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Abstract: Both the conditional mean and variance in regressions with high di-

mensional predictors are of importance in modeling. In this paper, we investigate

estimation of the conditional variance. To attack the curse of dimensionality, we

introduce a notion of central variance subspace (CVS) to capture the information

contained in the conditional variance. To estimate the CVS, the impact from the

conditional mean needs to be fully removed. To this end, a three-step procedure is

proposed: Estimating exhaustively the CMS by an outer product gradient (OPG)

method; estimating consistently the structural dimension of the CMS by a modi-

fied Bayesian information criterion (BIC); and estimating the conditional mean by

a kernel smoother. After removing the conditional mean from the response, we sug-

gest a squared residuals-based OPG method to identify the CVS. The asymptotic

normality of candidate matrices, and hence of corresponding eigenvalues and eigen-

vectors, is obtained. Illustrative examples from simulation studies and a dataset

are presented to assess the finite sample performance of the theoretical results.
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1. Introduction

In full generality, the goal of regression analysis is to infer the conditional
distribution of the univariate response Y given the p× 1 vector of predictors X.
Because in many statistical applications the dimension p is large, the statistical
analysis is difficult. Therefore, it is important to reduce dimension without loss
of information on the conditional distribution of Y |X. To address this issue,
Cook (1994, 1998a)) proposed the idea of sufficient dimension reduction (SDR).
Potential advantages accrue from working in the SDR context because no pre-
specified model for Y |X is required, and the curse of dimensionality that may
hinder other nonparametric methods is often avoided.

The SDR is based on a population meta-parameter, the central subspace (CS,
Cook (1996)). The CS, usually denoted by SY |X , is defined as the intersection
of all subspaces S ⊆ Rp satisfying Y ⊥⊥X|P SX where “⊥⊥” indicates indepen-
dence and P S is the orthogonal projection onto S in the usual inner product.
Methods for estimating the CS include sliced inverse regression (SIR, Li (1991))
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and its variations, such as the minimum discrepancy approach (MDA, Cook
and Ni (2005)), sliced average variance estimation (SAVE, Cook and Weisberg
(1991)), graphical regression (Cook (1994, 1998a)), parametric inverse regression
(Bura and Cook (2001)), partial SIR (Chiaromonte, Cook and Li (2002)) when
categorical predictors are involved, and the contour regression method (Li, Zha
and Chiaromonte (2005)).

Note that the CS usually contains some important subspaces in regression
models. One is the central mean subspace (CMS, Cook and Li (2002)), denoted
by SE(Y |X). The CMS captures the information in the conditional mean through
some combinations of X, say, βT X, and leaves the rest of Y |X as a “nuisance
parameter”. In the literature there are many approaches to estimating the CMS,
including ordinary least squares (OLS) and related methods based on convex ob-
jective functions, principal Hessian directions (pHd, Li (1992) and Cook (1998b)),
iterative Hessian transformation (IHT, Cook and Li (2002)), average derivative
estimation (ADE, Härdle and Stoker (1989)), outer product gradient (OPG) es-
timation and minimum average variance estimation (MAVE, Xia, Tong, Li and
Zhu (2002)).

Another important subspace in the CS, referred to as the central variance
subspace (CVS), is spanned by the directions in conditional variance. Het-
eroscedasticity is clearly of importance in modeling and understanding the vari-
ability of statistical data. However, estimation of the CVS has not received close
attention. According to the definition of the conditional variance, to infer in-
formation on it, we need to remove the impact of the conditional mean. In a
dimension-reduction framework, the conditional mean E(Y |X) is usually of the
form E(Y |βT X) where β is a p × dM orthogonal matrix. That is, the column
vectors of β span the CMS. To estimate E(Y |X) efficiently, we can identify β

first, and then estimate E(Y |X) based on βT X. If dM is small, then we circum-
vent the problem of dimensionality successfully. When dM is given, we only need
to estimate E(Y |βT X) in a lower dimensional space based on βT X. When dM

is unknown, however, we must estimate it in addition to identifying the CMS
before approximating the regression function.

Clearly, to estimate the CVS, it is important to obtain the residuals that
do not involve any information on the CMS. Otherwise, the CVS may not be
identifiable. This requires us to exhaustively identify and estimate the CMS.
Then, the ADE, the pHd, and the IHT are not appropriate because of the lack
of exhaustibility. Although the MAVE can identify the CMS exhaustively, it
is not employed in this paper because the asymptotic normality of the relevant
estimators is still an open problem. As a result, the estimator of the CVS based
on MAVE cannot be shown to have the desired theoretical properties. Thus we
prefer the OPG method and, in Section 3.1, we provide the asymptotic normality
of the OPG estimator for the CMS that is designed for recovery of the CMS.
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Exhaustibility also requires a consistent estimator of the structural dimension
of the CMS when dM , the dimension of the CMS, is unknown. We propose,
in Section 3.2, a modified Bayes Information Criterion (BIC) that improves the
algorithm in Zhu, Miao and Peng (2006): Our proposed BIC-type criterion can be
used even when the candidate matrix is not nonnegative definite. We investigate
how to choose an optimal penalty factor. The major merit of this method is that
the consistency of the estimator of the relevant matrix is enough to guarantee the
consistency of the estimator of dimension. This is a general method which can
be applied to determine the structural dimension of other dimension reduction
subspaces, including the CVS.

After an exhaustive estimate of the CMS is obtained, a nonparametric
smoother is adopted to estimate E(Y |βT X), and then to obtain the residual
e =: Y − E(Y |βT X). We propose, in Section 4, the e2−based OPG method
which can fully recover the CVS. Moreover, the e2−based OPG method does not
rely on the marginal distribution of predictors. These improvements significantly
relax the restriction on the distribution of X and Y . Under mild conditions,
asymptotic normality is established in this section for our proposed e2−based
OPG method.

In Section 5, we report on simulations that assess the performance of our
methods. Horse mussel data is analyzed for illustration. The regularity condi-
tions are listed in the Appendix. For detailed proof of all the results presented
here, readers can refer to the online supplementary material attached to this
paper.

2. Central Variance Subspace

For ease of illustration, we assume φ(X) =: E(Y |X) = E(Y |βT X) where β

is a p × dM matrix.

Definition 2.1. Let e = Y − φ(X). If

e⊥⊥V ar(Y |X)|αT X, (2.1)

then the subspace spanned by the column vectors of α, denoted by S(α), is a
variance dimension reduction subspace for the regression of Y on X. The central
variance subspace (CVS), denoted by SV ar(Y |X), is defined as the intersection of
all the variance dimension reduction subspaces satisfying (2.1) provided it itself
is a variance dimension reduction subspace.

Remark 1. As with the CS and the CMS, the CVS does not always exist.
However, under some mild conditions, the existence and the uniqueness of the
CVS can be guaranteed much as was the existence of the CS, see Cook (1998a)).
We assume the existence of the CVS throughout the present context.
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Parallel to Cook and Li (2002), the following theorem gives equivalent con-
ditions for the conditional independence central to Definition 2.1.

Theorem 1. The following statements are equivalent:

(a) e⊥⊥Var(Y |X)|αT X;
(b) Cov[e2, Var(Y |X)|αT X] = 0;
(c) Var(Y |X) is a measurable function of αT X;
(d) For any measurable function l(X) such that Cov[e2, l(X)|αT X] exists, Cov[e2,

l(X)|αT X] = 0.

Assertion (c) implies that σ2(X) =: Var(Y |X) = E(e2|X) is a function of
αT X. It is not difficult to show that if Z = AT X +b for some invertible matrix A
and some vector b, then SV ar(Y |Z) = A−1 SV ar(Y |X) is the CVS for the regression
of Y on Z. Consequently, there is no loss of generality in standardizing X to have
mean 0 and identity covariance matrix. Hereafter we work with the standardized
predictor X.

3. An Exhaustive Estimate of the CMS

Definition 2.1 shows that the conditional mean E(Y |X) should be subtracted
if the true error term is to be obtained. In order to obtain an exhaustive estimate
of the CMS, and eventually to remove the effect of the conditional mean for
estimating the CVS, a three-step procedure is suggested: identify the vectors of
the CMS, estimate its dimension, approximate the link φ(.) in a nonparametric
way.

3.1. Outer product gradient estimation and its asymptotic normality

Xia, Tong, Li and Zhu (2002) introduced an outer product gradient (OPG)
method to estimate the CMS. The basic idea is to use the average of the square of
the first derivative of the link function φ(x) = E(Y |X = x) = E(Y |βT X = βT x).
To be more specific, let φ(1)(x) denote the first derivative of φ(x) with respect to
x. The population OPG matrix is defined as ∆ = E[φ(1)(X)φ(1)(X)T ]. By choos-
ing β to be the eigenvectors corresponding to the largest dM eigenvalues ∆, the
OPG provides an exhaustive estimator of the CMS. When the i.i.d. observations
{(xi, yi), i = 1, . . . , n} are available, we consider local r−th order polynomial
fitting in the form of the minimization problem

min
aj ,bj ,cji1···ip

n∑
i=1

[
yi − aj − bT

j (xi − xj)

−
∑

1<k≤r

∑
i1+···+ip=k

cji1···ip{xi−xj}i1
1 · · · {xi−xj}

ip
p

]2

Kw

{(xi−xj)
hw

}
, (3.1)
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where {xi−xj}k denotes the k−th element of vector xi−xj , and Kw{(xi−xj)/hw}
is a p−variate kernel.

For ease of illustration, let {(xi − xj)T
(k), i = 1, . . . , n} denote all distinct

columns {xi−xj}i1
1 · · · {xi−xj}

ip
p satisfying i1+· · ·+ip = k, Yn = (y1, . . . , yn)T is a

vector, and Wnj is a diagonal matrix of weights, with entries Kw{(xi − xj)/hw}.
Denote by Xni the predictor matrix whose (l, j)-block is (xl − xi)T

(j) for l =
1, . . . , n, and j = 0, . . . , r. When j = 0, (xl − xi)(0) = 1 for all t and l. We
re-organize the minimization problem (3.1) as

min
β0j ,...,βrj

n∑
i=1

[
yi−β0j−βT

1j(xi−xj)(1)−· · ·−βT
rj(xi−xj)(r)

]2
Kw

(xi−xj

hw

)
. (3.2)

Under the weighted least squares measure (3.2), we have β̂j =: (β̂0j , . . . , β̂rj)T =
(XT

njWnjXnj)−1 (XT
njWnjYn). Therefore, ∆n, the estimator of ∆, is 1/n∑n

j=1 β̂1j β̂
T
1j .

To facilitate the development of our proposed methods, we first present the
asymptotic normality of the OPG method. For notational clarity, we use the
following notation. Let µj =

∫
ujKw(u)du, νj =

∫
ujK2

w(u)du, and write

Sr = (µi+j−2)1≤i,j≤r+1, S̃r = (µi+j−1)1≤i,j≤r+1,

S∗
r = (νi+j−2)1≤i,j≤r+1, S̃∗

r = (νi+j−1)1≤i,j≤r+1.

We introduce a block matrix v1 = (0, Ip,0, . . . ,0) with the p×p identity matrix Ip

corresponding to the column indices of {(xi−t)(1)} in Xnt, that is, v1βj = β1j and
v1β̂j = β̂1j . Let V ech(C) = (c11, . . . , cp1; c22, . . . , cp2; c33, . . . , cpp)T be a p(p+1)/2
dimensional column vector for a symmetric p × p matrix C = (ckl)p×p. Define
H0 = v1S

−1
r (µ1, . . . , µr)T [Y − φ(X)]βT vT

1 + v1β[Y − φ(X)](µ1, . . . , µr)(S−1
r )T vT

1

and V = λT Cov[V ech(H0)]λ for any λ ∈ Rp(p+1)/2.

Theorem 2. Assume that conditions C1−C8 in the Appendix hold. Then

√
nhw(∆n − ∆) d−→ H0, as n → ∞, (3.3)

where λT V ech(H0) has the normal distribution N(0, V ) for any λ 6= 0.

Following Zhu and Ng (2003) and Zhu and Fang (1996), we can easily de-
rive the asymptotic normality of nonzero eigenvalues and their corresponding
eigenvectors by using perturbation theory. Let λ1(A) ≥ · · · ≥ λp(A) ≥ 0 and
bi(A) = (b1i(A), . . . , bpi(A))T , i = 1, . . . , p, denote, respectively, the eigenvalues
and their corresponding eigenvectors of a p × p matrix A.
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Theorem 3. In addition to the conditions of Theorem 2, assume that the nonzero
λl(∆)′s are distinct. Then for each nonzero eigenvalue λi(∆) and the correspond-
ing eigenvector bi(∆), we have, as n → ∞,

√
nhw(λi(∆n) − λi(∆))

=
√

nhwbi(∆)T (∆n − ∆)bi(∆) + op(
√

nhw‖∆n − ∆‖) d−→ bi(∆)T H0bi(∆),

where H0 is given in Theorem 2, and

√
nhw(bi(∆n) − bi(∆))

=
√

nhw

p∑
l=1,l 6=i

bi(∆)bi(∆)T (∆n − ∆)bi(∆)
λj(∆) − λl(∆)

+ op(
√

nhw‖∆n − ∆‖)

d−→
p∑

l=1,l 6=i

bi(∆)bi(∆)T H0bi(∆)
λj(∆) − λl(∆)

,

where ‖∆n − ∆‖ =
∑

1≤i,j≤p |aij |.

It is important to note that the asymptotic normality holds for λi(∆) > 0;
otherwise, λi(∆n) converges to 0 faster than root−(nh2

w) by direct application of
Theorem 3.1 in Eaton and Tyler (1991).

3.2. Determination of the structural dimension

If the structural dimension of the CMS, dM , is unknown, its estimation is
necessary. Although the sequential test has been popularly used in practice, see
Li (1991) and later developments in this area, it is not consistent (Ferré (1998)).
Therefore, to remove the impact of the CMS exhaustively, we must develop a
consistent estimator of the structural dimension of the CMS so as to achieve a
consistent estimator of the CMS.

Zhu, Miao and Peng (2006) recommended a modified BIC type algorithm,
together with several choices of the penalty factor. To avoid selecting the penalty
factor, Zhu and Zhu (2007) suggested choosing the penalty term simply to be of
order log n. Moreover, the BIC type algorithms of Zhu, Miao and Peng (2006)
cannot be directly used when the candidate matrix, such as the Y −based pHd
(Li (1992)), is not nonnegative-definite. Thus, a more general method is desired.

Because we must estimate the dimensions of both the CMS and the CVS
in this context, without notational confusion we write Λ, with a sample version
Λn, as a candidate matrix that targets Ψ, which can be the CMS or the CVS or
some other subspaces. Let K1 be the true dimension of space Ψ, which can be
either dM or dV , and K̂1 be the estimate of K1. To tackle the problem that Λ is
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not always non-negative definite, we introduce Ω = Λ2 + Ip where Ip is the p× p

identity matrix. Denote by Ωn the estimate of Ω.
Recall the definition of λi(A). Clearly, λi(Ω) = λ2

i (Λ) + 1. Determining the
dimension of Ψ now turns to estimating K1, the number of the eigenvalues of Ω
greater than 1. Following Zhu, Miao and Peng (2006), we define the quasi log
likelihood function as

log L(λ(Ω)) = −n

2
log |Ω| − n

2
trΩ−1Ωn, (3.4)

where λ(Ω) = (λ1(Ω), . . . , λp(Ω))T . Let Θk be the set consisting of all values
such that λ1(Ω) ≥ · · · ≥ λk(Ω) > 1 and λk+1(Ω) = · · · = λp(Ω) = 1. In addition,
let τ denote the number of λi(Ωn)’s which are greater than 1. According to Zhu,
Miao and Peng (2006), we have

sup
λ(Ω)∈Θk

log L(λ(Ω)) = −n

2

p∑
i=1

log λi(Ωn) − np

2
+

n

2

p∑
i=1+min(τ,k)

(log λi(Ωn)

+1 − λi(Ωn)).

Note that this supremum does not involve the unknowns relating to Ω and its
eigenvalues. For defining the estimator K̂1 of the true dimension K1, we suggest
using the equivalent form

log Lk =:
n

2

p∑
i=1+min(τ,k)

(log(λi(Ωn)) + 1 − λi(Ωn)).

Therefore, a modified BIC type criterion can be defined as

G(k) = log Lk − Cnk(2p − k + 1)
2

, (3.5)

where the second term is the penalty term, Cn is a penalty constant, and k(2p−
k + 1)/2 is the number of free parameters of (3.4) needed to be estimated when
λ(Ω) ∈ Θ. The estimator of K1 is taken as the maximizer K̂1 of G(k) over
k ∈ {0, . . . , p − 1}, that is,

G(K̂1) = max
0≤k≤p−1

G(k). (3.6)

Theorem 4. Suppose λi(Λn) − λi(Λ) = OP (n−1/2h−1
w ) for i = 1, . . . ,K1, and

λi(Λn) = oP (n−1/2h−1
w ), i = K1 + 1, . . . , p. Then, for Cn satisfying Cn/n → 0

and Cnh2
w → ∞, K̂1 → K1 in probability.

After we have identified the vectors in CMS and estimated consistently the
structural dimension of CMS, we can simply use kernel smoothing to approximate
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the link function φ(·). In doing so, the effect of the conditional mean can be
removed exhaustively. In the following section we turn to the recovery of the
CVS through the residual e = Y − φ(βT X).

4. Identification and Estimation of the CVS

In this section, we discuss how to recover the CVS. Since the OPG does not
rely on the distribution of the predictor vector, we investigate how to extend the
idea of the OPG to target the CVS. For notational clarity, we write σ2(k)(x) as
the k−th derivative of σ2(x) =: E(e2|X = x) = E(e2|αT X = αT x) with respect
to x, and dV as the structural dimension of CVS.

Theorem 5. If σ2(x) is differentiable, then α is in the space spanned by the first
dV eigenvectors of ∆e = E[σ2(1)(X)σ2(1)(X)T ] corresponding to the largest dV

eigenvalues.

The above theorem implies that the OPG method, with the response Y

replaced by e2, the square of the residuals, can be used to infer the CVS. This is
referred as the e2-based OPG method hereafter.

To obtain the residuals, we first need to estimate the mean function φ(x) =
E(Y |XT β = xT β). For ease of exposition, we use kernel estimation. Specifically,
for any p × dM orthogonal matrix β, denote by f(xT β) the density function of
XT β. When the independent and identically distributed sample points {(xi, yi),
i = 1, . . . , n} are available, the kernel estimator f̂(xT β) takes the form

f̂(xT β) =
1
n

n∑
i=1

Klhl
(xT

i β − xT β) =
1

nhdM
l

n∑
i=1

Kl

(
xT

i β − xT β

hl

)
.

Write ĝ(xT β) = 1/(nhdM
l )

∑n
i=1 yiKl[(xT

i β −xT β)/hl], and then φ̂(x) = ĝ(xT β)/
f̂(xT β). Recall that we use second order kernel function Kw(·) as a weight func-
tion when the OPG method is suggested. However, here we can use a different
kernel function Kl(·), accompanied by a separate bandwidth hl, to approximate
the link function φ(·).

When β and dM are unknown, and the estimators d̂M and β̂
ddM

are applicable,
and the resulting estimator of φ(x) is

φ̂(x) =
ĝ(xT β̂

bdM
)

f̂(xT β̂
bdM

)

=

1

nh
d̂M
l

∑n
i=1 yiKl

(xT
i β̂

bdM
−xT β̂

bdM
hl

)
1

nh
d̂M
l

∑n
i=1 Kl

(xT
i β̂

bdM
−xT β̂

bdM
hl

) . (4.1)
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Therefore, êi = yi − φ̂(xT
i β̂

ddM
) are the estimators of corresponding ei’s.

When êi’s are available, consider the minimization problem

min
β∗
0j ,...,β∗

rj

n∑
i=1

[
ê2
i −β∗

0j−β∗,T
1j (xi−xj)(1)−· · ·−β∗,T

rj (xi−xj)(r)
]2

Kw

(xi−xj

hw

)
. (4.2)

Under this least square criterion, we obtain the minimizer β̂∗
j =: (β̂∗

0j , . . . , β̂rj)∗,T

= (XT
njWnjXnj)−1(XT

njWnj(ê2
1, . . . , ê

2
n)T . Similar to the original OPG method,

we can estimate ∆e = E[σ2(1)(X)σ2(1)(X)T ] by ∆en = (1/n)
∑n

j=1 β∗
1jβ

∗,T
1j . Ap-

plying the spectral decomposition of ∆en, we can obtain the estimate of the
CVS.

For notational clarity, we define HOPG = v1S
−1
r (µ1, . . . , µr)T [e2 − σ2(X)]

β∗,T vT
1+v1β

∗[e2−σ2(X)](µ1, . . . , µr)(S−1
r )T vT

1 , and VOPG =λT Cov[V ech(HOPG)]λ
for any λ ∈ Rp(p+1)/2. The asymptotic normality of the e2−based OPG method
is at hand.

Theorem 6. Assume that conditions C1−C10 in the Appendix hold. As n → ∞,
we have

√
nhw(∆en − ∆e)

d−→ HOPG,

where λT V ech(HOPG) is N(0, VOPG) for any λ 6= 0.

5. Illustrative Examples

5.1. Simulation study

The following six models were simulated to evaluate the performance of the
proposed e2−based OPG method when recovering the CVS.

Model 1: y = xT β1 + (xT α1)ε;

Model 2: y = xT β1 + (xT α2)ε;

Model 3: y = (xT β2)2 + (xT α1)ε;

Model 4: y = (xT β1)3 + (xT α1)ε;

Model 5: y = (xT β1) + [(xT α1) + e(xT α2)]ε;

Model 6: y = [(xT β1) + e(xT β2)] + [(xT α1) + e(xT α2)]ε.

In these models, the covariates x and the error ε are independent, and follow
respectively normal distribution N(0, I3) and N(0, 1) where I3 is a 3× 3 identity
matrix. We chose α1 = (0, 1, 0)T , α2 = β1 = (1, 0, 0)T and β2 = (1, 1, 0)T /

√
2.

The basic experiment was replicated to obtain 200 data sets, each of size n = 400.
We chose these models based on the following considerations. In all six

models, SY |X = SE(Y 2|X) = SE(Y |X) + SV ar(Y |X). The CMS and the CVS are
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orthogonal in Model 1 but identical in Model 2, with each model having a linear
link. The CMS and the CVS overlap in Model 3 but are orthogonal in Model 4.
The link functions in the latter two models are nonlinear. In the previous four
models, both the CMS and the CVS are single-index. In contrast, in Models 5
and 6, the CVS is multi-index. The CMS is a proper subspace of the CVS in
Model 5, while the CMS is identical to the CVS in Model 6.

When the OPG is used to target the CMS, the product kernel Kw was the
product of p kernel functions each of the form 15/16(1− u2)2I(|u|≤1) in (3.2), see
Härdle and Mammen (1993). To select a bandwidth hw for undersmoothing the
estimator under the constraint of condition C8, which is needed for asymptotic
normality, we needed a smaller bandwidth than the one that is optimal in a
nonparametric regression scheme. Following the idea in Carroll, Fan, Gijbels and
Wand (1997) and Stute and Zhu (2005), we employed an algorithm which could
be easily implemented. We chose hw = n−2/15hopt,w, where hopt,w = O(n−1/5)
is the optimal bandwidth in terms of the generalized cross-validation (GCV)
criterion. A similar idea was also used in Zhu (2003), Zhu and Ng (2003), and
Zhu and Zhu (2007).

Subsequently, the spectral decomposition was applied to the estimation of
the kernel matrix of the OPG method. Then the BIC type criterion (3.6) with
Cn =

√
n was used to estimate the structural dimension of the CMS .

After the OPG estimator was obtained, kernel smoothing was used to esti-
mate the link functions for all models. We chose a kernel function Kl(·) with
order higher than 2 to recover the CVS consistently, because higher-order ker-
nel functions can estimate the link functions with smaller bias. Specifically, we
used the fourth-order kernel Kl(u) which is the product of d̂M kernel functions
each of the form k(u)I(|u|≤1)/

∫ 1
−1 k(u)du with k(u) = [(3 − u2)/(2

√
2π)]e−u2/2.

Then we chose the bandwidth hl by GCV criterion. We used these two kernel
functions (Kw, Kl), and two bandwidths (hw, hl), throughout the investigation
of the illustrative examples.

To assess the performance of our proposed methods, we used the trace cor-
relation coefficient R2 = trace(PαPα̂)/dV , proposed by Ferré (1998), where dV is
the dimension of the CVS, PA is the orthogonal projection onto A in the usual
inner product.

The mean µ and the standard deviation s of the trace correlation coefficients
over 200 repetitions were used to evaluate the efficiency of our proposed methods
when the OPG was used to recover the CMS:

µ =
1

200

200∑
i=1

R2
i and s =

[
1

200

200∑
i=1

(R2
i − µ)2

] 1
2

. (5.1)
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Table 1. The frequency of decisions of dimension with n = 400.

dim = 0 dim = 1 dim = 2
Model 1 0.00 0.99 0.01
Model 2 0.00 1.00 0.00
Model 3 0.01 0.95 0.04
Model 4 0.00 0.99 0.01
Model 5 0.05 0.10 0.85
Model 6 0.08 0.12 0.80

In Model 1, the e2− based OPG was employed to recover the CVS. We found
µ = 0.9725 and s = 0.0321. That is, under the linear model, the e2−based OPG
performed well when the CVS and the CMS were orthogonal.

In Model 2, SV ar(Y |X) = SY |X = SE(Y 2|X) = SE(Y |X), the e2−based OPG
after the three-step procedure gave µ = 0.9712 and s = 0.0231. By comparing
the performance of the e2-based OPG in Model 1 with that in Model 2, we can
clearly see that it recovered the CVS very well whether the CVS and the CMS
were orthogonal or not.

Model 3 and Model 4 were selected to show the performance of the e2−based
OPG in nonlinear models. In Model 3, µ = 0.9230 and s = 0.0543 means that
e2−based OPG performed well in nonlinear models.

Model 4 is used for comparison with Model 1. The results µ = 0.9239
and s = 0.1222 suggest that the performance of the e2-based OPG method in
nonlinear models is not as stable as in linear model.

The CVS is multi-index in Models 5 and 6. We found µ = 0.8823 and
s = 0.1523 in Model 5, and µ = 0.8551 and s = 0.2041 in Model 6. Thus, the
e2-based OPG method still worked well.

We also used the BIC type criterion with Cn =
√

n to estimate the structural
dimension of the CVS. The results are reported in Table 1. We can see that the
BIC type method is worthy of recommendation.

5.2. Horse mussel data

A sample of 201 horse mussels was collected at 5 sites in the Malborough
Sounds at the Northeast of New Zealand’s South Island (Camden (1999)). The
response variable is muscle mass Y , the edible portion of the mussel, in grams.
The quantitative predictors are all related characteristics of mussel shells: shell
width W and shell length L, each in mm, and shell mass S, in grams. To
ease the interpretation we assume that the data are independent and identically
distributed from the total combined population over the five sites. There are a
few additional predictors that are not used here.



880 LI-PING ZHU AND LI-XING ZHU

Figure 1. Horse mussel data. The vertical line maps the response Y , the
horizontal line, the first OPG predictors. The line is obtained through kernel
smoothing.

Consider the regression problem with the response Y and the predictors
(L,W,S) transformed to X = (L,W 0.36, S0.11)T to comply with the linearity
condition. Cook (1998a)) analyzed this dataset using SIR, and suggested that
the central subspace SY |X is one-dimensional.

We re-visit this dataset to explore the model structure. We first used the
OPG method to find the CMS, and used the BIC type algorithm to estimate its
dimension. We adopted the same kernel Kw and a similar bandwidth selector to
that are used in the previous simulations. The resulting bandwidth was hw = 0.4.
Our proposed BIC suggested a one-dimensional subspace. Therefore, we chose
the first projection

β1 = (0.8585, 0.5090,−0.0623)T .

This estimation is similar to Cook (1998a). The scatter-plot of Y versus βT
1 X in

Figure 1 shows that this direction is contained in the CMS.
Figure 1 also shows that the dispersion of Y becomes larger with larger value

of βT
1 X, which indicates that there may exist a heteroscedasticity structure in the

data. To verify this argument, we further studied these data using the e2−based
OPG method to explore heteroscedasticity. We chose the same kernel function
Kl(·) and the bandwidth hl = 0.7. Our BIC still suggested a one-dimensional
CVS when the e2−based OPG method was used. Therefore, we also chose the
first vector α1 = (0.9785, 0.1275,−0.1622)T .

To assess the similarity between β1 and α1, we used the trace correlation co-
efficient and found R2 = (βT

1 α1)2 = 0.91512. Together with Cook’s (1998a) result
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that SY |X is one dimensional, we suggest that SY |X = SE(Y |X) = SV ar(Y |X) =
Span{α1} = Span{β1}. Therefore, it is reasonable to propose that, for the horse
mussel data, y = φ(xT α1) + σ(xT α1)ε. This analysis verifies that the e2−based
OPG can identify the heteroscedasticity when the CMS and the CVS are not
orthogonal.
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Appendix: Some conditions

The regularity conditions we used are listed here.

(C1) The kernel function Kw(·) is a continuous density function having bounded
support.

(C2) The density function of X satisfies: 0 < inft fX(t) ≤ supt fX(t) < ∞, and
its second derivative f

(2)
X (t) satisfies a Local Liptschitz condition over the

support T of X, namely, there exist a constant c such that |f (2)
X (t + v) −

f
(2)
X (t)| ≤ c|t| for any t in a neighborhood of zero.

(C3) If φ(x) =: E(Y |X = x), the (r + 3)−th derivative φ(r+3)(·) exists and is
continuous over T .

(C4) The variance function σ2(x) = E[(Y − φ(X))2|X = x] has a bounded
second derivative over T .

(C5) The kernel function Kl(u) is bounded and symmetric, and is Lipschitz
continuous on T ; moreover, it satisfies

∫
T Kl(u) = 1;

∫
T uiKl(u) = 0,

i = 1, . . . , d − 1,
∫
T udKl(u) = MK 6= 0, d ≥ 2.

(C6) The bandwidth hl satisfies nh2
wh2dM+2

l → ∞ as n → ∞.

(C7) The link function φ(x) and the variance function σ2(x) are bounded on
T .

(C8) The bandwidth hw satisfies
√

nhp+1
w → ∞ and

√
nhr+1

w → 0.
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(C9) E[(Y − φ(X))4|X = x] has a bounded second derivative over T .
(C10) The density function f(xT β) of XT β, the density function f1(xT α) of XT α,

φ(x) = E(Y |X = x) and σ2(x) = E(e2|X = x) are d−times differentiable
on T , and their derivatives satisfy the following condition. If H(·) denotes
f(xT β), f1(xT α), φ(x) or σ2(x), there exists a neighborhood of the origin,
say U , and a constant c > 0 such that, for any u ∈ U ,

H(d−1)(t + u) − H(d−1)(t) ≤ c|u|,

where H(d−1)(t) denotes the (d − 1)−th derivatives of the function H(·).
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