + Dk,

where

Ak := |f̄ (b∆k)
k (xk) − f(xk)|1W{

N∪S{
n
,

Bk := |f̄ (b∆k)
k (xk) − f(xk)|1T{

k∩WN∩Sn
,

Ck := |f̄ (b∆k)
k (xk) − f̄

(∆k)
k (xk)|1Tk∩Sn ,

Dk := |f̄ (∆k)
k (xk) − f(xk)|1WN∩Sn .
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Term Ak. For any δ ∈ Gk, we have

|f̄ (δ)
k (xk)| . (nµ̄n(δ))

1
2 ‖f‖∞(1 + WN ). (4.4)

This inequality is proved in the online version of the paper. Using (4.4), we can
bound

Efµ

[
w

(
max

06k62J
rn(xk)−1|f̄ (b∆k)

k (xk)|
)
|Xn

]
by some power of n. Using ‖f‖∞ 6 Q together with the fact that LW can be
arbitrarily large in (4.3) and since µn[S{

n] = o(1) faster than any power of n, we
obtain

Efµ

[
w( max

06k62J
rn(xk)−1Ak)

]
= o(1).

Term Dk. Using Lemma 1, the definition of ∆k, and the fact that WN .
(log n)1/2 on WN , we have

|f̄ (∆k)
k (xk) − f(xk)| 6 λ(E(∆k)

k )−1Rk(1 + (log n)−
1
2 WN ) . λ(E(∆k)

k )−1rn(xk)

on WN ∩ Sn, thus Efµ

[
w(max06k62J rn(xk)−1Dk)

]
6 C.

Term Ck. We introduce Gk(δ) := {δ′ ∈ Gk|δ′ ⊂ δ} and the events

Tk(δ, δ′, p) :=
{
|〈f̄ (δ)

k − f̄
(δ′)
k , ϕkp〉δ′ | 6 σ‖ϕkp‖δ′Tn(δ, δ′)

}
,

Tk(δ, δ′) := ∩06p6RTk(δ, δ′, p),

Tk(δ) := ∩δ′∈Gk(δ)Tk(δ, δ′).

By the definition (3.12) of the selection rule, we have Tk ⊂ Tk(∆̂k, ∆k). Let
δ ∈ Gk, δ

′ ∈ Gk(δ). On Tk(δ, δ′) ∩ Ωk(δ′) we have (see the online version of the
paper)

|f̄ (δ)
k (xk) − f̄

(δ′)
k (xk)| . λ(E(δ′)

k )−1
( log n

nµ̄n(δ′)

) 1
2
. (4.5)

Thus, using (4.5), we obtain Efµ

[
w(max06k62J rn(xk)−1Ck)

]
6 C.

Term Bk. By the definition (3.12) of the selection rule, we have T{
k ⊂ Tk(∆k){.

We need the following lemma.

Lemma 2. If δ ∈ Gk satisfies

L|δ|s 6 σ
( log n

nµ̄n(δ)

) 1
2 (4.6)

and f ∈ H(s, L), we have

Pfµ

[
Tk(δ){|Xn

]
6 (R + 1)(nµ̄n(δ))1−

D2

2
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on Ωk(δ), where D is the constant from the threshold (3.13).

Using Lemma 2, ‖f‖∞ 6 Q, and (4.4), we obtain

Efµ

[
w

(
max

06k62J
R−1

k |f̄ (b∆k)
k (xk) − f(xk)|1T{

k∩WN

)
|Xn

]
6 C,

thus Efµ

[
w(max06k62J rn(xk)−1Bk)

]
6 C, and Theorem 1 follows.

Proof of Lemma 2. We denote by P(δ)
k the projection onto Span{ϕk0, . . . , ϕkR}

with respect to the inner product 〈· , ·〉δ. Note that on Ωk(δ), we have f̄
(δ)
k =

P(δ)
k Y . Let δ ∈ Gk and δ′ ∈ Gk(δ). In view of (3.8), we have on Ωk(δ), for any

ϕ = ϕkp, p ∈ {0, . . . , R},

〈f̄ (δ′)
k − f̄

(δ)
k , ϕ〉δ′ = 〈Y − f̄

(δ)
k , ϕ〉δ′

= 〈f − P(δ)
k Y , ϕ〉δ′ + 〈ξ , ϕ〉δ′

= Ak − Bk + Ck,

where Ak := 〈f − P(δ)
k f , ϕ〉δ′ , Bk := σ〈P(δ)

k ξ , ϕ〉δ′ and Ck := σ〈ξ , ϕ〉δ′ . If fk is
the Taylor polynomial of f at xk to order bsc, since δ′ ⊂ δ and f ∈ H(s, L), we
have

|Ak| 6 ‖ϕ‖δ′‖f − fk + P(δ)
k (fk − f)‖δ 6 ‖ϕ‖δ′‖f − fk‖δ . ‖ϕ‖δ′L|δ|s

and, using (4.6), we obtain |Ak| . ‖ϕ‖δ′σ
(
log n/(nµ̄n(δ))

)1/2. Since P(δ)
k is an

orthogonal projection, the variance of Bk is equal to

σ2Efµ

[
〈P(δ)

k ξ , ϕ〉2δ′ |Xn

]
6 σ2‖ϕ‖2

δ′Efµ

[
‖P(δ)

k ξ‖2
δ′ |Xn

]
= σ2‖ϕ‖2

δ′ trace
P(δ)

k

nµ̄n(δ′)
,

where trace(M) stands for the trace of a matrix M . Since P(δ)
k is the projection

onto PolR, trace(P(δ)
k ) 6 R+1, and the variance of Bk is smaller than σ2‖ϕ‖2

δ′(R+
1)/(nµ̄n(δ′)). Then,

Efµ[(B + C)2|Xn] 6 σ2‖ϕ‖2
δ′

C2
R

nµ̄n(δ′)
. (4.7)

In view of the threshold choice (3.13), we have{
|〈f̄ (δ)

k − f̄
(δ′)
k , ϕ〉δ′ | > ‖ϕ‖δ′Tn(δ, δ′)

}
⊂

{ ‖ϕ‖−1
δ′ |Bk + Ck|

σ(nµ̄n(δ′))−
1
2 CR

> D
(
log(nµ̄n(δ))

) 1
2

}
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and, using (4.7) together with P[|N(0, 1)| > x] 6 exp(−x2/2) and |Gk(δ)| 6
(nµ̄n(δ)), we obtain

Pfµ[T (δ){|Xn] 6
∑

δ′∈Gk(δ)

R∑
p=0

exp
(
− D2 log

nµ̄n(δ)
2

)
6 (R + 1)(nµ̄n(δ))1−

D2

2 ,

which concludes the proof of the Lemma.

Proof of Theorem 2. The main features of the proof are a reduction to the
Bayesian risk over a hardest cubical subfamily of functions for the L∞ metrics, see
Korostelev (1993), Donoho (1994), Korostelev and Nussbaum (1999) and Bertin
(2004), and the choice of rescaled hypothesis with design-adapted bandwidth
hn(·), necessary to achieve the rate rn(·).

Consider ϕ ∈ H(s, L; R) (the extension of H(s, L) to the whole real line)
with support [−1, 1] and such that ϕ(0) > 0. We take

a := min
[
1,

( 2
‖ϕ‖2

∞

( 1
1 + 2s + β

− α
)) 1

2s
]
,

Ξn := 2a(1 + 2
1

s−bsc ) sup
x∈[0,1]

hn(x).

Note that (2.6) entails

Ξn .
( log n

n

) 1
1+2s+β

. (4.8)

If In = [cn, dn], we introduce xk := cn + k Ξn for k ∈ Kn :=
{
1, . . . ,

[
|In|Ξ−1

n

]}
,

and denote, for the sake of simplicity, hk := hn(xk). We consider the family of
functions

f(·; θ) :=
∑

k∈Kn

θkfk(·), fk(·) := Lashs
kϕ

( · − xk

hk

)
,

which belongs to H(s, L) for any θ ∈ [−1, 1]|Kn|. Using the Bernstein Inequality,
we can see that

Hn :=
∩

k∈Kn

{ µ̄n([xk − hk, xk + hk])
µ([xk − hk, xk + hk])

> 1
2

}
satisfies

µn[Hn] = 1 − o(1). (4.9)

Take b := csϕ(0). For any distribution B on Θn ⊂ [−1, 1]|Kn|, by a minoration
of the minimax risk by the Bayesian risk, and since w is non-decreasing, the left
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hand side of (2.8) is smaller than

w(b) inf
bθ

∫
Θn

Pn
θ

[
max
k∈Kn

|θ̂k − θk| > 1
]
B(dθ)

> w(b)
∫

Hn

inf
bθ

∫
Θn

Pn
θ

[
max
k∈Kn

|θ̂k − θk| > 1|Xn

]
B(dθ)dµn.

Hence, together with (4.9), Theorem 2 follows if we show that on Hn,

sup
bθ

∫
Θn

Pn
θ

[
max
k∈Kn

|θ̂k − θk| < 1|Xn

]
B(dθ) = o(1). (4.10)

We denote by L(θ; Y1, . . . , Yn) the conditional (on Xn) likelihood function of the
observations Yi from (1.1) when f(·) = f(·; θ). Conditionally on Xn, we have

L(θ; Y1, . . . , Yn) =
∏

16i6n

gσ(Yi)
∏

k∈Kn

gvk
(yk − θk)
gvk

(yk)
,

where gv is the density of N(0, v2), v2
k := E{y2

k|Xn} and

yk :=
∑n

i=1 Yifk(Xi)∑n
i=1 f2

k (Xi)
.

Thus, choosing B :=
⊗

k∈Kn
b, b := (δ−1 + δ1)/2, Θn := {−1, 1}|Kn|, the left

hand side of (4.10) is smaller than∫ ∏
16i6n gσ(Yi)∏
k∈Kn

gvk
(yk)

( ∏
k∈Kn

sup
bθk

∫
{−1,1}

1|bθk−θk|<1
gvk

(yk − θk)b(dθk)
)
dY1 · · · dYn,

and θ̂k = 1yk>0 − 1yk<0 are strategies reaching the supremum. Then, in (4.10),
it suffices to take the supremum over estimators θ̂ with coordinates θ̂k ∈ {−1, 1}
measurable with respect to yk only. Since, conditionally on Xn, yk is N(θk, v

2
k),

the left hand side of (4.10) is smaller than∏
k∈Kn

(
1 − inf

bθk∈{−1,1}

∫
{−1,1}

∫
1|bθk(u)−θk|>1

gvk
(u − θk)dub(dθk)

)
.

Moreover, if Φ(x) :=
∫ x
−∞ g1(t)dt,

inf
bθk∈{−1,1}

∫
{−1,1}

∫
1|bθk(u)−θk|>1

gvk
(u − θk)dub(dθk)

> 1
2

∫
min

(
gvk

(u − 1), gvk
(u + 1)

)
du = Φ(− 1

vk
).
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On Hn we have, in view of (2.1),

v2
k =

σ2∑n
i=1 f2

k (Xi)
> 2

(1 − δ)‖ϕ‖2
∞c2s log n

and, since Φ(−x) > exp(−x2/2)(x
√

2π) for any x > 0, we obtain

Φ(− 1
vk

) & (log n)−
1
2 n

{α− 1
1+2s+β

}
2 =: Ln.

Thus, the left hand side of (4.10) is smaller than (1 − Ln)|Kn| and, since

|In|Ξ−1
n Ln & n

{ 1
1+2s+β

−α}
2 (log n)

1
2
− 1

1+2s+β → +∞

as n → +∞, Theorem 2 follows.

Proof of Proposition 1. Without loss of generality, we consider the loss w(·) =
| · |. For proving Proposition 1, we use the linear LPE. If we denote by ∂mf the
m-th derivative of f , a slight modification of the proof of Lemma 1 gives for
f ∈ H(s, L) with s > m,

|∂mf̄
(δ)
k (xk) − ∂mf(xk)| . λ(E(δ)

k )−1|δ|−m
(
L|δ|s + σ(nµ̄n(δ))−

1
2 WN

)
where, in the same way as in the proof of Theorem 1, WN satisfies

Efµ[WN |Xn] . (log N)
1
2 , (4.11)

with N depending on the size of the supremum, to be specified below. First, we
prove (a). Since |In| ∼ (`n/n)1/(2s+1), if In = [an, bn] the points

xk := an +
(k

n

) 1
2s+1

, k ∈ {0, . . . , N},

where N := [`n], belong to In. We consider the bandwidth

hn =
( log `n

n

) 1
2s+1

, (4.12)

and we take δk := [xk − hn, xk + hn]. Note that since µ(x) > 0 for any x,
µ̄n(δ) ³ |δ| as |δ| → 0 with probability going to 1 faster than any power of n

(using the Berstein Inequality, for instance). We consider the estimator defined
by

f̂n(x) :=
r∑

m=0

∂mf̄
(δk)
k (xk)

(x − xk)m

m!
for x ∈ [xk, xk+1), k ∈ {0, . . . , [`n]},

(4.13)
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where r := bsc. Using a Taylor expansion of f up to the degree r, together
with (4.12), gives( n

log n

) s
1+2s sup

x∈In

|f̂n(x) − f(x)| .
( log `n

log n

) s
1+2s (1 + (log `n)−

1
2 WN ).

Then, integrating with respect to Pfµ(·|Xn) and using (4.11) where N = [`n],
entails (a), since log `n = o(log n).

The proof of b) is similar to that of (a). In this setting, the rate rn(·)
(see (2.1)) can be written as rn(x) = (log n/n)αn(x) for x in In (for n large
enough), where αn(x0) = s/(1 + 2s + β) and αn(x) > s/(1 + 2s + β) for x ∈
In − {x0}. We define

xk+1 =

xk + n−αn(xk)

s for k ∈ {−N, . . . ,−1}

xk + n−
αn(xk+1)

s for k ∈ {0, . . . , N},

where N := [`n]. All the points fit in In, since |x−N − xN | 6∑
−N6k6N n−min(αn(xk),αn(xk+1))/s 6 2(`n/n)1/(1+2s+β). We consider the band-

widths hk := (log `n/n)αn(xk)/s, and the intervals δk = [xk − hk, xk + hk]. We
keep the same definition (4.13) for f̂n. Since x0 is a local extremum of rn(·), we
have, in the same way as in the proof of (a), that

sup
x∈In

rn(x)−1|f̂n(x) − f(x)|

.
[

max
−N6k6−1

( log `n

log n

)αn(xk)
+ max

06k6N−1

( log `n

log n

)αn(xk+1)]
(1 + (log `n)−

1
2 WN ).

Hence
Efµ

[
sup
x∈In

rn(x)−1|f̂n(x) − f(x)|
]

.
( log `n

log n

) s
1+2s+β = o(1),

which concludes the proof of Proposition 1.
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